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Simple Summary: AKAP12, the family of A-kinase anchoring proteins (AKAPs), plays an important
role in the regulation of growth and development. There have been no corresponding studies of the
effect of the AKAP12 gene on growth traits in goats. In our previous study, 7 bp (intron 3) and 13 bp
(3′UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression. This study
expected to identify the association between these two genetic variations and growth-related traits in
1405 Shaanbei white cashmere (SBWC) goats. The P1–7 bp indel locus was significantly correlated
with height at hip cross (HHC; p < 0.05) and the P2–13 bp indel locus was associated with body
weight, body length, chest depth, chest width, hip width, chest circumference and cannon (bone)
circumference in SBWC goats (p < 0.05). These results prove that the AKAP12 gene plays an important
role in the growth and development of goats.

Abstract: The A-kinase anchoring protein 12 gene (AKAP12) is a scaffold protein, which can target
multiple signal transduction effectors, can promote mitosis and cytokinesis and plays an important
role in the regulation of growth and development. In our previous study, P1–7 bp (intron 3) and
P2–13 bp (3′UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression.
Therefore, this study aimed to identify the association between these two genetic variations and
growth-related traits in Shaanbei white cashmere goats (SBWC) (n = 1405). Herein, we identified
two non-linkage insertions/deletions (indels). Notably, we found that the P1–7 bp indel mutation
was related to the height at hip cross (HHC; p < 0.05) and the P2–13 bp indel was associated with
body weight, body length, chest depth, chest width, hip width, chest circumference and cannon
(bone) circumference in SBWC goats (p < 0.05). Overall, the two indels’ mutations of AKAP12 affected
growth traits in goats. Compared to the P1–7 bp indel, the P2–13 bp indel is more suitable for the
breeding of goat growth traits.

Keywords: goat; A-kinase anchoring protein 12 (AKAP12); insertion/deletion (indel); growth traits

1. Introduction

The Shaanbei white cashmere (SBWC) goat is among the well-known breeds for both
cashmere and meat in Northwest China. Today, the population of SBWC goats in Yulin
is nearly 10 million. As important economic traits, breeders are concerned with growth

Animals 2021, 11, 2090. https://doi.org/10.3390/ani11072090 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://doi.org/10.3390/ani11072090
https://doi.org/10.3390/ani11072090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11072090
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11072090?type=check_update&version=1


Animals 2021, 11, 2090 2 of 11

traits [1]. The traditional breeding interval is long, and the selection intensity, selection
efficiency and accuracy must be improved. Molecular marker-assisted selection (MAS)
is among the most accurate and repaid methods which could satisfy the need to screen
genes and consider the relationship between polymorphisms and growth-related traits.
Herein, we propose that establishing an MAS system will speed up the development of
goat breeding [2]. Insertion/deletion (indel) is characteristically widely distributed, highly
polymorphic, stable and an easy to analyze [3]. It can be applied to the identification
of functional genes that control traits, which is conducive to the further development
and utilization of excellent genes, and is widely used in the fields of animal and plant
population genetic analysis, molecular assisted breeding and human forensic genetics [4–6].

A-Kinase anchoring protein 12 (AKAP12) was initially identified in patients with
myasthenia gravis [7] and was a known tumor suppressor [8–10]. AKAP12 is a scaffold
protein gene, which can target multiple signal transduction effectors, such as protein kinase
A (PKA) and extracellular signal regulated kinase (ERK) [11]. Importantly, it is also plays
a role in mitogenic regulatory activity and has a role in the control of both cell signaling
and cytoskeletal arrangement. For example, Coats et al. (2000) highlighted that SSeCKS
causes rat aortic smooth muscle cells (RASM) to interact with the intracellular signaling
pathways that control cytoskeleton remodeling and extracellular matrix remodeling after
Ang II stimulation [12]. In addition, in adult mice, A-kinase anchoring protein 12 shows the
highest expression in smooth and cardiac muscle, indicating that AKAP12 controls diverse
developmental processes [13]. Kim et al. (2013) noticed that in the absence of AKAP12,
zebrafish embryos had reduced locomotor activity; AKAP12 is critical for the development
of locomotor behavior in zebrafish through its regulation of muscle cell morphogenesis
and migration [14]. In 2019, Messad found that the AKAP12 gene is implicated in the
regulation of cell development and muscle growth in pigs [15]. Furthermore, AKAP12 is
a vital gene to the cAMP signal pathway, the process of mammalian development and
growth. For example, the bone morphogenetic protein (BMP) receptor family (BMPs) and
growth differentiation factor 9 (GDF9) genes, which are crucial to the cAMP signal pathway,
were all significantly associated with animal growth traits [16,17]. Overall, all the above
results indicate that AKAP12 plays an important role in the regulation of growth and
development.

Our team discovered and determined 7 bp (intron 3) and 13 bp (3′UTR) indels in a
previous study of the AKAP12 gene, and constructed the expression profile of AKAP12
gene in ruminants [18]. These two indel mutation sites probably change gene expression;
first, because it is located in the 3′UTR region and can change the miRNA binding site,
and second, it is an intron that can change the splicing of this gene or the binding sites of
regulatory gene expression elements. Therefore, the purpose of this study was to explore
and evaluate the effects of 7 bp and 13 bp indels on the growth traits of Shaanbei white
cashmere goats. Thereby we also provide a theoretical basis for the application of molecular
marker breeding in SBWC goats.

2. Materials and Methods
2.1. Ethics Statement

All animal tests performed in this study were conducted under the supervision and guid-
ance of the Animal Welfare Committee of Northwestern Agricultural and Forestry University
(NWAFU-314020038) and all procedures were in accordance with their specifications.

2.2. Animal Samples and Data Collection

Ear tissue samples from 1405 (2–3 years old) adult female Shaanbei white cashmere
(SBWC) goats were selected. According to a family tree kept and recorded on the farm, there
was no genetic relationship between individual goats. They were raised on a Shaanbei white
cashmere goat farm in Shaanxi Province. All the goats were kept under standard conditions,
including the same diet and feeding and management conditions [1,19]. The feeding
programs were as follows: all the kids were continuously kept with their dams until
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weaning at the age of 3 months. Data on the growth traits of these goats, such as height at
hip cross (HHC), chest width (CW), body weight (BW) body length (BL), chest depth (CD),
hip width (HW), chest circumference (ChC) and cannon circumference (CC) were obtained.

2.3. Isolation of DNA

For these samples (n = 1405), Phenol-chloroform extraction method was used to extract
genomic DNA from ear tissues [20,21]. The concentrations of 1405 samples were measured
by a Nanodrop 2000 Spectrophotometer to assess DNA purity (A260/280 ratio) and quality,
and were diluted to 10 ng/µL and frozen at −40 ◦C for further experiments.

2.4. Primer Design and Genotype Detection

P1–7 bp indel (NC_030816:g.83323del ACTGCTG, intron 3) and P2–13 bp indel (NC_
030816.1: g.110266del TGGTCTTTTTGTG, 3′UTR) were detected in goats AKAP12 [18].
A 13 µL reaction mixture and amplification steps (touch down-PCR) were undertaken
as per to our previous studies [22]. PCR amplification was performed with an initial
denaturation at 95 ◦C for 5 min, followed by 18 cycles at 94 ◦C for 30 s, 68 ◦C to 50 ◦C for
30 s and 72 ◦C for 12 s; then, 34 cycles at 94 ◦C for 30 s, 50 ◦C for 30 s and 72 ◦C for 12 s,
with a final extension at 72 ◦C for 10 min were performed. PCR products were detected by
Sanger sequencing and electrophoresis in agarose gel at 3.5% concentration [23,24].

2.5. Statistical Analysis

The Hardy–Weinberg equilibrium (HWE) of the AKAP12 indels was examined using
a chi-square (χ2) test. Nei’s method was used to calculate the genotype and allele frequen-
cies [10]. The correlation between indels and growth traits was analyzed using a one-way
ANOVA on SPSS software (version 24.0). Zhu’s methods were used to construct a linear
model of the relationship between goat genotypes and each growth trait [25]. Statistical
analysis showed that the age and birth season of goats had no significant influence on the
growth of goats; thus, the age and birth season were not considered in the construction of
the model.

2.6. Linkage Disequilibrium Analysis

Linkage disequilibrium (LD) analysis was performed on the P1–7 bp and P2–13 bp
sites of genes using the SHEsis online platform (http://analysis.biox.cn/myAnalysis.php;
accessed on 10 June 2021) [26]. The linkage degree (D’/r2) between the polymorphic loci
was estimated as previously described [27]. In linkage disequilibrium analysis, the r2 value
is preferred as an indication of the possible correlation between markers and the desired
QTL, because it summarizes both recombination and mutation, and therefore represents a
more statically accurate parameter when determining recombination differences. By con-
trast, when the sample size is too small, the actual meaning of the D’ value can easily be
“exaggerated”, especially when the frequency of one of the alleles at a certain locus is very
low [28].

3. Results
3.1. Indel Identification

Two indel loci were found to be polymorphic in SBWC goats and named P1–7 bp
indel (NC_030816:g.83323del ACTGCTG, intron 3) and P2–13 bp indel (NC_ 030816.1:
g.110266del TGGTCTTTTTGTG, 3′UTR) in the AKAP12 goats, respectively. The P1–7 bp and
P2–13 bp indels displayed three genotypes: II (insertion/insertion), ID (insertion/deletion)
and DD (deletion/deletion) (Figure 1). DNA sequencing results showed that the P1–7 bp
and P2–13 bp mutation loci of the AKAP12 gene were polymorphic and could be detected
by agarose gel electrophoresis and Sanger sequencing (Figure 1).

http://analysis.biox.cn/myAnalysis.php
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Figure 1. Agarose gel electrophoresis (3.0%) of PCR product of the goat AKAP12 gene for P1–7 bp 
(a) and P2–13 bp (b) indel variants in Shaanbei white cashmere goats. Note: II, homozygous inser-
tion/insertion genotype; DD, homozygous deletion/deletion genotype; ID, heterozygous inser-
tion/deletion genotype. The M represents the marker. A represents the non-target fragment called 
heteroduplex. 

3.2. Analysis of Genetic Diversity 
Allelic and genotypic frequencies were calculated for the two indels of AKAP12 (Ta-

ble 1). The amount of polymorphism information (PIC) is an important indicator of the 
degree of DNA mutation. PIC is divided into high polymorphism (PIC ≥ 0.5), moderate 
polymorphism (0.25 ≤ PIC ≤ 0.5) and low polymorphism (PIC ≤ 0.25). The PIC values of 
P2–13 bp (PIC = 0.210) and P1–7 bp (PIC = 0.265) in the Shaanbei white cashmere goats 
tested in this study showed low polymorphism and moderate polymorphism respec-
tively. The genotypic frequency of the P1–7 bp and P2–13 bp indel loci did not correlate 
with the Hardy–Weinberg equilibrium (HWE) (χ2 test, p < 0.05). This disequilibrium could 
be attributed to the artificial selection. 

Table 1. Genetic parameters of two indel loci within AKAP12 gene in Shaanbei white cashmere goats. 

Loci 
Size Genotypic Frequencies Alleles Frequencies HWE Population Parameters 

N II ID DD I D p Value Ho He PIC 
P1–7 bp 780 0.018 0.355 0.627 0.196 0.804 0.00032 0.685 0.315 0.265 

P2–13 bp 1405 0.9 0.258 0.733 0.138 0.862 0.002 0.762 0.238 0.210 
HWE, Hardy–Weinberg equilibrium; Ho, homozygosity; He, heterozygosity; PIC, polymorphism information content. 

  

Figure 1. Agarose gel electrophoresis (3.0%) of PCR product of the goat AKAP12 gene for P1–7
bp (a) and P2–13 bp (b) indel variants in Shaanbei white cashmere goats. Note: II, homozygous
insertion/insertion genotype; DD, homozygous deletion/deletion genotype; ID, heterozygous inser-
tion/deletion genotype. The M represents the marker. A represents the non-target fragment called
heteroduplex.

3.2. Analysis of Genetic Diversity

Allelic and genotypic frequencies were calculated for the two indels of AKAP12
(Table 1). The amount of polymorphism information (PIC) is an important indicator of the
degree of DNA mutation. PIC is divided into high polymorphism (PIC ≥ 0.5), moderate
polymorphism (0.25 ≤ PIC ≤ 0.5) and low polymorphism (PIC ≤ 0.25). The PIC values of
P2–13 bp (PIC = 0.210) and P1–7 bp (PIC = 0.265) in the Shaanbei white cashmere goats
tested in this study showed low polymorphism and moderate polymorphism respectively.
The genotypic frequency of the P1–7 bp and P2–13 bp indel loci did not correlate with
the Hardy–Weinberg equilibrium (HWE) (χ2 test, p < 0.05). This disequilibrium could be
attributed to the artificial selection.

Table 1. Genetic parameters of two indel loci within AKAP12 gene in Shaanbei white cashmere goats.

Loci
Size Genotypic Frequencies Alleles Frequencies HWE Population Parameters

N II ID DD I D p Value Ho He PIC

P1–7 bp 780 0.018 0.355 0.627 0.196 0.804 0.00032 0.685 0.315 0.265
P2–13 bp 1405 0.9 0.258 0.733 0.138 0.862 0.002 0.762 0.238 0.210

HWE, Hardy–Weinberg equilibrium; Ho, homozygosity; He, heterozygosity; PIC, polymorphism information content.

3.3. Linkage Disequilibrium (LD) Analysis

Based on the LD analysis results (Table 2; Figure 2), according to the D’ (D’ = 0.997)
and r2 tests (r2 = 0.031) in the LD analysis, the P1–7 bp indel and the P2–13 bp indel loci
were not closely linked in Shaanbei white cashmere goats.
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Table 2. Haplotypic frequencies within the AKAP12 gene in Shaanbei white cashmere goats.

Different Haplotypes P1–7bp InDel—P2–13bp InDel Haplotype Frequencies

hap1 D7D13 0.680
hap2 D7I13 0.115
hap3 I7D13 0.205
hap4 I7I13 0.000

“Hap” represents “haplotype”; indel: insertion/deletion.
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Figure 2. Linkage disequilibrium plot of the AKAP12 gene two indel loci. (a) D’ = 0.997; (b) r2 = 0.031. Notes: “1, 2”
represent the two mutation sites P1–7 bp and P2–13 bp of the AKAP12 gene.

3.4. Association Analysis of Indel Loci with Growth Traits in Goat

Table 3 shows the results of the correlations between the AKAP12 indel loci and
body measurements in SBWC goats. The effects of different genotypes on these traits
varied. The P2–13 bp indel was highly correlated with body weight (BW; p = 0.001)
(Figure 3), body length (BL; p = 0.005), chest depth (CD; p = 6 × 10−6), chest width (CW;
p = 3.18 × 10−4), hip width (HW; p = 1.8× 10−5) chest circumference (ChC; p = 1.32 × 10−3)
and cannon circumference (CC; p = 0.007) (Figure 4). Individuals with II genotype were
displayed relatively higher BW, BL, CD, CW, HW, ChC and CC compared with that of
genotypes ID and DD. The P1–7 bp indel was related to height at hip cross (HHC; p = 0.013)
(Figure 4), not associated with body weight (BW; p = 0.522) (Figure 3) and the individuals
with genotype DD had higher breeding values for HHC.
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Table 3. Associations of two indel loci within AKAP12 gene growth parameters in Shaanbei white cashmere (SBWC) goats
(mean ± SE).

Loci Parameters
Genotypes

p-Values
II ID DD

P1–7 bp

BW (kg) 56.10 ± 6.19 (n = 5) 56.14 ± 1.46 (n = 96) 54.16 ± 1.01 (n = 195) 0.522
BH (cm) 55.21 ± 1.42 (n = 14) 57.07 ± 0.28 (n = 277) 56.91 ± 0.19 (n = 489) 0.307

HHC (cm) 56.05 ab ± 1.82 (n = 14) 60.09 b ± 0.29 (n = 277) 60.14 a ± 0.21 (n = 489) 0.013
BL (cm) 63.82 ± 1.91 (n = 14) 65.41 ± 0.32 (n = 277) 65.08 ± 0.27 (n = 489) 0.506
CD (cm) 28.37 ± 0.98 (n = 14) 27.71 ± 0.16 (n = 271) 27.82 ± 0.14 (n = 479) 0.659
CW (cm) 17.61 ± 0.96 (n = 14) 18.63 ± 0.22 (n = 271) 19.20 ± 0.17 (n = 481) 0.053
HW (cm) 20.08 ± 0.95 (n = 6) 19.88 ± 0.23 (n = 149) 19.43 ± 0.16 (n = 268) 0.248
ChC (cm) 83.50 ± 3.02 (n = 13) 85.19 ± 0.60 (n = 0.60) 86.16 ± 0.45 (n = 488) 0.307
CC (cm) 7.88 ± 0.27 (n = 13) 7.90 ± 0.57 (n = 278) 7.93 ± 0.45 (n = 489) 0.916

P2–13 bp

BW (kg) 67.17 A ± 2.62 (n = 6) 47.09 B ± 1.00 (n = 173) 48.66 B ± 0.72 (n = 407) 0.001
BH (cm) 57.85 ± 1.40 (n = 13) 56.33 ± 0.22 (n = 362) 56.42 ± 0.15 (n = 1026) 0.504

HHC (cm) 60.50 ± 1.32 (n = 13) 59.46 ± 0.24 (n = 361) 59.44 ± 0.15 (n = 1027) 0.724
BL (cm) 68.31 AB ± 1.20 (n = 13) 66.02 A ± 0.31 (n = 362) 65.01 B ± 0.18 (n = 1027) 0.005
CD (cm) 29.15 AB ± 0.62 (n = 13) 28.70 A ± 0.15 (n = 362) 27.86 B ± 0.96 (n = 1028) 6 × 10−6

CW (cm) 21.42 A ± 0.65 (n = 13) 19.80 A ± 0.19 (n = 362) 18.94 B ± 0.12 (n = 1030) 3.18 × 10−4

HW (cm) 22.63 A ± 0.75 (n = 8) 17.30 B ± 0.23 (n = 205) 17.90 B ± 0.15 (n = 491) 1.8 × 10−5

ChC (cm) 92.77 AB ± 2.86 (n = 13) 87.21 A ± 0.48 (n = 358) 84.88 B ± 0.31 (n = 1027) 1.32 × 10−3

CC (cm) 8.21 AB ± 0.24 (n = 13) 8.08 A ± 0.42 (n = 361) 7.92 B ± 0.31 (n = 1027) 0.007

BW, body weight; BH, body height; HHC, height at hip cross; BL, body length; CD, chest depth; CW, chest width; HW; hip width;
ChC, chest circumference; CC, cannon circumference. Values with different letters (a, b/A, B) within the same row differ significantly at
(p < 0.05/p < 0.01).
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Figure 3. Association of the P1–7 bp (a) and P2–13 bp (b) indels with body weight in SWCG. Individuals with II genotypes
had significantly (p = 0.002) higher body weight than ID and DD in the 13-bp indel of AKAP12. Data represents means ± SE.
N·S means not significant; **: p < 0.01.
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4. Discussion

Breeding can make use of livestock resources and poultry breeds by playing the role of
a precious gene bank of fine breeds, thereby improving the quality and quantity of livestock
products [29]. In addition, it can also cultivate new varieties of strains, improve overall
production performance, provide high-quality livestock products and maintain an compet-
itive advantage in the market [10,30]. Goat breeding accounts for a very large proportion
in the production of animal husbandry. Goat breeding accounts for a very large proportion
in China’s animal husbandry production. As a dual-use species for fluff, Shaanbei white
cashmere goats have the largest breeding stock in Shaanxi [31–33]. Therefore, improving
goat production performance has an important role in increasing economic income. As one
of the most important economic characteristics of goats, growth traits must be improved,
as there is a current problem of slow growth rates that must be solved [34]. With the
development of biotechnology, breeders have been choosing to use marker-assisted se-
lection (MAS) in goat breeding. It is extremely important to improve the accuracy and
predictability of the selection of superior genotypes for quantitative traits in the breeding
process. To date, many quantitative trait loci (QTLs) affecting important economic traits in
goats have been found [19,35].

Importantly, reproductive traits, like some of the complex quantitative traits, are poly-
genic, involving multiple genes and loci; we hope to find key genes for improving goat
production performance [36]. In a previous study of myostatin (MSTN), it was found that it
acts as key points during the pre- and post-natal life of amniotes that ultimately determine
the overall muscle mass of animals. Bi et al. used a large population of goats to find that
5 bp insertion/deletion (indel) in the 5’untranslated region (5’ UTR) of the goat MSTN
gene is associated with growth traits [34]. The growth differentiation factor 9 (GDF9) gene
is a candidate gene for high prolificacy in livestock, and a novel 12-bp indel located within
the GDF9 gene significantly affected the growth traits [2]. This study hoped to explore the
effects of two mutation sites in the AKAP12 gene on growth traits in a large population
of goats.

AKAP12, the family of A-kinase anchoring proteins (AKAPs), is a protein with the abil-
ity to regulate signal transduction processes. Cellular processes are regulated by AKAP12
as a regulator of protein kinase A and protein kinase C signaling. AKAP12 has been im-
plicated in a wide range of cell functions, including cytoskeletal architecture [37] and cell
cycle regulation. Previous studies have reported that the main role of AKAP12’s involve-
ment in regulating different cell cycle stages is to promote cell mitosis and cytokinesis
while acting as a negative regulator during inappropriate cell cycle progression [38]. As a
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scaffolding protein, AKAP12 induces changes in cell shape and function during mesangial
cell differentiation [39,40]. AKAP12, as a candidate gene, affects muscle development,
and can affect a wide range of tissues and cell types through the downstream parts of the
cAMP pathway, thereby regulating growth and development [15]. Previous studies have
found that mutations of alleles of the APAK12 gene were closely related to the growth
and reproduction of embryonic cancer [41]. Based on these findings, we speculated that
AKAP12 was a candidate growth gene in goats.

To the best of our knowledge, there are no previous reports of goat AKAP12 poly-
morphisms and their functional effects on growth traits in goats. According to our scan
results, there are two indels (P1–7 bp and P2–13 bp) within the goat AKAP12 gene. We took
a large sample of 1405 SBWC goats as the research object, then used association analysis
to explore the effects of the P1–7 bp and P2–13 bp indels of the AKAP12 gene on growth
traits. After electrophoresis and sequencing verification, each locus had three genotypes (II,
ID and DD). The results showed that the mutation had the greatest effect on growth traits.
In the analyzed sample, we found three haplotypes; hap1, hap2 and hap3, with frequencies
of 0.680, 0.115 and 0.205, respectively (Table 2). In addition, LD analysis results showed
that the P1–7 bp and P2–13 bp loci were not closely linked to the LD (D’ = 0.997, r2 = 0.031
respectively), suggesting that there was a minimal historical recombination between the
two loci [18]. The relationship between these two loci of the AKAP12 gene showed lower
linkage disequilibrium, which is consistent with association analysis. The P1–7 bp and
P2–13 bp loci were not correlated with the HWE (p < 0.05) due to the two mutations of
AKAP12, the low frequency of allele I and the very low frequency of II genotype. Excessive
and effective artificial selection is among the main reasons that the goat allelic of the indel
locus do not correlate with the equilibrium. These two indels may be important genetic
markers for goat breeding.

To analyze the association between indel loci and growth traits, we first used groups
of 780 individuals, and only height at hip cross (HHC, p = 0.013) had a relationship with the
P1–7 bp indel locus (p < 0.05). Interestingly, the P2–13 bp locus was consistently associated
with body weight, body length, chest depth, chest width, hip width, chest circumference
and cannon circumference in the same test groups (p < 0.05). Based on these data, we
performed further analysis of the P1–13 bp indel among all individuals (1405) and found
that the association with growth traits was retained (p < 0.05), with I alleles of the AKAP12
gene positively affecting growth. In the process of raising goats, it is of considerable
importance to select individuals with a fast growth rate and large body size to maintain
the economic situation of the goat industry. In this study, for the P2–13 bp indel, Inser-
tion/Insertion carriers showed better body weight and growth traits than deletion/deletion
and Insertion/Deletion genotyped individuals in adult female goat populations. Although
China has abundant goat breeding resources, poor growth and inferior quality still impede
mutton production. From this perspective, the P2–13 bp indel may be suited to further
selection and breeding.

To date, many regulatory elements have been described in introns [42]. Additionally,
gene introns may contain cis-regulatory elements that participate in tissue- or stage-specific
gene expression [28]. For instance, a novel intronic indel in the HIAT1 gene has strong
genetic effects on growth traits in goats [43]. A previous study [18] used RNA hybrids (http:
//bibiserv.techfak.uni-bielefeld.de/rnahybrid/ accessed on 19 January 2021) to predict
miRNAs binding to the P2–13bp region. It was found that the miR–181 seed region could
bind to the indel sequences. As we known, miRNAs can bind to the 3’-UTR of their target
mRNAs to inhibit gene expression [44]. Therefore, we speculated that the P2–13 bp indel
mutation might affect the goat growth traits by combining with miR–181.

5. Conclusions

The P1–7 bp and P2–13bp indels within the AKAP12 gene were verified and were
found to be significantly associated with the growth traits of SBWC goats via association
analysis. Moreover, AKAP12 could be regarded as an important genetic marker for goat

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
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breeding. Compared with the P1–7 bp indel, the P2–13 bp indel is more suitable for the
breeding of goat growth traits.
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