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Simple Summary: Different breeds of pigs vary greatly in their propensity for adiposity. The gut
microbiome plays a crucial role in shaping host physiological responses. However, it remains unclear
how the gut microbiota influences host growth, in particular adipogenesis. This study aimed to
compare microbial profiles in the colons of two pig breeds.

Abstract: Sixteen 35-day-old piglets, including eight Large White (LW) piglets (a lean-type pig breed)
and eight Ningxiang (NX) piglets (a fatty-type Chinese Indigenous pig breed), were fed the same diet
for 105 days. NX pigs had higher intramuscular fat content than LW pigs (p < 0.05). According to 16S
rRNA gene sequencing, the relative abundances of the genera Ruminococcaceae_NK4A214_group,
Parabacteroides, Christensenellaaceae_R-7_group and Ruminiclostridium were higher, whereas the
abundances of Prevotellaceae_NK3B31_group, Prevotella, Subdoligranulum and Faecalibacterium were
lower, in the colon of NX pigs compared to that of LW pigs. Nonmetric multidimensional scaling
analysis revealed that the microbiota of the two pig breeds clustered separately along the principal
coordinate axis. Furthermore, functional prediction of the bacterial communities suggested higher
fatty acid biosynthesis in NX pigs. NX pigs also exhibited lower concentrations of total short-
chain fatty acids, propionate and butyrate in the colon (p < 0.05). These findings suggest that NX
pigs exhibited higher intramuscular fat content and backfat thickness than LW pigs. The bacterial
communities in the colon of NX pigs were also more diverse than those in the colon of LW pigs,
which might be used as a potential metabolomics mechanism to research different breeds of pigs.

Keywords: pig breeds; colon; short chain fatty acids; intramuscular fat; gut microbiome

1. Introduction

Global pork production has made significant contributions to food security. Pork
is the most commonly produced meat and accounts for approximately 40% of all meat
consumed worldwide [1]. Animal fat deposition is a complex biological process. Fat
deposited in muscle includes intramuscular fat (IMF) and intermuscular fat, and IMF is
a key factor affecting meat qualities, such as tenderness, juiciness and taste [2], making
it an economically important factor in pig breeding. However, abnormal or excessive
accumulation of fat in the body can lead to obesity, which is harmful for animal health [3].
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The intestine is the major site of food transformation and metabolism, and the gut
microbiota is important for nutrient and energy metabolism and for maintaining the
homeostasis of the host immune system [4]. It is also influenced by many factors, such
as genetics, disease, diet, environment and lifestyle [5]. It has been shown that the gut
microbial profile is highly related to obesity [6]. Imbalances in the proportion of various
components of the intestinal microbiota contribute to the development of obesity via several
mechanisms, including the storage of nutrients and energy, elevated levels of systemic
inflammation and increased lipid deposition [7,8]. In the gastrointestinal tract, the highest
microbial content is found in the colon. Here, fermentation of undigested carbohydrates,
proteins and enzymes by gut microbes results in the production of short-chain fatty acids
(SCFAs), ammonia and biogenic amines. Some metabolites can be used as energy sources by
the host, whereas others affect host metabolic functioning and health [9]. Some metabolites
have even been shown to regulate the host brain, which can also affect obesity [10].

Previous studies have confirmed differences in the serum and cecal metabolomic pro-
files between two pig breeds [11,12], as well as differences in colonic bacterial abundances
and bacterial metabolites between fatty- and lean-type pigs [13]. Furthermore, the gut
microbiome is shaped by host diet and host genotype and can affect the postnatal develop-
ment of gut tissues and host metabolic health [14]. Recent studies have demonstrated that
the gut microbiota plays a pivotal role in contributing to adiposity in different breeds of
pigs [15].

Ningxiang (NX) pigs, a well-known Chinese Indigenous fatty-type breed, exhibits
high IMF content, early sexual maturity and low growth rates [16]. In contrast, the Large
White (LW) pig, also known as the English Large White, is a lean-type pig breed character-
ized by a fast growth rate and high lean meat content [17]. It has been reported that the
influence of genetic factors leads to differences in the sensory quality of pork [18]. Thus,
these two porcine breeds are suitable models to investigate the genetic differences and
molecular mechanisms underlying the above-mentioned phenotypic differences [19]. How-
ever, there is little information regarding the mechanisms that control these phenotypic
differences or the effects of microbial differences on host phenotypes. To understand the
relationship between swine growth, adipogenesis and gut microbiota, we used 16S rRNA
gene sequencing to analyze and identify the microbiota involved in regulating differences
in adipogenesis between NX and LW pigs. This study will help develop a comprehensive
understanding of the mechanisms by which the gut microbiota regulates fat deposition in
these two pig breeds.

2. Materials and Methods

Experiments involving the use of pigs were subjected to an approval process under
national guidelines by Chinese guidelines for animal welfare and experimental protocols,
and all procedures were approved by the Hunan Agricultural University Animal Care and
Use Committee (Changsha, China) (permit number: CACAHU 2021-00116).

2.1. Animals, Housing and Experimental Design

Eight LW barrows (10.90 ± 0.36 kg body weight (BW)) and eight NX barrows
(8.18 ± 0.52 kg BW) weaned at 35 days of age were fed the same basal diet based on
the Nutrient Requirements of Livestock and Feeding Standards of Pig (NY/T 65-2004).
The pigs were housed individually in cages (1.5 × 1.5 m2) equipped with a double-sided
feeder and a stainless steel nipple drinker. All pigs were given ad libitum access to feed
and clean drinking water throughout the 105-day experiment. The feed intake of each
pig was recorded daily, and each pig was weighed at the beginning and the end of trial
to calculate the average daily gain (ADG), the average daily feed intake (ADFI) and the
feed:gain ratio (F/G).
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2.2. Sample Collection and Preparation

At the end of the trial, all pigs were fasted for 24 h and transported to the slaughter-
house for slaughter by bleeding after electrical stunning. Samples from the longissimus
dorsi (LD), soleus (SM) and quadriceps (QF) muscles were placed in vacuum bags at 4 ◦C
to measure meat quality traits. In addition, samples from the LD, SM and QF muscles
were immediately frozen in liquid nitrogen and stored at −80 ◦C for further analysis. After
chilling for 24 h, muscle samples were collected and stored at −80 ◦C for protein solubility
measurements. The contents of the colon were collected, immediately frozen in liquid
nitrogen and stored at −80 ◦C until 16S rRNA and SCFAs content were assessed.

2.3. Carcass and IMF

After evisceration, the right half of the carcass was weighed and used to assess
morphometric parameters. Carcass quality was evaluated based on final weight, carcass
weight, dressing percentage, fat percentage, lean percentage and average backfat thickness,
as previously described [20]. Drip loss was defined as the weight loss of a meat sample (50 g)
placed on a flat plastic grid, wrapped in foil and stored for 24 h (24 to 48 h postmortem) in
a refrigerator at 4 ◦C [18]. The IMF content of the muscle was analyzed in duplicate using
a Soxhlet Extractor (SER-148, Italy VELP Co., Usmate Velate, Italy) with petroleum ether
(boiling temperature range: 60–90 ◦C).

2.4. DNA Extraction, 16S rRNA Sequencing and Bioinformatics Analysis

Total bacterial genomic DNA was extracted from the colonic digesta of each pig
using a QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) according to the man-
ufacturer’s instructions. DNA quality was evaluated by 1% agarose gel electrophoresis.
The V3-V4 hypervariable regions (338F: ACTCCTACGGGAGGCAGCAG, 806R: GGAC-
TACHVGGGTWTCTAAT) of the 16S rRNA gene (~460 bp) were amplified by polymerase
chain reaction (PCR) from microbial genomic DNA using a GeneAmp 9700 thermocycler
(Applied Biosystems, Foster City, CA, USA) according to a previous study [21]. PCR
products were purified using a GeneJETTM Gel Extraction Kit (Thermo Scientific, Waltham,
MA, USA). Amplicons from different samples were mixed in equal amounts. Sequencing
libraries were generated using an Ion Plus Fragment Library Kit 48 rxns (Thermo Scien-
tific) following the manufacturer’s recommendations. Purified amplicons were pooled in
equimolar amounts and paired-end sequenced (2 × 250 bp) on an Illumina MiSeq 2500
platform (Novogene, Beijing, China).

Quality filtering of the raw reads was performed under specific filtering condi-
tions to obtain high quality clean reads (Q > 25) using QIIME software (version 1.9.1)
(http://cutadapt.readthedocs.io/en/stable/, accessed on 2 December 2015) [22]. The
reads were compared with the reference database (Gold Database, http://drive5.com/
uchime/uchime_download.html, accessed on 15 August 2011) using the UCHIME al-
gorithm (http://www.drive5.com/usearch/manual/uchime_algo.html, accessed on 15
August 2011) [23] to detect chimera sequences, which were removed. All clean reads
of all samples were clustered using UPARSE software (version V7.0.1001; http://drive5
.com/uparse/, accessed on 18 August 2013), and the sequences were clustered into opera-
tional taxonomic units (OTUs) with a 97% similarity level cutoff. For each representative
sequence, the Silva Database (https://www.arb silva.de/, accessed on 27 November
2012) [24] was used based on the Mothur algorithm to annotate taxonomic information.
Alpha diversity (observed species, Chao1, Shannon, Simpson, abundance-based coverage
estimator (ACE) and Good’s coverage) was calculated using QIIME software (version
1.7.0) and displayed with R software (version 2.15.3) (https://www.r-project.org/) (R Core
Team, Vienna, Austria). Nonmetric multidimensional scaling (NMDS) plots based on
Bray–Curtis dissimilarities were created to show group differences in microbial commu-
nity structure. R statistics were calculated using analysis of similarities (ANOSIM), with
an R value near +1 indicating that there was dissimilarity between the groups and an R
value near 0 indicating no significant dissimilarity between the groups. Samples were

http://cutadapt.readthedocs.io/en/stable/
http://drive5.com/uchime/uchime_download.html
http://drive5.com/uchime/uchime_download.html
http://www.drive5.com/usearch/manual/uchime_algo.html
http://drive5.com/uparse/
http://drive5.com/uparse/
https://www.arb
https://www.r-project.org/
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considered to be significantly different at p < 0.05. Venn graphs were created using Venn
diagram software (https://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 15
August 2011). Raw data were deposited into the SRA database with accession number
PRJNA672239.

2.5. Metagenomic Functional Predictions

Predictive functional profiling of microbial communities was conducted using PI-
CRUSt (phylogenetic investigation of communities by reconstruction ofunobserved states).
Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, PICRUSt can
predict the principal functions of the corresponding 16S rRNA OTUs. OTUs were selected
against the Greengenes version 13.5 database according to instructions provided by the
Genome Prediction Tutorial for PICRUSt. The output files from the PICRUSt analysis were
uploaded to Metagenomic Profiles version 2.1.3 software for further statistical analysis and
graphical depiction of all predictive functional data sets.

2.6. Analysis of SCFAs

To ensure consistency, chyme samples were dried at low temperature using a vacuum
freeze dryer (FreeZone 2.5, Labconco, Kansas City, MO, USA). After the dried samples
were pulverized and mixed, 0.5 g was moved to a 10 mL centrifuge tube, mixed with
5 mL double distilled water for 30 min and centrifuged at 15,000 rpm for 10 min at 4 ◦C.
The supernatant was taken, followed by the mixing of the solution twice and adjustment
of the final volume to 10 mL. The obtained liquid (0.9 mL) was mixed with 0.1 mL 25%
metaphosphoric acid solution in a 1.5 mL centrifuge tube and stored in a refrigerator at
4 ◦C for 3 h. The mixture was then centrifuged at 15,000 rpm for 10 min at 4 ◦C, and
the supernatant was filtered through a 0.22 microporous membrane and analyzed using
an Agilent 7890 gas chromatograph (Agilent Technologies, Inc., Palo Alto, CA, USA) as
previously described [25].

2.7. Statistical Analysis

Growth performance, SCFAs content and the relative abundances of bacterial phyla
and genera were analyzed using Student’s t-tests. All data were analyzed using SPSS
Statistics for Windows, Version 20.0 (IBM Corp., Armonk, NY, USA). Data are presented as
means ± standard error of the mean (SEM), and differences were considered significant at
p < 0.05.

3. Results
3.1. Growth Performance and Carcass Traits

Growth performance and carcass traits were compared between NX and LW pigs at
105 days of age as shown in Table 1. NX pigs exhibited higher backfat thickness than LW
pigs (p < 0.05), but ADG, carcass weight and drip loss were lower in NX pigs (p < 0.05).

Table 1. Performances and carcass characteristics between Ningxiang pig and Large white pig.

Items 1 Genotype 2
SEM 3 p-Value

LW NX

ADG (g/day) 842.26 a 392.50 b 11.84 0.025
ADFI (g/day) 1953 a 1402 b 35.03 0.037

F/G (g/g) 2.32 b 3.60 a 0.04 0.054
Final weight (kg) 99.34 a 49.39 b 1.35 0.018

Carcass weight (kg) 67.17 a 30.98 b 0.99 0.014
Dressing percentage (%) 67.57 a 63.38 b 0.63 0.048

Average backfat thickness (cm) 2.61 b 4.54 a 0.08 0.032
Drip loss (%) 5.21 a 3.25 b 0.06 0.029

a,b Different superscript indicate statistical differences (p < 0.05). 1 ADG, average daily gain; ADFI, average daily
feed intake; F/G, Feed/gain. 2 LW, Large White; NX, Ningxiang. 3 SEM, pooled standard error of means.

https://bioinformatics.psb.ugent.be/webtools/Venn/


Animals 2021, 11, 1862 5 of 12

3.2. IMF Content

The IMF content of the two pig breeds is listed in Figure 1. NX pigs had a higher
IMF content in the LD and QF muscles than LW pigs (p < 0.05). There were no significant
differences in IMF content in the SM muscle between the two breeds (p > 0.05).
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3.3. Microbiome Sequencing

To assess differences in the intestinal microbiota composition of NX and LW pigs,
16S rRNA sequencing was performed using bacterial DNA isolated from the colonic
digesta of 105-day-old pigs. After filtering, 1.13 million clean reads were produced
(73,705 ± 2205 reads per sample) (Supplementary Table S1). In order to study the species
composition and diversity of the samples, the clean read sequences from all samples were
clustered into OTUs with 97% identity. A total of 1119 and 1085 OTUs were detected
in NX and LW pigs, respectively, including 981 common OTUs (Figure 2A). The Good’s
coverage index was approximately 99.6%, indicating that sufficient depth of sequencing
and adequate data were achieved.

3.4. Bacterial Composition and Diversity

At the phylum level, the taxonomic classification of the clustered OTUs of the colonic
microbiota revealed the presence of 10 bacterial phyla. Firmicutes were the most pre-
dominant, representing 47.36–74.27% of the bacterial population of both NX and LW pigs.
Bacteroidetes constituted the second most abundant phylum, representing 20.41–36.64%,
followed by Spirochaetes (0.75–27.11%) and Proteobacteria (0.87–1.94%). The proportion of
other phyla (Fusobacteria, Tenericutes, Cyanobacteria, Actinobacteria, Verrucomicrobia
and Saccharibacteria) was less than 1% of the total microbial community. Widespread differ-
ences were found in the gut microbial community structure of NX pigs compared to that of
LW pigs. In particular, in NX pigs, abundances of Firmicutes (64.89% vs. 61.48%) (p = 0.449),
Proteobacteria (4.95% vs. 2.48%) (p = 0.292) and Fusobacteria (64.89% vs. 61.48%) (p = 0.449)
were higher, but abundances of Bacteroidetes (25.42% vs. 27.51%) (p = 0.451), Spirochaetes
(2.69% vs. 7.12%) (p = 0.185) and Cyanobacteria (0.14% vs. 0.40%) (p = 0.034) were lower
(Figure 2B). At the genus level, gut microbial profiles differed between the two pig breeds.
The top 35 genera across all samples are shown in Figure S1. In general, Lactobacillus,
Clostridium, Terrisporobacter and Treponema were the four most abundant genera in
the colons of both pig breeds. Furthermore, the abundances of the genera Ruminococ-
caceae_NK4A214_group (p = 0.040), Parabacteroides (p = 0.035), Chritensenellaaceae_R-
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7_group (p = 0.018) and Ruminiclostridium (p = 0.036) were higher in NX pigs compared
with LW pigs, whereas the abundances of Prevotellaceae_NK3B31_group (p = 0.042), Pre-
votella (p = 0.027), Subdoligranulum (p = 0.023) and Faecalibacterium (p = 0.019) were lower
(Figure 2C).
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There was no significant difference in diversity (Shannon, Simpson, chao1 and ACE
indices) between the two pig breeds (p > 0.05) (Supplementary Table S2). For beta diversity
analysis, the colonic bacterial communities of the two pig breeds were compared using
NMDS and ANOSIM based on Bray–Curtis distances. NMDS analysis revealed that
the microbiota of the two pig breeds clustered separately along the principal coordinate
axis (Figure 3A). The results of ANOSIM analysis of beta diversity indicated that there
were significant differences in the gut microbiota structure between the two pig breeds
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(R = 0.382, p = 0.001) (Figure 3B), indicating that breed exerted a notable effect on microbial
communities in the colon.
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3.5. Functions of Colonic Microbiota

Due to significant differences in the composition of the gut microbiota, we performed
functional analysis of the microorganisms using PICRUSt. Principal components analysis
of functional profiles revealed that differences in the microbial functions of the two breeds
(Figure 4) were consistent with the differences in composition described above. At the
KEGG level, the gut microbiota of NX pigs involved more functions related to metabolic
pathways, such as fatty acid metabolism, xenobiotics biodegradation and metabolism,
flavonoid biosynthesis and disease, than that of LW pigs. In contrast, metabolism of
carbohydrates, protein and biosynthesis of zeatin and carotenoid were enriched in LW pigs
compared with NX pigs. The microbiota of LW pigs involved more functions related to
energy metabolism, whereas the microbiota of NX pigs involved more functions associated
with lipid metabolism and the immune system.

3.6. SCFAs Content in the Colon

As shown in Table 2, the total concentration of SCFAs, propionate and butyrate in
the colon of NX pigs was lower than that of LW pigs (p < 0.05), and there was a trend
toward lower concentrations of valerate in the colon of NX pigs (p = 0.094). There were
no significant differences in branched chain fatty acids (BCFAs) between the two breeds
(p > 0.05).
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significant differences in branched chain fatty acids (BCFAs) between the two breeds (p > 
0.05). 

Table 2. Concentrations of short-chain fatty acids (SCFAs) in the cecal digesta in Ningxiang pig and 
Large White pig. 

Items 1 
Genotype 2 

SEM 3 p-Value 
NX LW 

Acetate 9.19 12.65 0.820 0.107 
Propionate 4.30 b 7.02 a 0.478 0.036 

Butyrate 2.41 b 4.88 a 0.340 0.014 
Isobutyrate 0.56 0.63 0.035 0.450 

Valerate 0.67 0.95 0.064 0.094 
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Total BCFAs 1.42 1.57 0.098 0.538 

Figure 4. Prediction of changed the Kyoto encyclopedia of Genes and Genomes (KEGG) pathways
using PICRUSt (plogenetic investigation of communities by reconstruction of unobserved states)
analysis between the two pig breeds. LW, Large White; NX, Ningxiang.

Table 2. Concentrations of short-chain fatty acids (SCFAs) in the cecal digesta in Ningxiang pig and
Large White pig.

Items 1 Genotype 2
SEM 3 p-Value

NX LW

Acetate 9.19 12.65 0.820 0.107
Propionate 4.30 b 7.02 a 0.478 0.036

Butyrate 2.41 b 4.88 a 0.340 0.014
Isobutyrate 0.56 0.63 0.035 0.450

Valerate 0.67 0.95 0.064 0.094
Isovalerate 0.86 0.94 0.061 0.593

Total SCFAs 17.98 b 27.07 a 1.670 0.044
A/P 4 2.14 1.84 0.090 0.189

Total BCFAs 1.42 1.57 0.098 0.538
a,b Different superscript indicate statistical differences (p < 0.05). 1 SCFAs, short-chain fatty acids; BCFAs, branched
chain fatty acids. 2 LW, Large White; NX, Ningxiang. 3 SEM, pooled standard error of means. 4 A/P, ratio between
acetate and propionate.

4. Discussion

Fats are the major form of energy storage in animals. Studies have shown that different
pig breeds possess different growth potentials and fat deposition characteristics, both of
which have profound effects on meat quality [26,27]. The NX pig, a well-known Chinese
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Indigenous fatty-type breed, exhibits early sexual maturity, high IMF content and better
meat quality than other local pig breeds [28]. In contrast, LW pigs are a meat-producing
breed known for their high growth rate and feed efficiency and their lean carcasses. In the
current study, we found that NX pigs exhibited greater IMF content and backfat thickness
but lower ADG and drip loss than LW pigs at 105 days of age. These results are in
accordance with previously reported results [29]. However, the mechanisms underlying
variations in meat quality remain unknown.

The colon is the main site of microbial fermentation [30], and the core flora in the intes-
tine directly affects the function of the gut [31]. Previous studies have demonstrated that the
gut microbiome differs from that of the large intestine in different breeds of pigs [32,33]. It
has also been shown that gut microbes not only provide energy for life sustaining activities
but are also involved in regulating body lipid storage [34]. Pigs fed the same diet have
different gut microbiota profiles involving different microbial species [35], whereas in pig
fecal samples, Firmicutes and Bacteroidetes predominate at the phylum level [36]. The
present study demonstrated for the first time the differences in the intestinal microbiota of
NX and LW pigs. We found that Firmicutes and Bacteroidetes were the dominant bacteria
in the colonic contents of both pig breeds, but the Firmicutes/Bacteroidetes ratio of NX
pigs (2.55) was slightly higher than that of LW pigs (2.23). Higher Firmicutes/Bacteroidetes
ratios are associated with greater energy absorption and accumulation [31]. It has been
shown that the abundance of Firmicutes is higher in the intestine of obese pigs, whereas
the abundance of Bacteroidetes is lower [37]. Thus, it is possible that differences in Firmi-
cutes and Bacteroidetes explained the higher IMF accumulation observed in NX pigs in
this study.

In the current study, at the genus level, the relative abundances of genera including
Ruminococcaceae_NK4A214_group, Parabacteroides, Ruminantium_group, Family_XIII_
AD3011_group, Christensenellaceae_R-7_group and Ruminiclostridium_6 were higher in
NX pigs than in LW pigs. Ruminococcaceae, Family_XIII and Christensenellaceae are mem-
bers of the order Clostridiale, which is widely found in diverse gut communities [38] and
is capable of degrading plant polysaccharides. They can also produce butyrate and acetate
via the butyryl-coenzyme A (CoA):acetate CoA-transferase pathway [39]. Butyric acid is
the main energy source of colonic mucosal epithelial cells, which maintain the structural
integrity of the intestinal mucosa and promote the growth of the large intestine [40,41]. It is
worth noting that butyrate exerts potent effects on a variety of colonic mucosal functions,
such as the inhibition of inflammation and carcinogenesis and the reinforcement of various
components of the colonic defense barrier [41,42]. It has been reported that a reduction in
SCFAs produced by microbes in the gut leads to inflammation [43]. Furthermore, higher
SCFAs concentrations have been observed in obese individuals [44]. In the present study,
concentrations of SCFAs in the intestinal lumen of NX pigs were lower than those in LW
pigs, although NX pigs possessed more abundant SCFAs-producing bacteria in the lumen
of the colon than LW pigs. This discrepancy may be due to the fact that the colonocytes
of NX pigs have a greater SCFAs-absorbing capacity than LW pig colonocytes [13]. In
addition, analysis of the metabolic potential of the colonic microbiome using PICRUSt
revealed that fatty acid biosynthesis pathways were enriched in NX pigs. Similar to a
previous study that showed that fatty acid synthesis in human adipose tissue is linked to
obesity and type 2 diabetes [45], the results of the current study indicated that the colonic
microbiome may contribute to excess energy intake and increased body fat mass in NX
pigs. Additionally, imbalances in the proportions of intestinal microbes contributed to
the development of obesity by promoting the metabolism of energy from food, activating
systemic inflammation and increasing lipid deposition [46,47]. Further studies on other as-
pects, such as transcriptomics and metagenomics, are necessary to explore the mechanisms
underlying the different phenotypes of the two pig breeds.
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5. Conclusions

The present study first compared the IMF content and the composition of the gut
microbiota in the colon between LW and NX pigs. The findings revealed significant
differences in body weight between LW and NX pigs at 105 days of age. NX pigs exhibited
higher IMF content and backfat thickness than LW pigs. The bacterial communities in the
colon of NX pigs were also more diverse than those in the colon of LW pigs. Furthermore,
predictions of bacterial community functions indicated increased fatty acid biosynthesis
in NX pigs than in LW pigs. The present results are useful to understand the differences
between the microbiomes of NX and LW pigs and could be applied to improve meat quality.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11071862/s1, Figure S1: The top 35 genera were identified across all samples between two
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observed species, richness and diversity indices in the caecal samples from each dietary treatment.
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