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Simple Summary: The maintenance of cows in good health and physical condition is an important
component of dairy cattle management. One of the major metabolic disorders in dairy cows is
subclinical ketosis. Due to financial and organizational reasons it is often impossible to test all cows
in a herd for ketosis using standard blood examination method. Using milk data from test-day
records, obtained without additional costs for breeders, we found diagnostic models identifying
cows-at-risk of subclinical ketosis. In addition, to select the best models, we present a general scoring
approach for various machine learning models. With our models, breeders can identify dairy cows-
at-risk of subclinical ketosis and implement appropriate management strategies and prevent losses
in milk production.

Abstract: The diagnosis of subclinical ketosis in dairy cows based on blood ketone bodies is a chal-
lenging and costly procedure. Scientists are searching for tools based on results of milk performance
assessment that would allow monitoring the risk of subclinical ketosis. The objective of the study was
(1) to design a scoring system that would allow choosing the best machine learning models for the
identification of cows-at-risk of subclinical ketosis, (2) to select the best performing models, and (3) to
validate them using a testing dataset containing unseen data. The scoring system was developed
using two machine learning modeling pipelines, one for regression and one for classification. As part
of the system, different feature selections, outlier detection, data scaling and oversampling methods
were used. Various linear and non-linear models were fit using training datasets and evaluated on
holdout, testing the datasets. For the assessment of suitability of individual models for predicting
subclinical ketosis, three β-hydroxybutyrate concentration in blood (bBHB) thresholds were defined:
1.0, 1.2 and 1.4 mmol/L. Considering the thresholds of 1.2 and 1.4, the logistic regression model was
found to be the best fitted model, which included independent variables such as fat-to-protein ratio,
acetone and β-hydroxybutyrate concentrations in milk, lactose percentage, lactation number and
days in milk. In the cross-validation, this model showed an average sensitivity of 0.74 or 0.75 and
specificity of 0.76 or 0.78, at the pre-defined bBHB threshold 1.2 or 1.4 mmol/L, respectively. The val-
ues of these metrics were also similar in the external validation on the testing dataset (0.72 or 0.74 for
sensitivity and 0.80 or 0.81 for specificity). For the bBHB threshold at 1.0 mmol/L, the best classi-
fication model was the model based on the SVC (Support Vector Classification) machine learning
method, for which the sensitivity in the cross-validation was 0.74 and the specificity was 0.73. These
metrics had lower values for the testing dataset (0.57 and 0.72 respectively). Regression models were
characterized by poor fitness to data (R2 < 0.4). The study results suggest that the prediction of
subclinical ketosis based on data from test-day records using classification methods and machine
learning algorithms can be a useful tool for monitoring the incidence of this metabolic disorder in
dairy cattle herds.
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1. Introduction

Subclinical ketosis is one of the major metabolic disorders in dairy cows [1–3]. Subclin-
ical ketosis increases the risk of clinical ketosis [4] as well as other disorders, e.g., displaced
abomasum, metritis and lameness [5–7], which can lead to an increased culling rate [4]
and higher costs at herd level [8,9]. It has been determined that subclinical ketosis is
also associated with reduced milk production [6] as well as with reduced reproductive
performance of cows [10,11]. Subclinical ketosis is mostly observed during early lactation
and can be diagnosed based on an elevated ketone bodies in body fluids (blood, milk,
urine) in the absence of clinical signs [12]. The β-hydroxybutyrate concentration in blood
(bBHB) is an indicator used for diagnosing subclinical ketosis in dairy cows. The review
paper by Benedet et al. [13] indicates various bBHB thresholds used in the literature for
distinguishing between healthy cows and those with subclinical ketosis. In the majority
of publications, the threshold is defined as 1.2 mmol/L [7,14–18], and only rarely it is
defined as 1.0 mmol/L [19,20] or 1.4 mmol/L [6,21]. The detection of ketone bodies in
blood is not a standard procedure used in the management of dairy cattle herds. Due to
practical (financial and organizational) limitations, it is impossible to test all cows in a herd
at regular intervals. A search for indicators in milk samples during the assessment of milk
performance, which would allow identifying cows-at-risk of subclinical ketosis during
early lactation is ongoing. The strong correlation between the ketone bodies in blood
and milk [22] can be an indication for the use of acetone (ACE) and β-hydroxybutyrate
concentrations in milk (mBHB) for diagnosing subclinical ketosis. van Knegsel et al. [23]
found that the inclusion of ACE and mBHB helps to detect subclinical ketosis with greater
accuracy as compared to the inclusion of fat-to-protein ratio in milk.

The incidence of ketosis varies greatly between individual farms. Clinical ketosis is
observed in about 4–10% of cows per herd and subclinical ketosis—in about 10–50% of
cows [4,15,24]. In Poland, about 10% of cows per herd are at risk of ketosis on average.
This percentage is even higher, up to 30%, during the early period of the first lactation [25].
According to Oetzel [1], the identification of subclinical ketosis in 10% of cows in a herd
should be considered an alarming level.

The objective of the study was (1) to design a scoring system that would allow choosing
the best machine learning models for the identification of cows-at-risk of subclinical ketosis,
(2) to evaluate various machine learning methods and to choose the best performing
models, and (3) to validate the best performing models using a testing dataset containing
unseen data.

The advantages of machine learning methods include the possibility of generating
models without any previous knowledge of relationships between variables [26], the
smaller number of assumptions concerning data (e.g., normal distribution is often not
required), as compared to linear methods [27].

Machine learning has been used in the field of dairy science for early detection of
subclinical mastitis [28–31]. Much attention has been paid to the development of machine
learning expert systems for detection of subclinical mastitis from milking parameters. Such
parameters as milk yield, fat, protein and lactose concentration, milking time and peak
flow are easily accessible due to widely used in dairy farms automatic milking systems,
which provide breeders a large amount of information about each cow. Using machine
learning techniques and information from non-invasive sensors allow prediction of time-
to-calving in beef and dairy cows [32], modeling of milk yield of dairy cows under heat
stress condition [33], and identification of heat-stressed cows [34].

In the traditional approach, models are often built as a result of a good understanding
of the application domain which helps to create and select variables that can be included in
models. Model validation is based mainly on the goodness-of-fit evaluation and hypoth-
esis testing. In machine learning, the effort is shifted from a deep understanding of the
application domain towards computationally constructed and tested models [35].
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2. Materials and Methods
2.1. Initial Dataset

The original dataset consisted of 882 test-day (TD) records for Polish Holstein–Friesian
cows. Some records were excluded from further analysis if the lactation number was
unknown (n = 5), the sample collection day was incorrect (<6 or >60 days in milk) (n = 37)
and the test-day results were missing (n = 7). Following the removal, the initial dataset
consisted of 833 unique TD records from the first eight lactations, grouped into four
categories of lactation (1, 2, 3, 4–8). The cows calved in 37 herds in 2013 and 2014. The data
were provided by the Polish Federation of Cattle Breeders and Dairy Farmers. The records
included nine milk traits: TD milk yield, fat, protein and lactose percentages, fat-to-protein
ratio (FPR), milk urea concentration, somatic cell count (SCC), ACE and mBHB. The daily
FPR was calculated as the ratio of TD fat percentage to protein percentage. To normalize the
distribution, the SCC in milk was common log-transformed to the somatic cell score (SCS).
All milk variables were recorded as continuous traits and were not assigned to categories.
The number of lactation was used as a categorical variable. Table 1 shows the descriptive
statistics of the initial dataset.

Table 1. Number of cows, mean and standard deviation of blood β-hydroxybutyrate concentration
(bBHB), milk yield, fat percentage, protein percentage, fat-to-protein ratio (FPR), lactose percent-
age, milk urea concentration (MU), somatic cell score (SCS), acetone and milk β-hydroxybutyrate
concentrations (mBHB) according to lactation number.

Item Lactation 1 Lactation 2 Lactation 3 Lactation ≥ 4

Number of cows 324 202 155 152
bBHB (mmol/L) 0.60 ± 0.45 0.83 ± 0.87 0.93 ± 0.90 0.93 ± 0.87
Milk variables

Milk (kg) 31.5 ± 7.9 39.2 ± 10.3 39.1 ± 10.5 38.4 ± 10.9
Fat (%) 3.88 ± 0.72 4.14 ± 1.03 4.12 ± 1.00 4.30 ± 0.97
Protein (%) 3.07 ± 0.33 3.12 ± 0.34 3.06 ± 0.35 3.06 ± 0.37
FPR 1.27 ± 0.24 1.33 ± 0.32 1.35 ± 0.32 1.42 ± 0.34
Lactose (%) 4.96 ± 0.20 4.88 ± 0.21 4.85 ± 0.19 4.82 ± 0.23
MU (mg/L) 198 ± 60 202 ± 71 189 ± 75 177 ± 69
SCS 3.37 ± 1.93 2.86 ± 1.88 3.54 ± 2.17 3.80 ± 2.26
Acetone (mmol/L) 0.06 ± 0.09 0.09 ± 0.16 0.09 ± 0.14 0.10 ± 0.15
mBHB (mmol/L) 0.05 ± 0.05 0.07 ± 0.08 0.08 ± 0.08 0.09 ± 0.09

There was only one sample per cow in the dataset. Milk samples were analyzed using a
MilkoScan FT6000 analyzer (Foss, Hillerod, Denmark). The acetone and β-hydroxybutyrate
concentrations in milk were determined by Fourier-transform infrared method (FTIR) using
a CombiFoss analyzer (Foss, Hillerod, Denmark). Sampling of individual cows comprised
single milk and blood samples collected on the same test-day. The β-hydroxybutyrate
concentrations in blood were measured using an OptiumXido glucometer (Abbott, Winey,
UK). The data were collected between September 2013 and June 2014. For further analysis,
three bBHB thresholds were used as the diagnostic reference for subclinical ketosis: 1.0, 1.2
and 1.4 mmol/L. Cows with circulating bBHB lower than the pre-defined threshold were
considered to be healthy.

2.2. Approach

The scoring system for the identification of subclinical ketosis was developed using
two machine learning (ML) modeling pipelines, one for regression and one for classification.

The analyses were performed with Python version 3.8, using pandas (1.1.2), numpy
(1.19.2), scipy (1.5.2), imbalanced-learn (0.7.0), scikit-learn (0.23.2), lightgbm (3.0.0), xgboost
(1.2.0) and catboost (0.24.2) libraries. Figure 1 presents an overview of the regression and
classification modeling pipelines.
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Figure 1. Regression and classification modeling pipelines using cross-validation (CV) for models
fitting.

2.3. Data Pre-Processing for Machine Learning

For the best performance of ML algorithms, 12 versions of the initial dataset were
prepared using different feature selection and outlier detection methods.

2.3.1. Feature Selection

To select features for modeling, two feature selection methods were used: one based on
Pearson’s and Spearman’s correlation coefficients, and another one based on ML recursive
feature elimination method (RFE).

Table 2 shows Pearson’s correlation coefficients for continuous features in the initial
dataset. The correlation coefficients between independent features ranged between 0.41
and 0.86. To eliminate multicollinearity between independent features, the ones with
correlation coefficient above 0.80 were examined. Fat percentage was eliminated from
the modeling dataset because it was highly correlated with FPR (0.86). The acetone and
β-hydroxybutyrate concentrations in milk were also highly correlated (0.76), however,
below the pre-defined threshold of 0.80. Finally, features correlated with the target variable
(bBHB), having an absolute value of correlation coefficient equal to or greater than 0.20,
were selected for further processing: ACE (0.63), mBHB (0.62), FPR (0.44), lactose percent-
age (0.24) and days in milk (DIM) (0.21). In addition, the only categorical feature in the
initial dataset (parity) was selected as having Spearman’s correlation coefficient with the
target variable of 0.20.
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Table 2. Pearson’s correlation coefficient for continuous variables in the initial dataset: milk yield, fat percentage, protein
percentage, fat-to-protein ratio (FPR), acetone (ACE) and milk β-hydroxybutyrate (mBHB) concentrations, lactose percentage,
milk urea concentration (MU), somatic cell score (SCS) and blood β-hydroxybutyrate concentration (bBHB).

Variable Milk Fat Protein FPR ACE mBHB Lactose MU SCS bBHB

Milk (kg) 1 −0.21 −0.22 −0.12 −0.17 −0.20 0.14 0.06 −0.19 −0.09
Fat (%) 1 0.30 0.86 0.49 0.56 −0.36 0.01 0.14 0.43
Protein (%) 1 −0.22 0.05 −0.04 −0.27 −0.01 0.17 −0.01
FPR 1 0.46 0.59 −0.23 0 0.05 0.44
ACE (mmol/L) 1 0.76 −0.41 −0.05 0.15 0.63
mBHB (mmol/L) 1 −0.40 −0.11 0.16 0.62
Lactose (%) 1 0.05 −0.38 −0.24
MU (mg/L) 1 −0.05 −0.07
SCS 1 0
bBHB (mmol/L) 1

Based on scatter plots of all combinations of features, no non-linear relationships were
observed, neither between independent features nor between independent features and
the target feature.

The recursive feature elimination machine learning method with scikit-learn Decision-
TreeRegressor estimator was used for selecting the three best-suited groups of features.
The goal of the recursive feature elimination is to select features by recursively considering
smaller and smaller sets of features using an external estimator that assigns weights to
features. First, the estimator is trained using the initial set of features to determine the
importance of each feature. Then, the least important features are pruned one by one out of
the current set of features. That procedure is recursively repeated until the desired number
of features is achieved.

The best three groups of features selected using the RFE selection method were termed
as RFE1, RFE2, and RFE3. The RFE1 group included ACE only. The RFE2 group contained
milk yield, fat percentage, protein percentage, FPR and ACE. The RFE3 group contained
protein percentage and ACE.

2.3.2. Outliers

Two approaches: analytical and numerical were used for the identification of outliers.
In the analytical approach, for features with non-Gaussian distribution (ACE, mBHB
and bBHB), observations with values higher than 1.5 of interquartile range (IQR) were
removed. For features with Gaussian distribution (milk yield, FPR, fat, protein and lactose
percentages), observations with values higher than three standard deviations (SD) from the
mean were removed. In the numerical approach, outliers were detected using unsupervised
one-class classification (OOC) approach based on the scikit-learn local outlier factor (LOF)
machine learning method. The unsupervised anomaly detection LOF algorithm is a
method which computes the local density deviation of a given data point with respect to
its neighbors. It considers as outliers the samples that have a substantially lower density
than their neighbors. Table 3 summarizes the differences between the 12 datasets generated
using different feature selection and outlier detection methods.



Animals 2021, 11, 2131 6 of 18

Table 3. Characteristics of datasets used for modeling and derived from the initial dataset using feature selection methods,
outlier detection methods and independent features included in each dataset (parity, days in milk (DIM), milk yield, fat
percentage, protein percentage, fat-to-protein ratio (FPR), lactose percentage, acetone (ACE) and milk β-hydroxybutyrate
concentrations (mBHB)).

Dataset
Number

Feature Selection
Method 1

Outlier Detection
Method 2

Number of
Observations

Independent Features Used
for Modeling

1 Correlation none 833 parity, DIM, FPR, ACE, mBHB, lactose
2 Correlation IQR/SD 783 parity, DIM, FPR, ACE, mBHB, lactose
3 Correlation LOF 792 parity, DIM, FPR, ACE, mBHB, lactose
4 RFE none 833 ACE
5 RFE IQR/SD 776 ACE
6 RFE LOF 811 ACE
7 RFE none 833 milk, fat, protein, FPR, ACE
8 RFE IQR/SD 776 milk, fat, protein, FPR, ACE
9 RFE LOF 811 milk, fat, protein, FPR, ACE

10 RFE none 833 protein, ACE
11 RFE IQR/SD 776 protein, ACE
12 RFE LOF 811 protein, ACE

1 RFE, recursive feature elimination. 2 IQR, interquartile range; SD, standard deviation; LOF, local outlier factor.

2.4. Modeling Pipelines—Description and Validation of Models

In order to predict subclinical ketosis based on a numerical (continuous) target feature
(bBHB), two ML modeling pipelines were designed and used to score regression and
classification models. All the 12 datasets prepared during the data pre-processing stage
were used as input for both pipelines.

Each input dataset was split into training (with 70% of observations) and testing
(30% of observations) subsets using the scikit-learn train_test_split method with the same
random_state parameter for reproducibility and comparability. Using the same random state
guarantees the same split into training and testing datasets at all times. In addition, the
stratified sampling method was used in the classification pipeline. The use of such sampling
leads to the generation of training and testing subsets that have the same proportions of
class labels as in the initial dataset. The same random state and stratified sampling defined
while splitting data into the training and testing subsets made it possible to compare
different ML algorithms based on the same input data.

Each training dataset was scaled using four scikit-learn feature scaling methods:
StandardScaler, RobustScaler, Normalizer and MinMaxScaler. Non-scaled version was also
used for comparison. Some algorithms perform better if features are in the same scale or
are scaled using a different feature scaling method.

In both pipelines, dummy estimators were used to establish the performance baseline
(point of reference) for all other modeling techniques. If a model achieves performance at
or below the baseline, the technique should be improved or abandoned.

2.4.1. Regression Pipeline

In the regression pipeline, 14 ML algorithms were used. In the scikit-learn package:
DummyRegressor (always returns mean), LinearRegression, ElasticNet, SupportVectorRe-
gressor (SVR) with linear and squared exponential (rbf) kernels, DecisionTreeRegressor,
AdaBoostRegressor, BaggingRegressor, RandomForestRegressor, ExtraTreesRegressor, and
BayesianRidge; in the xgboost package: XGBRegresor; and in the lightgbm package: LGBM-
Regressor. All the methods (except SVR) were used with their default hyperparameters.
The mathematical details and the conceptual underpinnings of the methods used in the
pipelines can be found in Hastie et al. [36].
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For each feature scaling method, performance of the fitted models was evaluated
using the training dataset by repeating ten times the 10-folds cross validation (CV) with
the mean coefficient of determination (R2), mean absolute error (MAE), root mean square
error (RMSE) and their standard deviations as model performance metrics. Next, the best
performing models were fitted to the entire training dataset for making predictions at a
later stage (using unseen data represented by the testing dataset).

The testing dataset was used for 12 best regression models (one per dataset) to com-
pare their performance with classification models. bBHB predicted by regression models
were split into binary classes based on three cut-off points (1.0, 1.2 and 1.4) and their
classification power was evaluated based on sensitivity, specificity, balanced accuracy,
Matthews correlation coefficient and F2 score classification metrics. bBHB values lower
than the cut-off point were classified into ketosis negative class (class label = 0). bBHB
values equal to or greater than the cut-off point were classified into ketosis positive class
(class label = 1).

2.4.2. Classification Pipeline

The first step was to create three binary target features based on bBHB original
continuous values according to three cut-off points at 1.0, 1.2 and 1.4. bBHB values lower
than the cut-off point were classified into ketosis negative class (class label = 0). bBHB
values equal to or greater than the cut-off point were classified into ketosis positive class
(class label = 1).

In the classification pipeline, 12 machine learning algorithms were used. In the scikit-
learn package: DummyClassifier, LogisticRegression, SGDClassifier, DecisionTreeClassifier,
KNeighborsClassifier, AdaBoostClassifier, BaggingClassifier, RandomForestClassifier, Ex-
traTreesClassifier, SupportVectorClassification (SVC), and GaussianNB; in the catboost
package: CatboostClassifier. For all the methods, their default hyperparameters were used.

Table 4 shows the number of observations in ketosis positive and ketosis negative
classes, including the prevalence of subclinical ketosis for each cut-off point of bBHB (1.0,
1.2 and 1.4).

As observed, positive and negative classes were imbalanced in all cases (Table 4). To
balance the target binary classes, 5 oversampling methods (from the scikit-learn package)
were used: SMOTE, BorderlineSMOTE, RandomOverSampler, ADASYN and SVMSMOTE.
The oversampling was performed during the cross-validation iterations after the training
dataset was split into folds to eliminate potential data leakage.

For each of the cut-off points, feature scaling and oversampling algorithm classification
models were evaluated on the training datasets using the scikit-learn RepeatedStratifiedK-
Fold cross-validation method (repeated ten times with 10-folds). The mean cross-validation
sensitivity, specificity, balanced accuracy, Matthews correlation coefficient and F2 score,
and their standard deviations were used as model performance metrics. Next, the 12 best
performing models (one per dataset) were fitted to the entire training dataset for making
predictions at a later stage (using unseen data represented by the testing dataset).

Using the testing datasets, for each of the class cut-off points, the 12 best classification
models were evaluated based on sensitivity, specificity, balanced accuracy, Matthews
correlation coefficient and F2 score classification metrics.

The application of different outlier detection methods (during data pre-processing)
resulted in a varying number of observations and features in each of the 12 input datasets.
The ML algorithms were scored separately for each of the twelve input datasets to ensure
that the scoring was performed on the same training and testing datasets for each algorithm
in the regression and classification pipeline. As a result, 72 best performing models were
selected (one per each input dataset, pipeline and cut-off point).
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Table 4. Number of cows per input dataset with subclinical ketosis (SCK) and without SCK (no SCK) for each cut-off point
(1.0, 1.2, 1.4) of blood β-hydroxybutyrate concentration (bBHB) and the prevalence of SCK positive samples.

Dataset
Number

bBHB Cut-Off

1.0 1.2 1.4

No SCK SCK SCK
Prevalence (%) No SCK SCK SCK

Prevalence (%) No SCK SCK SCK
Prevalence (%)

1 670 163 19.6 709 124 14.9 737 96 11.5
2 658 125 16.0 696 87 11.1 721 62 7.9
3 636 156 19.7 673 119 15.0 701 91 11.5
4 670 163 19.6 709 124 14.9 737 96 11.5
5 650 126 16.2 688 88 11.3 713 63 8.1
6 656 155 19.1 695 116 14.3 722 89 11.0
7 670 163 19.6 709 124 14.9 737 96 11.5
8 650 126 16.2 688 88 11.3 713 63 8.1
9 656 155 19.1 695 116 14.3 722 89 11.0
10 670 163 19.6 709 124 14.9 737 96 11.5
11 650 126 16.2 688 88 11.3 713 63 8.1
12 656 155 19.1 695 116 14.3 722 89 11.0

2.4.3. Evaluation Metrics

To compare and assess the final performance of each regression and classification
model on the testing dataset, the continuous values of the target feature (bBHB), as pre-
dicted by a regression model, were translated into classes using three cut-off points (1.0, 1.2
and 1.4) and the same logic of positive class assignment as in case of classification. Next,
the same set of classification metrics was used consistently across all models, regardless of
the initially used type of machine learning method.

Five metrics were used for the evaluation of classification models: sensitivity (recall,
true positive rate, TPR), specificity (true negative rate, TNR), balanced accuracy (bACC),
Matthews correlation coefficient (MCC) and F2 score.

Sensitivity indicated the proportion of cows with subclinical ketosis that were correctly
predicted as cows with subclinical ketosis and specificity indicated the proportion of healthy
cows that were correctly predicted as healthy.

Instead of accuracy which indicates the percentage of correctly predicted cows in the
dataset but can be misleading in the case of an imbalanced dataset, balanced accuracy [37]
was calculated using the following formula:

bACC =
sensitivity + specificity

2

The value of this metric can range from 0 to 1, where 1 means perfect performance of
a model and 0 means random scoring.

Additionally, the Matthews correlation coefficient [38] was calculated. This metric
has values in the range of −1 to 1, where −1 represents the total disagreement between
predicted and actual value, and 1 indicates that the prediction generated by the model
entirely agrees with the actual value. The MCC was calculated according to the following
formula:

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP, TN, FP and FN are true positive, true negative, false positive, and false negative,
respectively.
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The Fβ score can be interpreted as a weighted harmonic mean of precision and recall
reaching the optimal value at 1 (indicating perfect precision and recall) and the least optimal
value at 0. Precision is the percent of correct positive predictions. Recall (also referred to as
sensitivity) is the percentage of correctly classified positive values.

Fβ =
(

1 + β2
)
· precision·recall
β2·precision + recall

The two values commonly used for β are 2, which means that greater weight is
attributed to recall than to precision, and 0.5, which means that greater weight is attributed
to precision than to recall. For ketosis predictions, it is more important to identify as many
cows with subclinical ketosis as possible, and therefore the F2 score was chosen as a metric.

F2 = 5· precision·recall
4·precision + recall

3. Results
3.1. Number of Models

For each of the 12 input datasets (Table 3), characterized by the different compositions
of features and the use of different methods for their selection and the elimination of
outliers, five datasets were generated, for which different methods were used for the
scaling of independent variables (no scaling was performed for one of these five datasets).
As a result, a total of 60 sets were generated.

The classification approach included the generation of three sets for each of these
60 sets, where the continuous values of the dependent variable (bBHB) were assigned to
the following classes: 0 and 1, based on one of the bBHB thresholds (1.0, 1.2, 1.4). Next,
using five oversampling methods, for each of the resulting 180 datasets and 12 machine
learning methods, a total of 10800 models were trained.

In the regression-based approach for each of 60 datasets characterized by the differ-
ent composition of features, the use of different methods for the elimination of outliers
and scaling of variables, a total of 840 models were trained using 14 machine learning
algorithms.

3.2. Performance of Classification Models

In the classification-based approach, out of the models trained for each threshold (1.0,
1.2, 1.4) for the dependent variable (bBHB), a total of 12 models were chosen (one per
each dataset shown in Table 3), for which the greatest mean sensitivity, specificity, bACC
and MCC were obtained in the cross-validation, including the lowest respective standard
deviations. The values of the selected metrics for the best classification models are shown
in (Tables 5–7).

For the threshold of 1.0 mmol/L for the dependent variable (bBHB), the mean sensi-
tivity in the cross-validation ranged between 0.63 and 0.90 (with standard deviation in the
range of 0.09 and 0.20) and the specificity was in the range of 0.14 and 0.73 (with standard
deviation in the range of 0.05 and 0.19) (Table 5). The model with both high average
sensitivity (0.74) and specificity (0.73) was a model based on the SVC machine learning
algorithm. Variables for the model were selected based on the calculated coefficients of
correlation between variables and outliers were eliminated using the LOF machine learning
method (Table 5, dataset 3). For scaling of variables, RobustScaler was used. Oversam-
pling was performed using the ADASYN method. For this model, bACC obtained in the
cross-validation was equal to 0.74. This model was characterized by the highest MCC (0.40)
among the models selected for each of the 12 datasets (Table 5). Taking also into account
the average F2 score (0.63) as determined during the cross-validation, this model should
be considered to be superior as compared to the other. For the testing dataset containing
unseen data, the sensitivity, specificity and bACC were lower than those obtained in the
cross-validation at 0.57, 0.72 and 0.65, respectively.
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If the bBHB threshold was defined as 1.2 mmol/L, then the best classification model
was the logistic regression (Table 6). Oversampling was performed using the ADASYN
method. As previously, variables to be included in the model were selected based on
correlation coefficients and they were scaled using the MinMaxScaler (Table 6, datasets 1
and 3). In principle, it was not important whether outliers were eliminated using a machine
learning method or were not eliminated because mean values of metrics selected in the
cross-validation were similar in both cases: 0.74 and 0.73 for sensitivity, 0.76 and 0.77 for
specificity, and bACC was 0.75 for both models. MCC was 0.38 and 0.39 respectively for the
model used for a dataset from which outliers were eliminated and for a model used for a
dataset where outliers were not eliminated. For the bBHB threshold defined as 1.2 mmol/L,
the F2 score was highest for the two models indicated by us and it was 0.6 in both cases.
For both models, the values of the selected metrics for the testing dataset were close to
the mean values of these metrics as obtained in the cross-validation. Taking into account
the bBHB threshold of 1.2 mmol/L out of the best performing models (with the greatest
sensitivity), each of the 12 datasets also included models for which the average sensitivity
obtained in the cross-validation was above 0.8, however, the specificity for these models
ranged between 0.14 and 0.30 (Table 6).

For the bBHB threshold of 1.4 mmol/L, the best performing model with high average
sensitivity (0.75) and specificity (0.78) obtained in the cross-validation was again a model
based on logistic regression (Table 7). As previously, variables to be included in the model
were selected based on correlation coefficients and they were scaled using the Standard-
Scaler, and oversampling was performed using the ADASYN method (Table 7, dataset 3).
Outliers were removed using the LOF machine learning method. The model based on
the SVC machine learning algorithm seems to be an equally good model (cross-validation
sensitivity of 0.74 and specificity of 0.79). Calculations for this model were performed
based on data with outliers removed using the LOF machine learning method and variables
selected using the RFE machine learning method (Table 7, dataset 12). This model included
such independent variables as protein percentage and acetone concentration. The variables
were scaled using RobustScaler and oversampling was also performed using the ADASYN
method. The mean MCC obtained in the cross-validation for the two discussed models
were the same (0.38) and highest among the considered models for the bBHB threshold
of 1.4 mmol/L (Table 7). The F2 score was 0.58 in both cases, which demonstrates the
superiority of the models referred to above as compared to the others. The values of the
analyzed metrics for the testing dataset were no different from those obtained during the
cross-validation (Table 7).

For the best performing models, independent variables were selected based on the
calculated coefficients of correlation between variables. The features that were taken
into account included FPR, ACE, mBHB, lactose percentage, lactation number and DIM.
Oversampling using the ADASYN method was performed for the sets used for fitting of
these models. The most desired values of metrics (sensitivity, specificity, bACC, MCC, F2
score) were obtained for a logistic regression model (bBHB cut-offs 1.2 and 1.4) as well as
for a model based on the SVC (SupportVectorClassification) machine learning algorithm
(bBHB cut-off 1.0).
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Table 5. Sensitivity (TPR), specificity (TNR), balanced accuracy (bACC), Matthews correlation coefficient (MCC) and F2 score of the cross-validation on training and testing datasets for
models predicting subclinical ketosis (defined as blood β-hydroxybutyrate ≥1.0 mmol/L) in Polish Holstein–Friesian cows.

Dataset
Number Model 1 Scaler

Method 2
Oversampling

Method 3

Training (Mean ± SD) Testing

Sensitivity
(TPR)

Specificity
(TNR) bACC MCC F2 TPR TNR bACC MCC F2

1 SGD MMS BSMOTE 0.72 ± 0.20 0.70 ± 0.19 0.71 ± 0.08 0.37 ± 0.14 0.60 ± 0.13 0.78 0.74 0.76 0.43 0.66
2 LOG STS ADASYN 0.66 ± 0.16 0.73 ± 0.07 0.69 ± 0.08 0.30 ± 0.12 0.54 ± 0.11 0.71 0.73 0.72 0.34 0.58
3 SVC RBS ADASYN 0.74 ± 0.14 0.73 ± 0.07 0.74 ± 0.07 0.40 ± 0.12 0.63 ± 0.11 0.57 0.72 0.65 0.25 0.50
4 CAT STS BSMOTE 0.67 ± 0.14 0.71 ± 0.10 0.69 ± 0.07 0.32 ± 0.12 0.57 ± 0.10 0.57 0.70 0.63 0.22 0.49
5 LOG NOR SMOTE 0.90 ± 0.09 0.14 ± 0.05 0.52 ± 0.05 0.04 ± 0.12 0.48 ± 0.05 0.87 0.18 0.52 0.05 0.48
6 LOG STS BSMOTE 0.64 ± 0.13 0.73 ± 0.06 0.69 ± 0.08 0.31 ± 0.13 0.55 ± 0.11 0.60 0.75 0.67 0.29 0.53
7 SVC none SMOTE 0.74 ± 0.12 0.50 ± 0.08 0.62 ± 0.07 0.20 ± 0.11 0.55 ± 0.08 0.61 0.53 0.57 0.11 0.47
8 SVC none BSMOTE 0.78 ± 0.16 0.38 ± 0.10 0.58 ± 0.09 0.12 ± 0.13 0.49 ± 0.09 0.87 0.28 0.57 0.12 0.51
9 SVC none SMOTE 0.75 ± 0.15 0.45 ± 0.10 0.60 ± 0.08 0.16 ± 0.12 0.53 ± 0.09 0.74 0.54 0.64 0.22 0.56

10 SVC STS BSMOTE 0.75 ± 0.11 0.63 ± 0.07 0.69 ± 0.06 0.31 ± 0.10 0.60 ± 0.08 0.76 0.61 0.68 0.29 0.59
11 SVC RBS ADASYN 0.63 ± 0.17 0.66 ± 0.08 0.65 ± 0.09 0.23 ± 0.14 0.49 ± 0.12 0.66 0.65 0.65 0.23 0.51
12 KNN NOR ADASYN 0.71 ± 0.14 0.60 ± 0.07 0.65 ± 0.08 0.24 ± 0.12 0.55 ± 0.10 0.66 0.54 0.60 0.16 0.50

1 SGD, SGDClassifier; LOG, LogisticRegression; SVC, SupportVectorClassification; CAT, CatBoostClassifier; KNN, KNeighborsClassifier. 2 MMS, MinMaxScaler; STS, StandardScaler; RBS, RobustScaler; NOR,
Normalizer. 3 BSMOTE, BorderlineSMOTE.

Table 6. Sensitivity (TPR), specificity (TNR), balanced accuracy (bACC), Matthews correlation coefficient (MCC) and F2 score of the cross-validation on training and testing datasets for
models predicting subclinical ketosis (defined as blood β-hydroxybutyrate ≥1.2 mmol/L) in Polish Holstein–Friesian cows.

Dataset
Number Model 1 Scaler

Method 2
Oversampling

Method 3

Training (Mean ± SD) Testing

Sensitivity
(TPR)

Specificity
(TNR) bACC MCC F2 TPR TNR bACC MCC F2

1 LOG MMS ADASYN 0.73 ± 0.15 0.77 ± 0.06 0.75 ± 0.08 0.39 ± 0.12 0.60 ± 0.11 0.68 0.80 0.74 0.38 0.58
2 LOG MMS ROS 0.65 ± 0.17 0.74 ± 0.06 0.69 ± 0.09 0.27 ± 0.12 0.48 ± 0.12 0.77 0.76 0.76 0.36 0.57
3 LOG MMS ADASYN 0.74 ± 0.14 0.76 ± 0.06 0.75 ± 0.07 0.38 ± 0.12 0.60 ± 0.10 0.72 0.80 0.76 0.42 0.62
4 LOG NOR SMOTE 0.97 ± 0.06 0.15 ± 0.05 0.56 ± 0.04 0.12 ± 0.07 0.49 ± 0.03 0.86 0.17 0.52 0.03 0.45
5 LOG NOR SMOTE 0.90 ± 0.10 0.15 ± 0.05 0.53 ± 0.06 0.05 ± 0.10 0.39 ± 0.04 0.96 0.16 0.56 0.11 0.41
6 LOG NOR SMOTE 0.94 ± 0.08 0.14 ± 0.05 0.54 ± 0.04 0.08 ± 0.09 0.47 ± 0.04 0.94 0.19 0.57 0.12 0.48
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Table 6. Cont.

Dataset
Number Model 1 Scaler

Method 2
Oversampling

Method 3

Training (Mean ± SD) Testing

Sensitivity
(TPR)

Specificity
(TNR) bACC MCC F2 TPR TNR bACC MCC F2

7 SVC none ADASYN 0.77 ± 0.15 0.41 ± 0.09 0.59 ± 0.08 0.13 ± 0.13 0.47 ± 0.09 0.81 0.48 0.64 0.21 0.52
8 SVC none ADASYN 0.87 ± 0.14 0.30 ± 0.07 0.58 ± 0.07 0.12 ± 0.10 0.42 ± 0.06 0.69 0.19 0.44 -0.09 0.31
9 SVC none ADASYN 0.83 ± 0.15 0.27 ± 0.07 0.55 ± 0.08 0.08 ± 0.13 0.45 ± 0.08 0.91 0.25 0.58 0.14 0.49

10 SGD MMS BSMOTE 0.68 ± 0.19 0.73 ± 0.19 0.71 ± 0.09 0.35 ± 0.17 0.55 ± 0.12 0.76 0.69 0.73 0.33 0.58
11 KNN MMS ADASYN 0.53 ± 0.18 0.67 ± 0.07 0.60 ± 0.09 0.13 ± 0.13 0.37 ± 0.12 0.54 0.68 0.61 0.15 0.38
12 SGD STS BSMOTE 0.66 ± 0.19 0.68 ± 0.17 0.67 ± 0.09 0.27 ± 0.15 0.50 ± 0.13 0.74 0.71 0.73 0.33 0.58

1 LOG, LogisticRegression; SVC, SupportVectorClassification; SGD, SGDClassifier; KNN, KNeighborsClassifier. 2 MMS, MinMaxScaler; NOR, Normalizer; STS, StandardScaler. 3 ROS, RandomOverSampler;
BSMOTE, BorderlineSMOTE.

Table 7. Sensitivity (TPR), specificity (TNR), balanced accuracy (bACC), Matthews correlation coefficient (MCC) and F2 score of the cross-validation on training and testing datasets for
models predicting subclinical ketosis (defined as blood β-hydroxybutyrate ≥1.4 mmol/L) in Polish Holstein–Friesian cows.

Dataset
Number Model 1 Scaler

Method 2
Oversampling

Method

Training (Mean ± SD) Testing

Sensitivity
(TPR)

Specificity
(TNR) bACC MCC F2 TPR TNR bACC MCC F2

1 SGD RBS ADASYN 0.73 ± 0.21 0.71 ± 0.13 0.72 ± 0.10 0.31 ± 0.14 0.52 ± 0.13 0.79 0.67 0.73 0.31 0.55
2 KNN STS ADASYN 0.58 ± 0.22 0.77 ± 0.06 0.67 ± 0.11 0.21 ± 0.14 0.39 ± 0.14 0.42 0.80 0.61 0.14 0.31
3 LOG STS ADASYN 0.75 ± 0.17 0.78 ± 0.06 0.76 ± 0.08 0.38 ± 0.12 0.58 ± 0.12 0.74 0.81 0.77 0.40 0.59
4 LOG NOR SMOTE 0.97 ± 0.07 0.17 ± 0.05 0.57 ± 0.04 0.12 ± 0.07 0.43 ± 0.04 0.97 0.13 0.55 0.10 0.42
5 LOG NOR SMOTE 0.98 ± 0.07 0.15 ± 0.05 0.56 ± 0.04 0.10 ± 0.06 0.33 ± 0.03 0.89 0.16 0.53 0.04 0.31
6 LOG NOR SMOTE 0.97 ± 0.07 0.15 ± 0.05 0.56 ± 0.04 0.11 ± 0.07 0.41 ± 0.03 0.96 0.17 0.57 0.12 0.41
7 GNB NOR ADASYN 0.77 ± 0.18 0.52 ± 0.10 0.65 ± 0.09 0.19 ± 0.11 0.46 ± 0.10 0.83 0.51 0.67 0.22 0.48
8 SVC none ADASYN 0.85 ± 0.15 0.33 ± 0.07 0.59 ± 0.08 0.11 ± 0.09 0.34 ± 0.06 0.68 0.38 0.53 0.04 0.29
9 SVC none ADASYN 0.79 ± 0.16 0.49 ± 0.08 0.64 ± 0.09 0.18 ± 0.11 0.44 ± 0.09 0.67 0.58 0.62 0.15 0.41

10 KNN none ADASYN 0.62 ± 0.20 0.73 ± 0.06 0.67 ± 0.10 0.24 ± 0.14 0.46 ± 0.14 0.66 0.71 0.69 0.25 0.48
11 LOG STS SMOTE 0.59 ± 0.23 0.71 ± 0.06 0.65 ± 0.11 0.18 ± 0.13 0.44 ± 0.13 0.79 0.78 0.78 0.35 0.54
12 SVC RBS ADASYN 0.74 ± 0.15 0.79 ± 0.07 0.77 ± 0.07 0.38 ± 0.11 0.58 ± 0.10 0.67 0.82 0.74 0.36 0.55

1 SGD, SGDClassifier; KNN, KNeighborsClassifier; LOG, LogisticRegression; GNB, GaussianNB; SVC, SupportVectorClassification. 2 RBS, RobustScaler; STS, StandardScaler; NOR, Normalizer
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3.3. Performance of Regression Models

In the regression-based approach, a total of 12 models were selected out of the trained
models (one per each dataset specified in Table 3), for which the greatest R2, the lowest MAE
and the lowest RMSE were obtained in the cross-validation, having the lowest respective
standard deviations. The values of the metrics selected in the cross-validation for the best
performing prediction models, for each of the 12 datasets, are shown in Table 8.

The highest R2 (0.39) in the cross-validation was obtained for the model based on the
SVR machine learning algorithm. For this model, the related features were selected taking
into account the values of correlation coefficients (Table 8, dataset 1). No outliers were
removed from the set. Variables were scaled using StandardScaler. The MAE for the model
in question was 0.34 and the RMSE was 0.55 while for the other models, the MAE was in
the range of 0.30 and 0.35, and the RMSE—in the range of 0.44 and 0.58. The low R2 score
obtained in the cross-validation can be indicative of the limited possibilities for using the
regression model for predicting bBHB.

Table 8. Coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE) of the cross-
validation on training dataset for regression models that predicted blood β-hydroxybutyrate concentration in Polish
Holstein–Friesian cows.

Dataset Number Model 1 Scaler Method 2
Training (Mean ± SD)

R2 MAE RMSE

1 SVR—linear STS 0.39 ± 0.26 0.34 ± 0.05 0.55 ± 0.12
2 BayesianRidge none 0.14 ± 0.20 0.30 ± 0.04 0.44 ± 0.10
3 SVR—linear STS 0.35 ± 0.15 0.35 ± 0.06 0.58 ± 0.15
4 SVR—linear none 0.37 ± 0.26 0.35 ± 0.05 0.55 ± 0.10
5 BayesianRidge none 0.08 ± 0.15 0.34 ± 0.05 0.50 ± 0.11
6 SVR—linear none 0.21 ± 0.29 0.35 ± 0.05 0.56 ± 0.12
7 SVR—linear none 0.37 ± 0.32 0.34 ± 0.05 0.55 ± 0.11
8 SVR—rbf MMS 0.17 ± 0.14 0.31 ± 0.05 0.48 ± 0.12
9 SVR—linear MMS 0.24 ± 0.24 0.34 ± 0.05 0.56 ± 0.13

10 SVR—linear none 0.36 ± 0.27 0.35 ± 0.05 0.55 ± 0.10
11 BayesianRidge none 0.08 ± 0.15 0.34 ± 0.05 0.50 ± 0.12
12 SVR—linear NOR 0.21 ± 0.26 0.35 ± 0.06 0.56 ± 0.13

1 SVR—linear, SupportVectorRegressor with linear kernel; SVR—rbf, SupportVectorRegressor with squared exponential kernel. 2 STS,
StandardScaler; MMS, MinMaxScaler; NOR, Normalizer.

To compare the classification and regression models, the estimated continuous values
of the dependent variable bBHB were assigned to two classes (0 and 1) using the same rules
that were used for the classification models, taking into account three bBHB thresholds (1.0,
1.2, 1.4). Subsequently, the same metrics were calculated for the testing dataset as those
calculated for classification models (Table 9). For the regression-based model characterized
by the greatest coefficient R2 (0.39) in the cross-validation, the sensitivity for the testing
dataset was in the range of 0.32 and 0.40 according to the pre-defined bBHB threshold and
the specificity was in the range of 0.94 and 0.97 (Table 9, dataset 1). The sensitivity was
lower as compared to the recommended classification models, for which the sensitivity
was in the range of 0.57 and 0.74 for the testing dataset.



Animals 2021, 11, 2131 14 of 18

Table 9. Sensitivity (TPR), specificity (TNR), balanced accuracy (bACC), Matthews correlation coefficient (MCC) and F2

score on testing dataset for regression models that predicted blood β-hydroxybutyrate concentration (bBHB) and diagnosed
subclinical ketosis in Polish Holstein–Friesian cows according to three bBHB cut-off points.

Dataset
Number Model 1 Scaler

Method 2

bBHB Cut-Off 1.0 bBHB Cut-Off 1.2 bBHB Cut-Off 1.4

TPR TNR bACC MCC F2 TPR TNR bACC MCC F2 TPR TNR bACC MCC F2

1 SVR—linear STS 0.38 0.94 0.66 0.37 0.40 0.40 0.96 0.68 0.44 0.43 0.32 0.97 0.65 0.40 0.36
2 BayesianRidge none 0.34 0.90 0.62 0.26 0.35 0.12 0.98 0.55 0.16 0.13 0.16 0.99 0.57 0.28 0.19
3 SVR—linear STS 0.33 0.96 0.65 0.40 0.37 0.26 0.98 0.62 0.38 0.30 0.23 1.00 0.61 0.42 0.27
4 SVR—linear none 0.25 0.94 0.60 0.25 0.28 0.26 0.96 0.61 0.30 0.29 0.19 0.98 0.59 0.27 0.22
5 BayesianRidge none 0.38 0.95 0.66 0.37 0.40 0.20 0.97 0.58 0.20 0.21 0.08 0.99 0.53 0.12 0.10
6 SVR—linear none 0.32 0.98 0.65 0.44 0.36 0.34 0.99 0.67 0.50 0.39 0.37 1.00 0.68 0.55 0.42
7 SVR—linear none 0.33 0.94 0.63 0.33 0.36 0.29 0.96 0.62 0.33 0.32 0.23 0.96 0.59 0.26 0.25
8 SVR—rbf MMS 0.28 0.96 0.62 0.32 0.31 0.20 0.98 0.59 0.24 0.22 0.25 0.98 0.62 0.30 0.27
9 SVR—linear MMS 0.32 0.97 0.64 0.41 0.36 0.31 0.99 0.65 0.45 0.36 0.30 1.00 0.65 0.52 0.35
10 SVR—linear none 0.21 0.94 0.57 0.21 0.23 0.26 0.96 0.61 0.30 0.29 0.19 0.98 0.59 0.27 0.22
11 BayesianRidge none 0.34 0.95 0.65 0.35 0.37 0.20 0.98 0.59 0.24 0.22 0.08 0.99 0.54 0.15 0.10
12 SVR—linear NOR 0.32 0.98 0.65 0.46 0.36 0.34 1.00 0.67 0.53 0.39 0.33 1.00 0.67 0.55 0.38

1 SVR—linear, SupportVectorRegressor with linear kernel; SVR—rbf, SupportVectorRegressor with squared exponential kernel. 2 STS,
StandardScaler; MMS, MinMaxScaler; NOR, Normalizer.

4. Discussion
4.1. The Use of Classification Models for Diagnosing Subclinical Ketosis

The classification models most commonly used for diagnosing of cows-at-risk of
subclinical ketosis are those based on logistic regression [15,18,39]. In our study, the logistic
regression model also proved to be the best, both when the bBHB threshold was defined
as 1.2 or 1.4 mmol/L (Tables 6 and 7, dataset 3). Taking into account the threshold of
1.0 mmol/L, the best performing classification model was the model based on the SVC
machine learning algorithm (Table 5, dataset 3). The average sensitivity achieved in our
study in the cross-validation for the best performing models ranged between 0.74 and 0.75
(Tables 5–7). Chandler et al. [18], who also used a logistic regression model, obtained lower
sensitivity of 0.56 and 0.32 for primiparous and multiparous Holstein cows, respectively,
and 0.40 and 0.42 for primiparous and multiparous Jersey cows, respectively. On the other
hand, van der Drift et al. [15] obtained higher sensitivity (0.82) with equally high specificity
(0.84), however, they did not perform cross-validation or external validation for the final
model. The specificity obtained in this study (0.73–0.79) for the best models is not as high
as that shown in the study of van der Drift et al. [15] and Chandler et al. [18] (0.83–0.99),
however, given that the models proposed in this study are characterized by sensitivity,
which is quite high, they can be considered for practical use. Denis-Robichaud et al. [40]
achieved very high sensitivity and specificity (>0.90) for their model which included only
ACE and mBHB, however, the level of ketone bodies in milk was determined using flow-
injection analysis and not the FTIR method. The ketone bodies in milk as determined using
flow-injection analysis are more strongly correlated with the ketone bodies in blood than
the ketone bodies determined using the FTIR method [40].

It should be highlighted that the values of metrics for the best models in the external
validation on a testing dataset (about 0.70 for sensitivity and about 0.80 for specificity) were
similar to those obtained in the cross-validation, which may be indicative of their good
suitability for correct classification of new data.

The most desirable values of metrics were obtained for logistic regression models (or
models based on the SVC algorithm) when they were validated using a dataset containing
features selected based on correlation coefficients. These features included milk yield pa-
rameters such as FPR, ACE, mBHB, and lactose percentage. Additional features accounted
for in the models included DIM and lactation number. Less optimal results were obtained
for the three datasets containing features selected using the RFE machine learning method.
One of these datasets included only ACE, the other one also included protein percentage,
and the third one also included—in addition to ACE and protein percentage—milk yield,
fat percentage and FPR.

Other authors also included ACE and mBHB in their logistic regression models. Chan-
dler et al. [18], for example, used ACE in all the models studied by them (for primiparous
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and multiparous Holstein and Jersey cows), however, mBHB was not included in models
oriented towards primiparous cows. On the other hand, Denis-Robichaud et al. [40] who
took into account only ACE and mBHB, generated a model that allowed predicting subclin-
ical ketosis with sensitivity and specificity greater than 0.90, however, as it was mentioned
above, ketone bodies in milk were determined based on flow-injection analysis and not the
FTIR method.

The fat-to-protein ratio, in addition to ketone bodies level in milk, was a traditional
tool used for screening for ketosis [15,41,42]. Hyperketonemia is associated with an increase
in fat percentage and a decrease in protein percentage in milk, which increases the FPR.
However, the inclusion by some authors of fat-to-protein ratio as the only feature in a
model for predicting subclinical ketosis was not sufficient because the sensitivity of such
models was in the range of 0.58 and 0.69 and the specificity—in the range of 0.66 and
0.71 [23,40,41], and these values were lower than those presented in this study.

In future, it would be advisable to extend models for the prediction of subclinical
ketosis to include other features, e.g., fatty acids in milk [18]. Fatty acids, mobilized from
the fatty tissue, are characterized by a high concentration of long-chain fatty acids [14]
which are taken up by the mammary gland and secreted in milk fat. Chandler et al. [18]
indicated that Jersey cows, which had subclinical ketosis, produced milk with a higher
concentration of monounsaturated fatty acids (MUFA) and trans fatty acids, and a lower
concentration of short-chain fatty acids as compared to healthy cows.

In our study, the recommended models also included such features as lactation number
or DIM. A number of studies demonstrated that the risk of subclinical ketosis increases with
lactation number [18,43,44], and therefore it is reasonable to continue using that feature
in models. The logistic regression model generated by Chandler et al. [18] for predicting
subclinical ketosis in primiparous cows also included the gestation length and the dry
period length. The authors highlighted that primiparous cows with hyperketonemia
remained pregnant seven days longer as compared to healthy cows. No such correlation
was identified for older cows with subclinical ketosis. The authors suggested that the
relationship of the features referred to above and the risk of subclinical ketosis should be
studied further.

4.2. The Use of Regression Models for Diagnosing Subclinical Ketosis

The study also attempted to use a linear regression model for the prediction of bBHB
and subsequently, based on the estimated bBHB, for the classification of cows as healthy or
ketosis-affected in accordance with the pre-defined bBHB thresholds. However, even for
the best model out of the selected ones, the coefficient R2 was relatively low (0.39) (Table 8).
This model included the same features as the logistic regression model recommended in
our study (FPR, ACE, mBHB, lactose percentage, lactation number and DIM) and it was
based on the SVR machine learning algorithm (Table 8, dataset 1). Chandler et al. [18] also
tested the suitability of linear regression models for predicting bBHB in primiparous and
multiparous Holstein and Jersey cows. Regression models were fitted to data covering
two periods: 5–11 DIM and 12–20 DIM. The R2 coefficient obtained by those authors in
the cross-validation was in the range of 0.20 to 0.71 according to period and breed, and
the highest values of the coefficient were obtained for primiparous Holsteins. The RMSE
of prediction ranged between 0.29 and 0.92, and it was 0.55 for our best model. The R2

coefficients obtained in our study demonstrate that there are limited possibilities of using
regression models for predicting bBHB and their application for the identification of cows-
at-risk of ketosis. In contrary to our study, Chandler et al. [18] obtained higher sensitivity in
the cross-validation for linear regression (0.53–0.74) than for logistic regression (0.31–0.55).
In our study, the sensitivity obtained in the external validation using a testing dataset for
the best regression model based on the SVR machine learning algorithm ranged between
0.32 and 0.40 according to the pre-defined bBHB (Table 9, dataset 1). To compare, the
sensitivity for a testing dataset for the recommended classification models ranged between
0.57 and 0.74, and it was higher in the cross-validation (0.73–0.75) (Tables 5–7).
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5. Conclusions

The study evaluated various machine learning algorithms designed for predicting
if a cow is at risk of subclinical ketosis. The logistic regression model was found to be
the best fitted model, which included features such as fat-to-protein ratio, acetone and
β-hydroxybutyrate concentrations in milk, lactose percentage, lactation number and days
in milk. Regression models were characterized by poor fitness to data. In the event that
it is possible to acquire additional features as determined during the assessment of milk
performance (e.g., milk fatty acids), it should be considered including such features in the
model and validating the model with the new features. A greater number of observations,
including repeated test-day records, could also help to achieve better results using the
model. Using machine learning models and milk data, breeders can efficiently identify
dairy cows-at-risk of subclinical ketosis and implement appropriate management strategies
to optimize or prevent losses in milk production.
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