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Simple Summary: Wearable technology has launched human medicine toward new successes, but
are these versatile devices really being leveraged to their best capacity? Applying wearable sensors
to animal farming contexts represents tremendous potential for cost-conscious growers and welfare-
minded consumers alike. Each farm animal’s phenotype—the set, observable variables that an
organism displays based on interactions with their environment—offers unique information on
health, welfare, and profitability. Previously, these important observations had to be conducted with
extensive time, cost, and labor resources—and even then, the results were impossible to standardize
or obtain continuously. Thanks to their proven benefits across many human-based studies, digital
phenotype readers can collect and relay specific metrics, such as body temperature, cardiovascular
functioning, activity level, and even more complex behaviors such as sociability. Due to cross-species
variations, these sensors need to be tailored efficiently and accurately. Future research should inform
the design of digital phenotyping options that will offer farmers reliable, robust information, with
the long-term goal of creating shared data standards and stores.

Abstract: Currently, large volumes of data are being collected on farms using multimodal sensor
technologies. These sensors measure the activity, housing conditions, feed intake, and health of farm
animals. With traditional methods, the data from farm animals and their environment can be collected
intermittently. However, with the advancement of wearable and non-invasive sensing tools, these
measurements can be made in real-time for continuous quantitation relating to clinical biomarkers,
resilience indicators, and behavioral predictors. The digital phenotyping of humans has drawn
enormous attention recently due to its medical significance, but much research is still needed for the
digital phenotyping of farm animals. Implications from human studies show great promise for the
application of digital phenotyping technology in modern livestock farming, but these technologies
must be directly applied to animals to understand their true capacities. Due to species-specific traits,
certain technologies required to assess phenotypes need to be tailored efficiently and accurately. Such
devices allow for the collection of information that can better inform farmers on aspects of animal
welfare and production that need improvement. By explicitly addressing farm animals’ individual
physiological and mental (affective states) needs, sensor-based digital phenotyping has the potential
to serve as an effective intervention platform. Future research is warranted for the design and
development of digital phenotyping technology platforms that create shared data standards, metrics,
and repositories.
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1. Background

The success and advancement of the livestock industry significantly influence the
success of the human population. The human population is expected to expand to 9.7 bil-
lion by 2050, placing an increased demand for production on livestock farming methods
that have already pushed the limits of efficiency [1]. Confined farming operations have
maximized the production of food animals while minimizing space, and other scientific
advancements have abbreviated production time. However, the livestock industry also
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faces growing public awareness of animal welfare and consumer pressures to provide
animals with more humane living conditions.

The demands for more livestock production and improved animal welfare seem to
contradict [2], but there is a modern solution to both of these pressures—digital phenotyp-
ing. This minimally invasive method of data collection has shown promising results in
human-based studies while suggesting many applications in the field of animal agriculture.
Through the innovations of digital phenotyping, farm animals can be bred, housed, and
cared for in ways that improve their production rates, resilience, and well-being.

This article provides an in-depth survey of the significance of digital phenotyping
in relation to farm animals. With continued technological advancements, research, and
refined applications, digital phenotyping can improve farming operations and the lives of
animals on a global scale.

1.1. Phenotyping

Phenotypes are set, observable variables that an organism displays when interacting
with its environment. These variables are influenced by genotypes, which are complex and
inheritable. Phenotypes can be measured continuously (e.g., assessing the change in an
animal’s body temperature over a day) or categorically through the use of concise scoring
systems. When the phenotypes of an animal are measured and collected for use as data
points, the process is described as phenotyping [3].

Phenotyping has played an important role in assessing mental health concerns, and
historically it was conducted through experience-based sampling methods that depended
on human compliance [4,5]. In recent years, the challenges posed by constant compliance
and active participation have been overcome through the use of digital phenotyping. This
technologically advanced method of phenotyping allows for the passive collection of data,
which is extremely beneficial in agriculture because farm animals cannot verbally relay
their experiences to their caretakers [5].

1.2. Heritability of a Phenotype

In the agricultural industry, phenotypes represent an important source of information
for many reasons, chiefly because they are indispensable in relation to breeding. Because
phenotypes are influenced by genotypes, they offer a minimally invasive or non-invasive
indicator of an organism’s genetic makeup. By thoroughly understanding phenotypes,
the agricultural industry can breed animals with balanced traits related to resilience and
production. Research has shown that a multitude of behavioral and physical traits are
heritable in animals, including feather pecking in laying hens, immune response in most
farm animals, and cannibalism in pigs [3]. If animals are bred to reduce destructive
behaviors and promote more relaxed and compatible behaviors, their welfare will improve.
It is also interesting to note that, although not all behavioral and medical conditions may
be congenital, genetic traits displayed through phenotypes can predict the susceptibility of
an organism to certain conditions [6].

1.3. Biomarkers Associated with Phenotypes

Digital phenotyping has been most heavily studied in humans because it provides
great opportunities for medical advancement with minimal chances for negative side
effects. The phenotypes are chosen and assessed in relation to biomarkers, which are digital
measurements of phenotypes (Figure 1) that are categorized according to the intended use
of the collected data. The assessment of medical issues in individuals is relatively similar
across the spectrum of complex living organisms, especially mammals, which makes these
biomarker categories valuable for use within the agricultural industry [7].
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Figure 1. Visual display of digital biomarkers to assess digital phenotyping in farm animals.

To date, the intended purposes of digital biomarkers include the following [7,8]:

• Monitoring = the assessment of a disease, condition, or status that is already known
• Prognostic = the identification of the likelihood of a clinical event occurring/reoccurring
• Susceptibility/Risk = the determination of an individual’s potential to develop a

disease or condition with which they are not currently diagnosed
• Predictive = a comparison of similar individuals with different biomarkers to deter-

mine divergences in environmental or medicinal effects
• Diagnostic = the detection or confirmation of a disease or condition
• Safety = the assessment of an individual’s fitness in relation to how safely they can

engage in certain activities
• Response = the proof of an individual’s biological response to a treatment or environ-

mental change.

When applied to farm animals, these digital biomarkers can help improve research on
a multitude of levels, leading to improved animal care on both group and individual levels.

2. Impact of Phenotyping in the Livestock Sector

Phenotypes are the basis of generating a more comprehensive understanding of the
complexities of raising high-quality livestock. Many aspects of successful agriculture are
interrelated and stem from a common point, which is animal welfare. Increased use of
antibiotics by farmers for increasing the food safety aspects as part of animal production
has devastating consequences for the welfare of animals. Hence, there seems to be an
inverse relationship between animal production and animal welfare. However, increasing
evidence suggests that animal welfare measures can actually be contributing to sustainable
and profitable animal production. Studies have found that animal welfare directly impacts
behavior, production capacities, breeding, and disease prevalence [3]. These impacts are
generated at an individual level and compounded at a population level. Phenotyping
provides specific benefits and opportunities for intervention in each of the aspects listed
prior. This allows for better caretaking, especially on a large scale because population shifts
are quantifiable through the collection of phenotype-based data points [9].
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2.1. Welfare Implications

Although animals and humans vary in many aspects, they share the need for individ-
ual well-being. The multidimensional concept of welfare addresses this universal need by
prioritizing the psychological, emotional, behavioral, and physical aspects of an organism’s
needs. When animals have each of these needs met, they are most likely to experience a
positive sense of well-being among other benefits [3].

The welfare of farmed animals is a necessary but complex topic, as their anthro-
pogenically determined purpose is to produce food, but this often comes at the expense
of their lives. Many countries have welfare guidelines that seek to regulate the humane
treatment of farm animals, but these guidelines can often fall short of meeting an animal’s
actual welfare needs. The only feasible way to create an unbiased assessment of welfare
is through phenotyping. Digital phenotyping can assess all of the facets of welfare, even
emotional states, which have repeatedly demonstrated accurate measurements from digital
phenotyping in humans [5,10,11].

2.2. Behavioral Implications

This topic of welfare is highlighted as important to the agricultural industry because
animal behavior has a serious impact on production. Animal emotions, which are expressed
as aggressive/stress/anxiety/depression related behaviors, have an impact on animal
production. The production of farm animals depends not only on the genetic factors and
behaviors, but also on animal emotions, which are influenced by several factors including
the environment, the relationship with humans and other conspecifics, and the social and
emotional development of the animals. Animals with aggressive tendencies toward others
can exhibit cannibalistic behavior, guard food sources, endanger caretakers, and cause
other disruptive issues within a farm of any scale, especially confined operations. Many
behaviors appear to be hereditary, allowing farmers to breed for beneficial behaviors if the
target genes are known [3].

In human study subjects, research can assess emotional and behavioral responses with
specially constructed digital phenotype assessment profiles [12]. Some of these studies
have shown that digital phenotyping can predict emotional and behavioral experiences
with up to 95% accuracy [13]. Analyzing sensor data collected from smartphones and
wearable sensors using machine learning algorithms, researchers [13] have demonstrated
the possibility of predicting depressed mood on an hourly basis. This modeling framework
has the potential to be adapted for animal applications as a digital biomarker measurement
in measuring behaviors and stress levels. Digital phenotyping enables the development
of dynamic models of behavior through empirical data and thereby offers Just-in-Time
adaptive interventions, which adjust to an individual animal’s contextual and changing
physiological state [14].

2.3. Production Implications

The products obtained from farm animals are generally selected for quality and quan-
tity, attributes that may not be identifiable until an animal is at its production peak. At such
a point, it may be impossible to breed an animal and pass on its favorable characteristics,
making the predictability of production an important consideration. The predictability
of actions and outcomes from phenotypic data has been effective in human populations
with complex attributes, including physiological states [15]. This information offers great
promise in its future application to production-based predictions of livestock.

Niche needs associated with welfare-aligned increases in production can also be met
through phenotyping. Studies in humans have demonstrated digital phenotyping to be
capable of assessing sleep states [16]. This may seem like pointless information, but for
certain animals such as laying hens, assessing the manipulation of circadian rhythms is key
to maximizing natural egg production. In a way, phenotyping can facilitate production
improvements in livestock by playing on natural functions.
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2.4. Breeding Implications

Breeding in pursuit of highly productive traits is not equivalent to breeding toward
strong reproductive capacities. A prioritization of productivity alone can decrease the
resilience and generalized physical fitness of many animals, as demonstrated by the
biased or non-data-based breeding of dairy cattle. In contrast, phenotyping provides
an opportunity to choose well-rounded breeding animals and to create complementary
pairings for stronger future generations [17]. It also helps facilitate breeding interventions
at times that maximize fertility and survival.

2.5. Disease and Disaster Resilience

Diseases and dramatic natural environmental changes are two factors in farming that
are nearly impossible to contain. These factors create a great economic burden and reduce
production, but the solution exists within livestock [18]. Their resilience and robustness in
the face of these challenges are heritable to some degree and can prepare a population to
better face unknown challenges [3].

Certain forms of phenotyping have been used effectively to assess the resilience of
an organism to pathogenic and environmental stressors, including events such as heat
stress [19]. The more resilient members of a livestock group can then be singled out based
on their phenotype analysis and used to proliferate their positive traits.

3. Overcoming Limitations of Human-Facilitated Livestock Phenotyping

Historically, phenotyping was conducted through personal observations and self-
evaluations of human test subjects. These systems allowed for a significant amount of bias
between observers and the opportunity for inaccurate evaluations by subjects. To obtain
clear and accurate phenotypes, there needs to be an unbiased measurement process that is
capable of identifying changes that are otherwise invisible to the human eye [20].

Modern technology has provided a solution to this dilemma in the form of digital
phenotyping devices with various biomarker focuses. Not only have many of these
devices been comparable if not superior to previous methods, but they also eliminate
data-collection bias and reduce the need for stressful human intervention. Furthermore,
they collect data at times and in quantities that would be impossible to achieve on a
human-facilitated level [21].

3.1. Scoring Systems

When phenotypes are only quantifiable through the use of a specially constructed
scale or assessment, there is a higher chance of observer bias, especially in the agricultural
industry where workers may not share the same regard for all animals [3]. In a review of
human biomedical literature, it was found that trained medical professionals could only
predict human patient outcomes accurately based on standardized scoring systems 21.4%
of the time [22].

High standards have been implemented to increase the validity of questionnaire-based
scoring systems in human trials, but animals are unable to answer such questions, and their
caretakers are unlikely to have the time to fill out these papers on larger farms [23]. Algo-
rithms can be created for the systematic scoring of farm animals based on digitally collected
phenotypic traits to create a more modern, efficient, and accurate scoring system [24].

3.2. Wearable Sensor Technologies in Phenotyping

Wearable sensor technologies are slowly replacing human-based phenotyping in the
medical industry. The capacity of digital biomarkers to offer phenotypic predictions of
long-term prognosis using wearable sensors has been demonstrated for predicting anxiety
symptoms [25], estimating depression severity [26], and detecting daily life stress [27].
There are plenty of reasons that support this digitally dependent shift, but here are two of
the most prominent reasons relating to agriculture.
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3.3. High-Throughput Phenotyping

High-throughput phenotyping refers to the speeds and quantities at which digital
sensor devices can relay data. Human error is a well-known phenomenon in the scientific
field, and the most reliable solution is often the addition of automated and technologically
advanced elements. These sensors are capable of accurately producing rapid and continu-
ous data points [3]. Their only limits tend to be battery life and range, which are minimal
in comparison to the limits of humans attempting to record the same data.

The high rate of data points being produced from both single- and multi-subject
studies using these sensors allows valuable data to be fed through specialized algorithms.
As with most forms of research and analysis, more data points correlate with improved
accuracy when drawing conclusions. In turn, more accurate conclusions can better inform
farmers on which changes will offer the greatest benefit to their livestock.

3.4. Assessment of Intersecting Phenotypes

Phenotypes are influenced by a multitude of factors, including environmental changes.
When phenotyping data are collected, they are normally observed in association with a cer-
tain target, which leaves blind spots for influence by variables that were not apprehended.
This event is well explained by a study that sought to determine the cause of fatigue in
humans, only to find that the experience of fatigue hinged on diverse phenotypes that were
both environmentally and biologically influenced [28]. The method of phenotyping with a
specific focus can also influence inaccurate conclusions and actions that lead to trade-offs.
In the agricultural field, these trade-offs are most commonly in favor of production but
frequently decrease livestock resilience [18].

Wearable sensor technologies can record multiple phenotypes at once, generating
more comprehensive datasets. When enough data are collected about phenotypes that
may simultaneously change in relation to a single environmental or biological trigger, it
becomes possible to determine how they intersect. This information could help farmers
avoid breeding practices that result in accidental trade-offs and prevent actions that trigger
other unintended results.

4. Physiological Measurements by Wearable Sensors for Phenotyping

Sensor technologies are capable of assessing a wide variety of phenotypes. One
study even demonstrated the accuracy of a phenotyping technology that assessed diabetes
through the analysis of eye phenotypes via photos [29]. Many of the studies supporting
the effectiveness of these technologies have been performed on humans, but the results
have a high probability of applying to livestock. Humans and animals share many of the
same anatomical systems, allowing for the trans-species application of digital phenotyp-
ing systems.

These systems may require alterations and advancements for ideal applications to
livestock, but they can maintain the same structure of functioning as they do when applied
to humans. Figure 2 below illustrates how phenotype sensors can be specified and how
their data are analyzed to identify different clinical states [30].

4.1. Skin/Outer Body Temperature

Outer body temperatures can vary greatly from an animal’s internal body temperature.
This information can help farmers determine an animal’s environmental heat tolerance, a
trait that is commonly beneficial in relation to the production of livestock. The following
sensors exemplify some of the current methods available for measuring the phenotype of
skin temperature through wearable and non-contact technologies.

4.1.1. Internal Body Temperature

Changes in internal body temperature can signal an imbalance in homeostasis, which
is commonly due to heat intolerance or illness. Obtaining an internal body temperature
has been an invasive and stressful procedure for animals, as it required the insertion of a
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thermometer into their rectum on repeated occasions. The digital phenotyping sensors
currently being used and developed are considered to be more accurate because they are
less likely to cause an increase in body temperature resulting from the unnatural stress of
classic phenotyping methods.

Figure 2. A typical hierarchical and layered sense-making framework for livestock digital phenotyping. Green boxes at
the bottom represent inputs of data from sensor platforms; yellow boxes represent the features; blue boxes represent the
behavioral biomarkers obtained from the sensors for phenotyping.

4.1.2. Infrared Thermometers

This sensor is also commonly referred to as a heat gun. It uses a fine beam of infrared
light to measure the heat being emitted from a surface. This method of measurement is
generally accurate, but it can only assess one point of heat dissipation at a time and must
be used near the subject [3]. For the phenotyping of small study groups, this measure may
be efficient. However, it is not well suited for accuracy when it is applied to many subjects
across a large area.

4.1.3. Intestinal Temperature Sensors

Larger livestock, such as cattle and pigs, have been phenotyped for internal body
temperatures using intestinal sensors. Because animals enjoy eating, this sensor requires
minimal human intervention for insertion. It only needs to be inserted in a bolus and fed
to the appropriate animal. These sensors are costly at present because they are new to the
world of digital phenotyping, and their recordings can be impacted by the temperature of
feed and water [3].

4.1.4. Infrared Cameras

Infrared cameras also use infrared light to quantify the amount of heat dissipation
from an animal. However, this sensor can generate accurate readings from greater distances
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and provide a full image of an animal’s heat dissipation profile [3]. A continuous stream of
information can be combined with other phenotypic sensors to assess an animal’s location
and social interactions all at once. Most importantly, animals are unlikely to notice this
form of phenotypic sensor, which reduces the risk of observer influence.

4.1.5. Contact Sensors

Unlike the two previous sensors, a contact sensor must be attached to the skin of an
animal to provide accurate temperature readings. Studies have suggested that this form of
outer body temperature measurement is most accurate, but it still has drawbacks, especially
when applied to agricultural situations. The two most pronounced complications are the
limitations of battery life and the ability of this sensor to adhere to the skin without causing
damage or facilitating premature removal [3]. With some animal-specific alterations, this
method of digital phenotyping could be far more useful and combined with some of the
other sensor systems that will be discussed.

4.1.6. Surgical Implants

Surgical implants offer continuous data collection at preset intervals. They are nearly
impossible for an animal to lose and provide accurate internal temperature readings
without further human intervention. The drawbacks of this method include a risk of
infection after insertion and the need to wait until the site is fully healed to collect data [3].

4.1.7. Inter-Vaginal Temperature Devices

This form of internal body temperature recording is also known as a thermochron
temperature recorder and is only applicable to female animals. However, it is considered
to be highly accurate, and the data points that it collects can be transferred farther than the
intestinal sensor method [3].

4.1.8. Ear Canal Radio Telemetry

Ear canal sensors are currently specialized for use in cattle because they attach simi-
larly to identification ear tags. These sensors provide distanced data transfer and can be
theoretically applied to pigs as well [3]. The primary drawback is the tendency for this
sensor to fall off because it is mostly exposed, unlike the other three body heat sensors
described earlier.

4.2. Cardiovascular Health

The cardiovascular system is an integral part of all animals. Research has linked its
poor function to multiple disorders of both the mind and body [31]. Insight into the pulse
rate of an animal also demonstrates stress levels in response to various environmental
stimuli. Furthermore, data related to cardiovascular function can help identify animals
with increased longevity and favorable resilience to stressful events [32].

4.2.1. Echocardiogram Imaging

Cardiovascular health is often assessed through blood studies and other invasive
procedures that can be especially stressful for animals. Studies in humans have determined
that echocardiograms, which do not require phlebotomy, are capable of determining
abnormalities in blood qualities such as hemoglobin, blood urea nitrogen, and other
helpful markers of medical conditions [33]. If applied to animals, this observation method
could offer a functional alternative to blood sampling that provides visual phenotypes of
the cardiovascular system as well.

4.2.2. Photoplethysmography

This method of cardiac health assessment is managed by a small phenotyping device
that measures pulses through non-invasive skin contact. This sensor is commonly used in
human studies, where it has accurately predicted the presence of diabetes and the onset of
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stress [34,35]. An animal-tailored variation would provide a minimally influential way to
collect daily data related to health and welfare on farms.

4.3. Sweating Rate and Composition

Sweat is a form of moisture loss that is directly associated with heat tolerance. The
composition of sweat also explains physiological processes happening within an animal
through the compounds it contains, such as lactate, an indicator of physical stress [19,36].

Digital Moisture Sensors or Galvanic Skin Response

Sweat can be collected in a non-invasive manner; with the proper technology, minimal
human interventions are needed. Digital moisture sensors are a type of dermal technology
that can relay information about the amount of sweat produced and its components.
Human studies have shown that this form of digital phenotyping can determine minute
changes that may otherwise be missed. Changes in sweat gland activity have been linked
to both emotional and physical arousal in humans [37,38]. These findings suggest that,
with a proper understanding of species-specific responses, animal-based applications
are feasible [3].

4.4. Dietary Health by Ingestible Sensors

Livestock animals’ diets and intestinal health can maximize or seriously impede their
productivity. On farms with numerous animals, it can be difficult and even impossible to
determine how often, much, and well each animal is eating. The solution can be found in
sensors that continuously collect data and feed the results to an analyzing program. The
findings could guide welfare changes by indicating the specific needs of the animals being
studied. Through monitoring the feeding pattern and the behavior and the associated
deviations with the aid of sensor technologies, subclinical health issues and welfare states
of farm animals can be identified [39,40].

4.4.1. Bolus Devices

Bolus sensors were noted earlier for their ability to be used as minimally invasive
internal body temperature recording devices. They appear also under the topic of dietary
health due to their ability to remain in the digestive systems of cattle and pigs for extended
periods without negative impacts. Bolus sensors can monitor pH and metabolic status and
record nutrition absorption data [3]. All of these factors help determine the health of an
animal’s intestinal tract. In cattle, rumen microbe compositions are hereditary to some
extent and impact health and production, making them a phenotype worth assessing [17].

4.4.2. Feed-Intake Assessment Systems

Livestock feed is normally dispensed for consumption by large groups, but the addi-
tion of feed-intake assessment systems can record individualized data related to feeding
frequency, duration, and location. All of these factors relate to the quality of social inter-
actions, disease resilience, and other aspects of animal welfare [3]. In most cases, these
sensor-based assessment systems are directed at dairy cattle, consisting of single-spaced
feeders that weigh the food and identify individual animals through radio-frequency
signals from associated tags. The crosstalk between the animal’s collar sensor and the
feed intake sensor of the feed bins helps to monitor the frequency and amount of feed
intake and the nutrition involved in the feed, and thereby can inform the health- and
productivity-associated indicators through metabolomics [41].

4.5. Respiratory Health

Most livestock animals are maintained in group housing to maximize production in
minimal space. When implemented properly, this method of agriculture can be high-yield.
However, close proximity leaves animals susceptible to contagious diseases, including
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respiratory ailments. Early identification of respiratory disease is key to containment and
treatment, which are significant reasons to employ respiratory phenotyping sensors.

4.5.1. Breath Analysis

Various respiratory diseases spread via airborne transmission. Theoretically, this
would make the diseases identifiable through the breath analysis of afflicted animals.
Common livestock respiratory viruses that pose great financial and welfare concerns
include bovine respiratory disease, tuberculosis, and brucellosis [3]. The early identification
of these diseases through digital respiratory analysis could trigger early intervention to
minimize impact and help farmers identify the most resistant animals on their farms to
breed for stronger immunity.

4.5.2. Auditory Disease Identification

Many respiratory diseases cause distinct coughs and other respiratory changes, de-
pending on their host. In a human subject study, auditory devices were capable of accu-
rately distinguishing breathing patterns and coughs caused by asthmatic episodes [42].
This information would suggest that the same method of digital audio analysis could
identify certain respiratory diseases when applied to animals.

4.6. Sleep Quality

Sleep and resting play a crucial role in the development and health of most animals.
Sleep quality of farm animals is not influenced only by genetic factors but also by the
physical and social environments. Some studies have found that inefficient sleep patterns
can shorten the telomeres on an animal’s chromosomes, leading to shorter lifespans [43].
This important factor for production is not currently observable for all livestock, and it
cannot be easily monitored by human caretakers without the risk of observer influence.
Thus, the ability to assess digital phenotypes that can flag sleeping issues can help farmers
make adjustments to improve their animals’ health and well-being.

Heart-Rate Measuring Devices

Sleep patterns have been studied in humans through the use of digital phenotyping
sensors focused on heart rate and activity [43]. These two points of focus can provide
insight into many aspects of an animal’s life, offering a multifaceted tool when properly
altered to suit the target species.

4.7. Activity Sensors

Activity sensors commonly include accelerometers, pedometers, and GPS devices
that can observe location, speed, and time of movement. The activity of an animal can
highlight its social interactions and psychological state. In studies of chickens, researchers
identified the onset of feather pecking and preferred laying spaces through the use of
activity sensors [3]. For humans, a similar device was shown to predict episodes of high
anxiety with great accuracy [44]. These sensors do not require constant human intervention
and can be fastened to animals in non-invasive ways. These two points are significant
because they decrease the chances that the data collected will be unnaturally influenced,
a problem that has been noted with many artificially constructed human social activity-
tracking studies [45]. In some human-subject trials, activity sensors have even been able
to sense body positioning [46]. This valuable information can be collected continuously,
providing insight into the progression or decline of an animal’s mobility as influenced by
genetics or outside factors [3]. The pedometer has been shown to be a reliable tool for
estrus detection through measurement of lying behavior and rumination time in dairy
cows [47]. With specialized devices, activity sensors could pinpoint areas of poor mobility
in specific individuals, encouraging proper treatment and balanced breeding.
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4.8. Behavior

Generally, the behaviors of livestock result from their genetics, environment, and
experiences. Certain behaviors can be destructive and dangerous to both a single animal
and others nearby, while other behaviors can have positive impacts (e.g., easier handling).
Often, behavior is interpreted through a lens of human bias, making digital measures more
accurate in their potential influence on breeding and groupings of animals.

Thermal Imaging

Thermal imaging cameras were discussed earlier as a productive method for assessing
the external body temperature of animals. They can also serve as a valuable tool for
recording data related to social behavior. Thermal cameras allow for the clear identification
of animals, even when they overlap in physical space [3]. Digital cameras and infrared
cameras can also be used to record phenotypes related to how animals interact with each
other and their caretakers. Cameras can even be used in combination with audio cues, such
as crying young, to determine if an animal will show favorable maternal traits [48].

4.9. Acoustic Sensors

Sound-based data sensors can be attached to individual animals for sound analysis.
As demonstrated by human studies, acoustic sensor data can be refined and analyzed
to predict emotional states and some actions [49,50]. It is not unreasonable to expect the
same to be true for animals due to their abundant vocalizations that are specific to stress,
breeding, eating, and socialization. The only major problem with this digital phenotyping
device is refining its ability to distinguish the noises of specific individual animals in
crowded agricultural settings [3].

4.10. Light Sensors

For humans, receiving an appropriate amount of sunlight supports proper mental
and physical health [51]. Although only some farming operations allow outdoor spaces for
their animals, natural light detectors could still be useful sensors. For example, their data
could help determine which animals are most comfortable in outdoor spaces by tracking
their behavior-related phenotypes in relation to sun exposure. Animals who prefer to be
outside even on hotter days could be exemplifying greater heat tolerance and robustness.

4.11. Mobility, Posture, and Lameness

Aspects of mobility are important for all humanely raised farm animals, as they often
have to rely on movement for eating, drinking, breeding, and other activities related to
welfare. Animals with poor physical conformations are prone to lameness, a painful
experience that can lead to premature death. In some aspects of farming, animals will
not be accepted for slaughter if they cannot walk into the facility independently. Other
times, herd lameness raises great welfare concerns and causes decreases in production.
Many components of mobility are hereditary and environmentally driven, and proper
phenotyping could facilitate the genetic advancement of farm animal mobility.

4.12. Cameras

Cameras of all types can serve as an effective measure for assessing mobility. De-
pending on where they are mounted in a facility, these devices can provide clear views
of animals’ locomotion in positions that human observers cannot safely reach. Cameras
also allow for continuous observation of quantifiable mobility phenotypes for specific
animals [3]. In comparison, human observers on most farms may only spend a few minutes
observing each animal, indicating their phenotyping has a greater possibility for bias.
With the 3D motion learning artificial learning techniques, cameras have the potential to
overcome barriers in measuring animal activity and postures, varying lighting conditions,
and occlusions. However, these advancements are only at the preliminary research stage
and have not yet found practical applications in commercial settings. Using cameras and
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the analysis of images of facial features of cows and pigs, researchers [52] were able to
measure inferred emotions and determine whether the animals displayed aggression or
excitement or neutral affective states. The ability to determine emotions of farm animals
using cameras provides ways to enhance animal–human interactions and animal welfare.

5. New Phenotyping Platforms for Accurate Assessment of Livestock

The field of digital phenotyping is expected to continue its evolution toward more precise
and compatible sensor systems, especially in the field of human medicine. This is a promising
step in the trickle-down of new technology for the agricultural industry, but with a growing
human population and public pressures, it is unreasonable to wait for the simple application
of human-tested sensors for farm animals. Instead, it would be in the agricultural industry’s
best interest to start testing, refining, and creating digital phenotyping sensors that are specific
to livestock species. The sensor systems described above are all promising technologies, but
many of them are based on human models (Figure 3) [22].

Figure 3. Digital phenotyping of farm animals involves collection of data from animal wearables and
video and sound-based data to measure behavior and predict disease and cognition.

This image depicts the sensor sequence commonly used to assess phenotypes in
humans. The sequence from a device to measurement-based care represents a valid
application to livestock. However, device and sensor foci must be altered for accurate
use in animals. Research has suggested that improvements and alterations of digital
phenotyping devices can be managed most appropriately through the acceptance of an
open interface. This structure will allow for infinite growth of technology in whatever
direction is needed for a given species because digital phenotyping is a dynamic field of
study [8]. With proper information protection, the acceptance of a shared data system
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could also improve efficiency, standardization, and welfare, much as it has for hospital data
systems [12,53]. This shared information could help catalyze evaluations of geographical or
global complications within a species, and it even opens up the opportunity for genetically
diverse and data-backed breeding programs.

Other studies have highlighted the importance of making digital phenotyping a
more accessible and understandable form of measurement to improve its usage [54]. This
suggestion can be extremely beneficial in the realm of farming, as an accessible digital
phenotyping system could help a multitude of farmers make educated animal care decisions
without extra schooling. Accessibility also includes affordability, a factor that will hopefully
increase with the development of tailored systems. Some studies have found accurate
values from sensors that only take hourly readings, as opposed to continuous readings [36].
This method could increase affordability by saving battery power and data storage space.

Many other minute alterations are needed for the advancement of phenotyping tech-
nologies, but automated interventions based on phenotypic assessments are one of the
most interesting and impactful concepts being studied [55]. Frequently, the data-collection
systems analyze information relayed from digital sensors and generate diagnostic results,
but this pathway could be taken a step further. For example, the automation of a systemic
response to specific diagnostic findings could help provide immediate care to farm animals
while simultaneously reducing the need for manual labor. However, this concept still
requires extensive research and testing, even in human-based studies.

Digital phenotyping is basically quantitation of farm animals’ in situ phenotypes using
individual wearable sensors or through video image analysis. The sensors that have been
used so far on animals in the livestock sector are primarily geared toward measurement of
physiological and behavioral parameters from a precision livestock farming context. From
an instrumentation and sensor engineering perspective, it would not be practically feasible
to provide "efficacies" of the methods for each and every individual sensor type, due to
the context-based measures in various farm animal applications and the cross-sensitivity
and specificity issues in real-time deployment. An example would be the application of
camera sensors to measure the activity of chickens. The efficacy of cameras in determining
the activity depends on lighting conditions, the height or position of the camera deployed,
occlusions and other visible barriers present on the farm, and camera hardware parameters
determining the resolution etc. The efficacy of camera-based systems will vary greatly
between species such as chicken vs. dairy cow vs. pig movement and activity.

Current research advancements are focused on the development of multiplexed, multi-
functional sensors that can measure heterogeneous phenotyping data from a single device.
Data fusion technology provides an enhanced way of measuring parameters with much
accuracy and information richness in the precision livestock digital phenotyping field. The
deployment of multifunctional sensors in livestock animal farming will overcome the wear-
able factor, occupying less space and ensuring skin conformability with reductions in the
cost of manufacturing. However, reliability and sensor data fusion related issues still need to
be overcome. With the advent of artificial intelligence and sensor technology advancements,
data fusion technology will become the basis for real-time digital phenotyping.

6. Summary

Digital phenotyping represents a beneficial opportunity with several complexities.
Namely, it can provide an extrinsic way of enhancing the knowledge and prediction of
resilience and disease-indicating factors among farm animals, but it also further removes
any relationship between animals and caretakers [56]. Furthermore, digital phenotyping
can only complement human interventions and cannot offer a causal explanation for the
data collected. Despite these significant considerations, digital phenotyping for livestock
represents an emerging direction of research and potential application efforts that are both
scientifically intriguing and practically warranted.
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