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Simple Summary: In dairy cows, the transition to lactation period is metabolically challenging.
Elevated blood ketone bodies, known as hyperketonemia or ketosis, is a postpartum metabolic
disorder that is associated with negative energy balance, greater comorbidity risk, and decreased
milk production. Research to understand the etiology of hyperketonemia has highlighted risk factors
and unfavorable outcomes; however, analysis of real-world data is valuable for determining the
outcomes across a region. Dairy herd improvement data from herds with diverse size and production
were analyzed to determine potential risk factors for and production outcomes of hyperketonemia in
the Midwest region (US). Cows predicted to have hyperketonemia had greater previous lactation
dry period length, somatic cell count, and dystocia, which may represent risk factors for ketosis.
Cows with predicted hyperketonemia had lower milk yield and milk protein but greater milk fat
and somatic cell count in the current lactation. Culling rate within 60d of calving, days open, and
artificial inseminations were all greater in cows predicted to have hyperketonemia. Prevalence
of hyperketonemia decreased linearly in herds with greater rolling herd average milk yield. This
work demonstrates the impact of hyperketonemia on production variables which underscores the
importance on continued work to reduce hyperketonemia prevalence.

Abstract: Prediction of hyperketonemia (HYK), a postpartum metabolic disorder in dairy cows,
through use of cow and milk data has allowed for high-throughput detection and monitoring
during monthly milk sampling. The objective of this study was to determine associations between
predicted HYK (pHYK) and production parameters in a dataset generated from routine milk analysis
samples. Data from 240,714 lactations across 335 farms were analyzed with multiple linear regression
models to determine HYK status. Data on HYK or disease treatment was not solicited. Consistent
with past research, pHYK cows had greater previous lactation dry period length, somatic cell
count, and dystocia. Cows identified as pHYK had lower milk yield and protein percent but
greater milk fat, specifically greater mixed and preformed fatty acids (FA), and greater somatic
cell count (SCC). Differential somatic cell count was greater in second and fourth parity pHYK
cows. Culling (60d), days open, and number of artificial inseminations were greater in pHYK cows.
Hyperketonemia prevalence decreased linearly in herds with greater rolling herd average milk yield.
This research confirms previously identified risk factors and negative outcomes associated with
pHYK and highlights novel associations with differential SCC, mixed FA, and preformed FA across
farm sizes and production levels.

Keywords: ketosis; transition dairy cow; metabolic health; comorbidities; management

1. Introduction

Use of data to predict and to diagnose dairy cattle health events has become of great
interest as the availability of data sources on-farm increases. Traditional laboratory and
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cowside diagnostics are invasive, expensive, and laborious, emphasizing the value of less
invasive, higher throughput management and diagnostic tools. Use of sensors, cow- and
farm-level data, and more comprehensive analysis of routinely analyzed milk samples
have generated datasets that can be used to monitor and predict productivity, animal
health, and inform management decisions as previously reviewed [1–3]. In addition to
providing diagnostic and management feedback when applied, broad implementation
of these data-based tools result in datasets that can provide valuable opportunities for
epidemiological analysis.

Prediction of hyperketonemia (HYK), also known as subclinical or clinical ketosis, is
one example target for development of data-based predictions. Postpartum HYK has a
global prevalence of 15 to 22% [4–6] and an average cost of $289 per case due to both direct
cost and indirect cost of comorbidities [7]. Given the known negative impacts of HYK
on farm economics and animal health, there has been strong interest in high-throughput
data-based methods of predicting herd- or cow-level HYK. Milk Fourier-transform infrared
spectroscopy (FTIR) based testing for ß-hydroxybutyrate (BHB) concentration during
routine milk testing is a commonly employed method for predicting ketosis; however,
predicted milk BHB concentrations have lower correlations with blood BHB compared
to more comprehensive models developed to predict HYK based on both milk and cow
variables using approaches ranging from multiple linear regression to more advanced
artificial neural networks [4,8–13].

Analysis of milk samples from routine herd testing, unless conducted more often than
monthly, have limited value in diagnosing HYK in individual cows. Some cows with HYK
may have developed and resolved the problem before their milk was tested and only about
half of the postpartum cows will have a routine milk test fall within the primary HYK risk
period. Despite these limitations, the patterns of negative associations of predicted milk
BHB by FTIR [6] were similar to associations reported in controlled studies using blood
BHB. Epidemiological analyses using predicted HYK via milk FTIR analysis can provide
broad insight into impacts of HYK over time across regions and farms of different sizes
and production levels.

One of the multiple-linear regression approaches to predicting HYK previously pub-
lished [4] has been implemented within Dairy Herd Improvement (DHI) herd testing as
the KetoMonitor (AgSource Cooperative, Menomonie, WI, USA) in Midwest region of
the United States for several years. The use of this more robust multiple-linear regression
approach to predicting HYK (using both milk sample FTIR results and cow data) represents
an improved platform for conducting large-scale epidemiological studies of HYK. We
hypothesize that epidemiological analysis of cow- and herd-level data generated from HYK
predictions will identify HYK risk factors that are generally associated with peripartum
challenges and HYK outcomes associated with shifts in nutrient partitioning reflective
of negative energy balance. The objective of this study was to determine associations
between predicted HYK and both risk factors and production outcomes within a dataset
containing farms of varying size and production levels. To accomplish this, the current
research explored the relationship between predicted HYK status and production param-
eters, animal health, and herd-level production. Of particular interest are several novel
outcomes including milk fatty acid (FA) characteristics, differential somatic cell count, cow
genetic information, farm-collected health data, and stratification of data from culled or
retained cows.

2. Materials and Methods

Previously published [4,14] multiple linear regression predictions of HYK using test-
day milk and performance variables have been implemented as a part of routine milk
analysis (KetoMonitor, AgSource Cooperative, Menomonie, WI, USA) since 2014. Data
from Holstein herds located within the Midwest region of the US, with at least ten months
of DHI data were included in the datasets, provided that the farm granted permission for
their data to be used for research, generating a dataset of convenience sampling. Data was
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exported in September 2020 and records from 240,714 lactations across 335 farms were
included in the analysis. Data were not limited to one lactation per cow or one year per
farm, so cows or farms may contribute multiple, longitudinal DHI observations.

2.1. Test Day Records for Milk Components and Hyperketonemia Predictions

Test day milk sample analysis and cow management records were collected from
privately owned dairy farms on the day of routine herd milk sample collection as a part of
the herd’s routine monthly management practices. Animal identification numbers were
recorded by automatic radio-frequency identification collection or visual verification. Milk
samples were collected from the morning or mid-day milkings using calibrated propor-
tional samplers approved by the International Committee on Animal Recordings. Milk
samples were collected into vials containing 2-bromo-2-nitropropane-1,3-diol (Advanced
Instruments Inc., Norwood, MA, USA) for preservation and transported for analysis of
milk composition according to standard test-day procedures in the laboratory of AgSource
Cooperative Services (Menomonie, WI, USA). All milk samples were slowly preheated
to 40 ◦C and mixed before analysis of milk fat and milk protein by FTIR using the Foss
MilkoScan FT+ (Foss Analytical, Hillerød, Denmark) in accordance with the instrument
manufacturer’s instructions and ISO 9622/IDF 141 (ISO, 2013) and AOAC International
(2016) method 972.16. Analysis of somatic cell count (SCC) and differential SCC (dSCC;
proportion of polymorphonuclear leukocytes and lymphocytes) was performed using
Fossomatic 7 DC (Foss Analytical, Hillerød, Denmark). Milk BHB and milk acetone concen-
trations were predicted by FTIR using Foss Ketolab (Foss Analytical, Hillerød, Denmark).
Predictions of the milk content of de novo, mixed, and preformed fatty FA in milk was
based on Foss FTIR FA prediction models (Foss Analytical, Hillerød, Denmark, 2011; v1.0
and 2.0 over the course of sample analysis). Foss FTIR prediction equation version numbers
used for samples tested were Foss Integrator v 2.3.8, 3.1.0, and 3.1.1 over the course of
sample collection. The quality control standards and equipment calibrations were main-
tained by the DHI and have been described previously [4]. Briefly, per DHI standard
operating procedures, milk samples were analyzed on equipment that is calibrated weekly
with 12 standards, and standards are rechecked daily and hourly with a subset of 6 of the
12 standards. Intra-assay coefficients of variation for all variables were maintained at <7%.

In line with routine procedures, on the day of sampling, cow and farm data were
exported from farm herd management software, including DairyComp305 (Valley Agricul-
tural Software, Madison, WI, USA), AgSource DM (Valley Agricultural Software, Madison,
WI, USA), or BoviSync (Fond du Lac, WI, USA). Data extracted from the herd manage-
ment software included previous lactation length, dry period length, gestation length,
previous mature-equivalent 305-d (ME305) milk production, and age at calving. Predicted
transmitting ability (PTA) were provided by the Council on Dairy Cattle Breeding (Bowie,
MD, USA).

Hyperketonemia prediction models were implemented based on stratification of
cows as primi- or multiparous and day in milk (DIM) of sample collection (5 to 11 DIM
or 12 to 20 DIM) which was demonstrated to yield more accurate results [4]. Models
were implemented by AgSource and yielded a predicted blood BHB which was used to
derive a predicted hyperketonemia health (pHealth) status of predicted HYK (pHYK) or
not predicted HYK (pNonHYK) using a 1.2 mM predicted blood BHB cutoff. Results
were returned to farm owners as a part of the KetoMonitor (AgSource, Menomonie, WI,
USA) report. No information confirming blood BHB concentration, HYK diagnosis, or
subsequent treatment for HYK was solicited.

2.2. Cow- and Herd-Level Data Aggregation

All data described above, as well as subsequent outcomes for each cow, were main-
tained by AgSource. Retrieved data were organized into two data sets for our analysis: a
monthly herd-level record data set and a lactation record data set.



Animals 2021, 11, 1291 4 of 23

The herd-level data set was composed of 17,387 observations of rolling herd average
(RHA) production and 12 mo pHYK prevalence data. These herd-level records are collected
or updated every month and each herd contributed a range of data from 1 to 72 monthly
observations. Herd-level records were excluded when the interval on DHI test was less than
365 days (n = 251 herd records), the number of cows eligible for health status prediction did
not exceed 10 cows in the past 12 mo period (n = 5489 herd records), or the herd-level record
had pHYK prevalence rates greater than 100% (n = 5 herd records). Therefore, 11,640 herd
records were eligible for statistical analysis. These herd-level records were classified into
quartile groups based on RHA milk yield (quartile [milk range]): quartile 1 [<11,137 kg],
quartile 2 [11,137 to 12,265 kg], quartile 3 [12,266 to 13,264 kg], and quartile 4 [≥13,265 kg].
Classifying herd-level records based on these quartiles allowed for a herd to be represented
in one or more quartiles over time.

The cow-level data set is composed of cow lactation records and each cow could
contribute multiple records. From the 258,610 cow lactation records retrieved, non-Holstein
lactation records (n = 10,602), duplicate records (n = 7142), and lactation records from
herds represented by less than 11 records (n = 152) were removed, leaving 240,714 records
for cow-level analysis. Lactation record parity number was classified as 1, 2, 3, 4, and 5+
(parity number ≥ 5). In addition to data already described above, data exported for this
analysis included days open; calving interval; previous lactation SCC, somatic cell score
(SCS), and dSCC; current lactation first SCC, SCS, and dSCC; artificial inseminations; calf
mortality; twinning; calving ease; and culling reason. Calving ease was a numerical score
from 1 to 5 (1: no assistance; 2: some assistance; 3: mechanical assistance; 4: cesarean
section; 5: abnormal delivery). Culling reasons were injury/disease (includes physical
injury, lameness, and illnesses such as DA, ketosis, metritis, retained placenta, milk fever,
etc.), sold as dairy (animals sold that enter another dairy herd), death, production, or
mastitis. Treatments for diseases are not recorded in a consistent, exportable manner in
dairy management software and therefore could not be extracted. Lactation records were
classified as being predicted HYK based on milk acetone and BHB thresholds proposed by
de Roos [13]. Disease events were retrieved from farm herd management software for farms
with importable records for each disease. Within those farms, lactation records without
a recorded disease case before 60 DIM were assumed as non-cases. For each disease,
lactation records were excluded from analysis if the respective herd had no recorded event
for the disease of interest, resulting in a different number of herds and lactations in analysis
of each disease. Disease events included ketosis (n = 10,152 of 129,957 lactations across
335 herds), displaced abomasum (DA; n = 3114 of 164,561 lactations across 88 herds), milk
fever (n = 675 of 98,017 lactations across 53 herds), retained placenta (n = 5667 of 153,822
lactations across 79 herds), and mastitis (n = 7888 of 168,764 lactations across 86 herds).
Cow lactation records were labeled culled if the cow was removed from the herd or died
within the first 60 DIM; all other records were labeled retained. Records were considered a
complete lactation (n = 191,722) when a cow was culled (n = 64,552) or dried off (n = 127,170;
cessation of lactation).

2.3. Statistical Analysis

Data analysis was performed using the SAS software (version 9.4; copyright 2002 to
2012, SAS Institute Inc., Cary, NC, USA) using the GENMOD and PHREG procedures.
Generalized estimating equations (GEE; GENMOD procedure) were used to analyze all
responses except for time to event. Model distribution and link functions varied. For
herd-level data, weighted regression analysis was performed (GENMOD procedure, SAS
9.4) to associate the pHYK prevalence (12 mo period) with RHA production variables.
With pHYK prevalence as the dependent variable, GEE models were fitted (negative
binomial distribution and log normal link) with an exchangeable correlation matrix with
the repeated subjects of herd and year within herd as the cluster and subcluster effects,
respectively. Observations were weighted based on the reciprocal number of cows with
HYK prediction (12 mo period). Additionally, a GEE model was used to evaluate pHYK
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prevalence across RHA quartiles (fixed effect) based on the same distribution, link, and
correlation matrix described for the weighted regression. A linear contrast of RHA quartile
effect on pHYK was also conducted. Model effects were considered significant when
p ≤ 0.05. Pairwise least-squares mean comparisons of RHA quartile pHYK prevalence was
adjusted by Bonferroni’s method.

For cow-level data, production (e.g., milk yield, milk component yield, and previous
mature equivalent yields) and predicted transmitting ability variables were evaluated
with a Gaussian distribution and identity link. Milk composition variables expressed as a
percentage (e.g., milk fat and protein) were evaluated with a negative binomial distribution
and log link. Count data (e.g., milk SCC and SCS, calving interval, calving ease, and AI
services) variables were analyzed with a Poisson distribution and log link. Incidence (or
event) data (e.g., retention status, DA incidence, calf mortality) variables were analyzed
with a binomial distribution and logit link. The reproductive responses AI services and
days open were only evaluated on records from completed lactations exclusively. All GEE
models included fixed effects of pHealth, parity, and the pHealth × parity interaction, as
well as an exchangeable correlation matrix with the repeated subjects of herd and cow
within herd as the cluster and subcluster effects, respectively. Additionally, peak milk yield
and mature equivalent production (current lactation) responses included fixed effects of
retention status and all possible higher order interactions. Exclusion of the pHealth × parity
interaction effect allowed for DA incidence model convergence. The milk fever incidence
model achieved convergence when pHealth was the sole fixed effect. Fragility models (FM;
PHREG procedure, log normal distribution) were used to analyze time to event data, such
as DIM until a disease event (e.g., DA) or DIM until peak milk yield with a hazard ratio
less than 1 indicating that the event occurred later in pHYK cows. Fixed effects included
pHealth, parity, and the pHealth × parity interaction with the DIM culled as a censoring
variable (except for the DIM until culled response) and the random effect of herd. To
achieve FM model convergence for the DIM until milk fever event, the pHealth × parity
interaction was excluded.

In text, data describing fixed effects are represented as least-squares means ± SEM.
Significant differences were declared when p ≤ 0.05. Pairwise least-squares mean com-
parisons were made when a fixed effect was observed (p ≤ 0.05). For an interaction
including pHealth (e.g., pHealth × parity or pHealth × retention; p ≤ 0.05), simple (or
“slice”) effect comparisons were made between pHYK and pNonHYK within levels of the
interacting variable. Pairwise and simple effect comparison p-values were adjusted by
Bonferroni’s method and considered significant or marginal post-adjustment using the
p-value thresholds reported above.

3. Results
3.1. General Descriptive Statistics of the Dataset

A total of 240,714 records from test day samples collected between 5 to 20 DIM across
a four-year period were analyzed. Descriptive statistics are shown in Table 1. Of all records,
174,690 were from unique cows from 335 herds. On average, 521 fresh cows were sampled
per herd over the four-year period. An average of 37% of records per herd were from
primiparous animals while 63% were from multiparous cows. Overall, pHYK prevalence
was 15.8% and by lactation was 1, 4.0%; 2, 13.9%; 3, 26.4%; 4, 32.0%; 5+, 35.0%. The dataset
included a wide range of herd sizes with a minimum of 11 and a maximum of 9550 cows per
herd, with a median of 179. Overall and RHA quartile herd production demographics are
shown in Table 2. Milk production RHA across contributing herds ranged from 5539.27 to
18,196.30 kg. Across RHA quartiles, linear modeled pHYK decreased linearly (p = 0.02) as
RHA milk yield quartiles increased (Figure 1). Prevalence of predicted HYK was positively
associated with RHA milk production (p = 0.01; data not shown) and RHA protein percent
and yield (p < 0.001; Figure 1) but not RHA milk fat percent or yield (p > 0.05; Figure 1).
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Table 1. Descriptive Statistics of Test Day Samples Collected from Cows between 5 and 20 Days in Milk and Classified into
Predicted Hyperketonemic (pHYK) or Predicted Nonhyperketonemic (pNonHYK) Using Multiple Linear Regression 1.

Variable N, Denominator 2 Mean 3 SD 4 Min 5 Q1 6 Median Q3 7 Max 8

All Records 240,714 — — — — — — —
Records/Cow 9 174,690 1.4 0.7 1.0 1.0 1.0 2.0 6.0

Records/Herd 10 335 718.6 1328.0 11.0 116.0 255.0 641.0 13,204.0
Cows/Herd 11 335 521.5 949.1 11.0 91.5 179.0 468.5 9550.0
Primiparous

Records 88,782 — — — — — — —

Records/Cow 88,782 1.0 0.0 1.0 1.0 1.0 1.0 1.0
Records/Herd 333 266.6 499.5 1.0 42.0 97.0 232.0 5091.0

Cows/Herd 333 266.6 499.5 1.0 42.0 97.0 232.0 5091.0
Records %, Herd 12 — 36.9 13.8 0.0 31.8 36.5 40.6 99.5

Multiparous
Records 151,932 — — — — — — —

Records/Cow 115,745 1.3 0.6 1.0 1.0 1.0 2.0 6.0
Records/Herd 335 453.5 835.4 5.0 76.5 163.0 403.0 8113.0

Cows/Herd 335 345.5 632.6 5.0 59.5 122.0 311.5 6318.0
Records %, Herd — 63.1 13.8 0.5 59.4 63.5 68.3 100.0

pNonHYK
Records 202,659 — — — — — — —

Records/Cow 155,646 1.3 0.6 1.0 1.0 1.0 1.0 6.0
Records/Herd 335 605.0 1127.5 9.0 95.0 211.0 545.0 10,935.0

Cows/Herd 335 464.6 853.6 9.0 80.5 160.0 426.0 8516.0
Records %, Herd — 83.8 7.6 52.1 79.5 85.3 89.2 97.7
pHYK Records 38,055 — — — — — — —
Records/Cow 34,427 1.1 0.3 1.0 1.0 1.0 1.0 4.0
Records/Herd 335 113.6 216.7 1.0 16.5 40.0 105.5 2269.0

Cows/Herd 335 102.8 194.5 1.0 16.0 36.0 94.0 2063.0
Records %, Herd — 16.2 7.6 2.3 10.8 14.7 20.5 47.9

1 Predictions for hyperketonemia were determined by applying previously published multiple linear regression models [4] to predict a
continuous blood ß-hydroxybutyrate and categorized as pHYK when predicted concentrations were greater than or equal to 1.2 mM.;
2 Number of records in each subset of the data; 3 Arithmetic mean; 4 Standard deviation; 5 Minimum; 6 First quartile (bottom 25%)
threshold; 7 Third quartile (top 25%) threshold; 8 Maximum; 9 Number of records from unique cows; 10 Number of records from unique
herds; 11 Number of cows from unique herds; 12 Percent of record type of the herd.

Table 2. Overall and Rolling Herd Average (RHA) Quartile Descriptive Statistics of Herds Providing Test Day Samples.

Variable Mean 1 SD 2 Min 3 Q1 4 Median Q3 5 Max 6

All Records (11,539 Records;
321 Herds) — — — — — — —

Records per Herd 36.0 24.1 1.0 15.0 30.0 62.0 72.0
Cows Tested, RHA 467.7 681.5 32.8 125.3 228.0 562.8 7511.7

Postpartum Cows Tested 7 220.0 327.9 11.0 57.0 105.0 250.0 3878.0
Predicted HYK, % 8 15.9 8.4 0.0 9.8 14.9 20.7 58.8

RHA Milk, kg 12,125.8 1729.3 5539.3 11,136.6 12,265.6 13,264.6 18,196.3
RHA Milk Fat, kg 465.1 68.3 225.0 421.4 466.3 513.0 684.9
RHA Milk Fat, % 3.8 0.2 2.8 3.7 3.8 4.0 5.3

RHA Milk Protein, kg 376.2 51.9 176.0 345.6 380.6 409.6 536.2
RHA Milk Protein, % 3.1 0.1 2.8 3.0 3.1 3.2 3.6
RHA Quartile 1 (2885
Records; 158 Herds) — — — — — — —

Records per Herd 18.3 17.2 1.0 5.0 13.0 24.8 69.0
Cows Tested, RHA 197.0 507.6 34.0 82.5 118.2 174.4 5596.1

Postpartum Cows Tested 84.3 195.5 11.0 39.0 56.0 80.0 2914.0
Predicted HYK, % 16.6 9.4 0.0 9.8 15.4 22.2 58.8

RHA Milk, kg 9870.7 1119.1 5539.3 9467.8 10,151.8 10,665.3 11,136.1
RHA Milk Fat, kg 382.6 45.5 225.0 362.4 388.7 412.8 585.1
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Table 2. Cont.

Variable Mean 1 SD 2 Min 3 Q1 4 Median Q3 5 Max 6

RHA Milk Fat, % 3.9 0.2 3.1 3.7 3.9 4.0 5.3
RHA Milk Protein, kg 309.5 35.0 176.0 297.1 318.0 332.9 372.0
RHA Milk Protein, % 3.1 0.1 2.9 3.1 3.1 3.2 3.6
RHA Quartile 2 (2884
Records; 147 Herds) — — — — — — —

Records per Herd 19.6 16.5 1.0 6.0 15.0 28.0 66.0
Cows Tested, RHA 378.8 730.9 32.8 113.2 180.7 296.0 7511.7

Postpartum Cows Tested 178.4 350.7 11.0 54.8 83.0 140.0 3878.0
Predicted HYK, % 15.8 8.4 0.0 9.7 14.9 20.6 58.3

RHA Milk, kg 11,746.0 323.8 11,137.0 11,482.6 11,745.3 12,039.4 12,264.7
RHA Milk Fat, kg 447.5 28.1 339.7 429.1 445.9 462.7 590.1
RHA Milk Fat, % 3.8 0.2 2.8 3.7 3.8 3.9 5.3

RHA Milk Protein, kg 365.4 14.0 327.0 355.6 364.7 375.1 414.1
RHA Milk Protein, % 3.1 0.1 2.8 3.1 3.1 3.2 3.4
RHA Quartile 3 (2885
Records; 142 Herds) — — — — — — —

Records per Herd 20.0 16.1 1.0 6.8 17.0 29.3 70.0
Cows Tested, RHA 630.8 771.1 35.7 178.7 387.0 727.8 5227.7

Postpartum Cows Tested 297.1 381.2 11.0 80.0 159.0 323.0 2524.0
Predicted HYK, % 16.4 7.6 0.0 11.1 15.6 20.7 46.5

RHA Milk, kg 12,745.0 290.3 12,265.6 12,495.6 12,726.4 12,994.5 13,264.4
RHA Milk Fat, kg 489.3 31.0 361.1 468.1 488.1 508.0 622.0
RHA Milk Fat, % 3.8 0.2 2.9 3.7 3.8 4.0 4.8

RHA Milk Protein, kg 394.6 14.6 347.5 385.1 394.2 403.7 439.1
RHA Milk Protein, % 3.1 0.1 2.8 3.0 3.1 3.2 3.4
RHA Quartile 4 (2885
Records; 100 Herds) — — — — — — —

Records per Herd 28.9 21.3 1.0 10.8 23.0 42.3 72.0
Cows Tested, RHA 664.3 570.5 29.4 324.4 527.6 756.3 3418.8

Postpartum Cows Tested 320.1 296.1 11.0 122.0 251.0 384.0 2156.0
Predicted HYK, % 14.9 7.8 0.0 8.7 13.5 19.3 48.3

RHA Milk, kg 14,141.4 848.1 13,264.8 13,550.6 13,908.5 14,453.3 18,196.3
RHA Milk Fat, kg 540.9 37.5 430.9 515.3 537.1 563.4 684.9
RHA Milk Fat, % 3.8 0.3 3.1 3.7 3.8 4.0 4.9

RHA Milk Protein, kg 435.3 27.1 382.4 415.0 429.6 450.0 536.2
RHA Milk Protein, % 3.1 0.1 2.9 3.0 3.1 3.2 3.4
1 Arithmetic mean; 2 Standard deviation; 3 Minimum; 4 First quartile (bottom 25%) threshold; 5 Third quartile (top 25%) threshold;
6 Maximum; 7 Samples collected between 5 and 20 days in milk; 8 Predictions for hyperketonemia were determined by applying previously
published multiple linear regression models [4] to predict a continuous blood ß-hydroxybutyrate and categorized as pHYK when predicted
concentrations were greater than or equal to 1.2 mM.

3.2. Relationships between Prediction of Hyperketonemia and Prior Cow and Parturition Factors

For primiparous cows, calving age was older (p < 0.001) for pHYK (25.2 ± 0.1 months)
than for pNonHYK (24.8 ± 0.1 months). For multiparous cows, previous DIM and gestation
length were greater (p < 0.001) for pHYK than pNonHYK cows (352.2 ± 1.4 vs. 342.6 ± 1.2 d
and 278.5 ± 0.2 vs. 277.8 ± 0.2 d, respectively). Previous lactation SCC was greater
(p < 0.001) for pHYK (248.7 ± 7.0 vs. 221.9 ± 5.6). Previous lactation mature equivalent
(ME) milk production (12,959.6 ± 109.5 vs. 13,294.8 ± 108.5 kg) and ME fat yield (494.4 ± 4.4
vs. 503.6 ± 4.3 kg) were less (p < 0.001) for pHYK cows. Somatic cell count was greater
(p < 0.001) for pHYK cows (248.7 ± 7.0 vs. 221.9 ± 5.6 cpm × 1000). There was an interaction
of parity and HYK prediction (p < 0.001) for previous lactation dry period length, SCS, and
ME milk protein yield (Figure 2).
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Figure 1. Prevalence of predicted hyperketonemia (HYK) status (a) across rolling herd average (RHA)
milk production quartiles and (b) as associated with RHA milk fat and protein percent in a test day
dataset of herds from the Midwest region of the United States. Prevalence of HYK was based on
proportion of samples collected between 5 and 20 days in milk predicted as HYK (pHYK; predicted
BHB ≥ 1.2 mM) or not (pNonHYK; predicted BHB < 1.2 mM). Herds and records per quartile: Q1:
158 and 2885; Q2: 147 and 2884; Q3: 142 and 2885; Q4: 100 and 2885. Panel (a): modeled linear
effect of pHYK prevalence using generalized estimating equation weighted based on the number of
cows (p = 0.02). Panel (b): HYK predicted prevalence was negatively associated with RHA protein %
(p = 0.002) but there was no evidence of association for RHA fat % (p = 0.10).

Birth rate of twins did not differ (p = 0.34) by predicted HYK status (4.1% ± 0.2 vs.
3.9% ± 0.1 pHYK vs. pNonHYK). Calving interval was greater (p < 0.001) for pHYK than
pNonHYK (418 ± 1 vs. 401 ± 1 days). Calving ease score was greater (p < 0.001) for pHYK
cows and was affected by parity (p < 0.001). The interaction of predicted HYK status and
parity affected (p = 0.002) calf mortality (Figure 3) and was greater for pHYK, compared to
pNonHYK, first lactation cows.
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Figure 2. Parity by predicted hyperketonemia (HYK) status interaction on previous lactation (a)
mature equivalent (ME) milk protein yield (kg); (b) somatic cell score (SCS; score); and (c) dry
period length (d). Blood ß-hydroxybutyrate (BHB) was predicted based on test day milk sample and
production variables collected between 5 to 20 days in milk. Predictions were classified as predicted
HYK (pHYK; predicted BHB ≥ 1.2 mM) or not (pNonHYK; predicted BHB < 1.2 mM) for analysis.
Records per lactation: 1, 88,782; 2, 67,327; 3, 43,790; 4, 23,999; 5+, 16,816. Parity by predicted HYK
interactions p < 0.001. Asterisks (***) indicate simple effect of classification (p < 0.001) within parity.
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Figure 3. Effect of parity, predicted hyperketonemia (HYK) status, and the interaction on (a) calving
ease (points); and (b) calf mortality (%). Blood ß-hydroxybutyrate (BHB) was predicted based on
test day milk sample and production variables collected between 5 to 20 days in milk. Predictions
were classified as predicted HYK (pHYK; predicted BHB ≥ 1.2 mM) or not (pNonHYK; predicted
BHB < 1.2 mM) for analysis. Records per lactation: 1, 88,782; 2, 67,327; 3, 43,790; 4, 23,999; 5+, 16,816.
Panel (a): predicted HYK, p < 0.001; parity, p < 0.001, differing superscript letters (a, b, c) indicate
differences between parities; parity by predicted HYK interaction p = 0.48. Panel (b): predicted HYK,
p = 0.25; parity, p < 0.001; parity by predicted HYK interaction, p = 0.002, asterisks (***) indicate
simple effect of classification (p < 0.001) within parity.

3.3. Relationships between Prediction of Hyperketonemia and Early Lactation Performance

There were interactions of parity and predicted HYK status on all milk production
and composition variables from first milk test postpartum. Although the magnitude
of difference between pHYK and pNonHYK differed within lactations generating an
interaction, across all parity classes the directionality of difference was similar. There
was an interaction (p = 0.001) of pHealth and parity on milk FTIR-predicted BHB and
acetone, although both were greater across lactations for pHYK cows. Milk FTIR BHB for
pNonHYK vs. pHYK, respectively (parity 1, 2, 3, 4, 5+, ±SEM), were 0.060, 0.057, 0.062,
0.061, 0.055 ± 0.001 mM vs. 0.237, 0.158, 0.164, 0.161, 0.148 ± 0.003 mM. Milk FTIR acetone
for pNonHYK vs. pHYK, respectively (parity 1, 2, 3, 4, 5+, ±SEM), were 0.100, 0.069, 0.078,
0.078, 0.072 ± 0.001 mM vs. 0.636, 0.260, 0.282, 0.275, 0.254 ± 0.009 mM. Percent agreement
on diagnosis as pHYK and pNonHYK between linear regression models used here and
FTIR milk Acetone cutoffs were 87.61% ± 0.4 and 74.88% ± 0.7 for pNonHYK and pHYK,
respectively. Agreement between linear regression and FTIR milk BHB was 81.04% ± 0.7
and 74.84% ± 1.0 for pNonHYK and pHYK, respectively. First test milk yield and percent
protein were less (p < 0.001) for pHYK while percent fat was greater (p < 0.001) for pHYK,
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compared to pNonHYK cows (Figure 4). De novo milk FA were less (p < 0.001) for second,
third, and fourth lactation pHYK cows. Mixed and preformed FA were greater (p < 0.001)
for pHYK cows. First test milk energy yield was greater (p = 0.001) for pHYK cows (29.7
vs. 29.0 ± 0.25 Mcal). Somatic cell count and SCS were greater (p < 0.001) for pHYK cows.
Differential SCC was greater (p ≤ 0.02) within second and fourth lactation pHYK cows
(Figure 5).
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Figure 4. Parity by predicted hyperketonemia (HYK) status interaction on first milk test (a) milk yield (kg); (b) protein (%);
(c) fat (%); (d) de novo fatty acids (FA; %); (e) mixed FA (%); and (f) preformed FA (%). Blood ß-hydroxybutyrate (BHB)
was predicted based on test day milk sample and production variables collected between 5 to 20 days in milk. Predictions
were classified as predicted HYK (pHYK; predicted BHB > 1.2 mM) or not (pNonHYK; predicted BHB < 1.2 mM) for
analysis. Records per lactation: 1, 88,782; 2, 67,327; 3, 43,790; 4, 23,999; 5+, 16,816. Predicted HYK, p < 0.001; parity, p < 0.001;
parity by predicted HYK interaction p < 0.001 for all panels. Symbols indicate simple effect of classification (***, p < 0.001)
within parity.
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Figure 5. Parity by predicted hyperketonemia (HYK) status interaction on first milk test (a) somatic
cell count (SCC; cpm × 1000); (b) somatic cell score (SCS; score); and (c) differential SCC (%). Blood
ß-hydroxybutyrate (BHB) was predicted based on test day milk sample and production variables
collected between 5 to 20 days in milk. Predictions were classified as predicted HYK (pHYK; predicted
BHB ≥ 1.2 mM) or not (pNonHYK; predicted BHB < 1.2 mM) for analysis. Records per lactation:
1, 88,782; 2, 67,327; 3, 43,790; 4, 23,999; 5+, 16,816. Panel (a): predicted HYK, p < 0.001; parity,
p < 0.001; parity by predicted HYK interaction p = 0.008. Panel (b): predicted HYK, p < 0.001; parity,
p < 0.001; parity by predicted HYK interaction p = 0.001. Panel (c): predicted HYK, p < 0.001; parity,
p < 0.001; parity by predicted HYK interaction p = 0.02. Symbols indicate simple effect of classification
(***, p < 0.001; *, 0.01 < p < 0.05) within parity.

3.4. Relationships between Prediction of Hyperketonemia and Cow Outcomes

Prevalence of farm-recorded cases of ketosis in management software was 7.7%. Of
pHYK and pNonHYK cows, 17.4% ± 0.3 and 5.9% ± 0.0 were identified as farm-recorded
ketosis cases, respectively. Displaced abomasum incidence was greater (p ≤ 0.001) for
pHYK cows (5.41% ± 0.43 vs. 1.06% ± 0.11). Within cases of DA, there was a parity by
predicted HYK interaction (p < 0.001) for DIM until DA event to be later in pHYK cows
(mean and 95% confidence interval for parity 1, 2, 3, 4, and 5+, respectively: 0.3 [0.2, 0.4],
0.5 [0.5, 0.6], 0.6 [0.5, 0.7], 0.5 [0.4, 0.6], and 0.5 [0.4, 0.6]). Milk fever prevalence was greater
(p = 0.02) in pHYK cows (0.6% ± 0.10 vs. 0.5% ± 0.02). Retained placenta was greater
(p ≤ 0.001) for pHYK (5.6% ± 0.7 vs. 3.7% ± 0.5). There was no impact (p ≥ 0.52) of pHealth
on time to health event for mastitis, milk fever, or retained placenta.
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Parity and predicted HYK interacted (p = 0.003) on cows culled within 60 d postpar-
tum, with pHYK cows having a greater percentage of cows culled across parities (Table 3).
Hazard ratio for day of culling (0.7 [0.6, 0.8]) indicates that pHYK cows were culled later
(parity × pHealth p = 0.003) across parities. Peak milk yield did not differ between pHYK and
pNonHYK retained cows, although peak milk yield was less for pHYK cows that were culled
within 60d (Figure 6). Retained pHYK cows peaked in milk earlier (p < 0.001) with an average
hazard ratio of 1.1 [1.1, 1.1] across parities. Mature equivalent milk, protein, and fat were
examined within the retained and culled subsets of the dataset, with all three demonstrating
an interaction (p ≤ 0.002) of parity, predicted HYK, and retention (Figure 6).
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Figure 6. Parity by predicted hyperketonemia (HYK) status interaction within retained or culled (first
60 d) cows on (a) peak milk yield (kg); (b) mature equivalent (ME) milk (kg); (c) ME protein (kg); and
(d) ME fat (kg). Blood ß-hydroxybutyrate (BHB) was predicted based on test day milk sample and
production variables collected between 5 to 20 days in milk. Predictions were classified as predicted
HYK (pHYK; predicted BHB ≥ 1.2 mM) or not (pNonHYK; predicted BHB < 1.2 mM) for analysis of
records. Records per lactation: 1, 88,782; 2, 67,327; 3, 43,790; 4, 23,999; 5+, 16,816. Parity × predicted
HYK × retention interactions p ≤ 0.002. Symbols indicate simple effect of classification (***, p < 0.001;
*, 0.01 < p ≤ 0.05) within parity.
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Table 3. Parity by Predicted Hyperketonemia (HYK) Status Interaction on Management Outcomes and Genetic Predictions for Cows between 5 and 20 Days in Milk and Classified into
Predicted Hyperketonemic (pHYK) or Predicted Nonhyperketonemic (pNonHYK) Using Multiple LINEAR regression 1.

Lactation 2

Variable 1 2 3 4 5+ p-Value

pNonHYK pHYK pNonHYK pHYK pNonHYK pHYK pNonHYK pHYK pNonHYK pHYK SEM Health
× Parity 3

Cull within 60d, % 5.7 13.7 *** 3.4 7.6 *** 4.1 10.5 *** 5.6 11.8 *** 7.4 13.5 *** 0.95 0.003
Days open, d 120.9 133.0 *** 126.9 132.6 *** 128.7 132.0 *** 128.6 132.8 *** 132.4 141.2 *** 2.33 <0.001

AI 4 to Conception 2.0 2.1 *** 2.1 2.2 *** 2.2 2.2 ** 2.1 2.3 *** 2.2 2.4 *** 0.04 <0.001
PTA 5 milk, kg −14.1 −12.0 −58.5 −66.4 −93.1 −106.6 * −132.2 −143.9 * −186.3 −207.7 *** 10.0 0.02

PTA DPR 6 −0.27 −0.47 *** −0.19 −0.33 *** −0.06 −0.17 *** 0.12 0.05 * 0.33 0.36 0.05 <0.001
PTA productive life 0.12 −0.34 −0.12 −0.39 −0.20 −0.47 * −0.23 −0.43 * −0.22 −0.28 *** 0.07 <0.001

PTA SCS, score 2.99 3.01 *** 3.00 3.01 *** 3.01 3.02 *** 3.02 3.03 *** 3.02 3.03 *** 0.004 <0.001
PTA net merit 5.48 −22.95 *** −45.39 −63.04 *** −82.78 −103.37 *** −119.86 −136.83 *** −165.74 −176.40 * 7.18 0.01
PTA ketosis 0.05 −0.11 *** −0.09 −0.18 *** −0.19 −0.29 *** −0.30 −0.38 *** −0.41 −0.46 *** 0.02 <0.001
1 Blood ß-hydroxybutyrate (BHB) was predicted based on test day milk sample and production variables collected between 5 to 20 days in milk. Predictions were classified as predicted HYK (pHYK; predicted
BHB ≥ 1.2 mM) or not (pNonHYK; predicted BHB < 1.2 mM) for analysis of records; 2 Records per lactation 1: 88,782; 2: 67,327; 3: 43,790; 4: 23999; 5+: 16,816; 3 Interaction of predicted health and parity;
4 Artificial inseminations; 5 Predicted transmitting ability; provided by Center for Dairy Cattle Breeding; 6 Daughter pregnancy rate; Superscript symbols indicate simple effect of classification (***, p < 0.001;
**, 0.001 < p < 0.01; *, 0.01 < p ≤ 0.05) within parity.
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The primary reasons for culling (90% of culls) were injury/disease, sold as dairy,
death, production, and mastitis. As a percent of cows culled, death was greater (p < 0.001)
for pHYK than pNonHYK (18.7% ± 0.9 vs. 14.7% ± 0.7). There was an interaction (p ≤ 0.02)
between parity and predicted HYK for injury/disease, sold as dairy, and mastitis as culling
reasons; however, the directionality was the same across parities. Injury/disease was listed
more for pHYK cows (42.6 ± 1.6 vs. 33.4% ± 1.2). Sold as dairy and mastitis were listed less
for pHYK cows than pNonHYK cows (sold as dairy: 8.5% ± 1.2 vs. 12.9% ± 1.5; mastitis:
10.6% ± 0.7 vs. 16.0% ± 0.9).

There was an interaction (p < 0.001) between parity and predicted HYK on days open
for multiparous cows; however, days open was consistently greater (p < 0.001) for pHYK
within each lactation and the interaction was due to the scale of difference between pHYK
and pNonHYK across lactations (Table 3). Similarly, the number of artificial inseminations
were influenced by the interaction (p < 0.001) between parity, and predicted HYK was
greater (p < 0.001) for pHYK cows within each lactation.

Genetic PTA for milk, daughter pregnancy rate, productive life, SCS, net merit, and
ketosis were affected by an interaction of parity and predicted HYK (p < 0.02; Table 3).
There was no evidence of difference between pHYK and pNonHYK for PTA milk or PTA
productive life of first and second lactation cows but both were less (p ≤ 0.05) in third,
fourth, and fifth and greater pHYK cows. Conversely, daughter pregnancy rate was less
(p ≤ 0.05) in pHYK cows in first, second, third, and fourth lactation cows but not different
in fifth and greater lactation cows. Across all lactations, PTA SCS (p < 0.001) was greater
and PTA net merit (p ≤ 0.05) was less for pHYK cows. The PTA ketosis was more negative
(p < 0.001) for pHYK cows across all lactations.

4. Discussion

Application of data-based predictions of health incidences has been of increasing in-
terest for applied dairy management practice. Although not as precise as blood diagnostics,
these predictions may provide valuable tools to farms given the lower expense and labor
required to execute. Of the myriad of data streams or technologies that can be monitored
and used for predictions, daily milk yield and composition remains one of the most widely
accepted and used by farms [15]. Unlike other options, a more comprehensive analysis of
milk data does not require a capital equipment purchase at the farm-level; rather, it relies on
more advanced analysis equipment at the DHI laboratory and adds value to routine DHI
milk sampling. Historically, DHI milk sampling has been conducted at monthly intervals
which lends itself to monitoring herd-level production and health metrics over time and
across regions, especially given that management data is also collected as a part of these
routine tests. Retrospectively analyzing datasets of this nature with an epidemiological
approach can provide great value in determining real-world associations; however, one
must remember that these relationships are associative and not causal and the absence of
information regarding cow treatments or diets is a limitation. There is also a potential for
bias in the epidemiological associations observed given that some of the response variables
(e.g., milk yield, days dry, etc.) were included in the predictive model used for pHealth
determination. Even given these limitations, models must be providing some value as a
proxy measure of HYK given that differences within variable by pHealth status can be
identified for comorbidities as discussed further below. For health events such as HYK,
in depth understanding of etiology and causality can be examined by intense research
studies. It must be noted that those experiments have limitations of their own given that
HYK is sometimes induced rather than naturally occurring; research housing systems may
be more controlled and decrease animal competition (e.g., tie-stalls); and inference may be
limited. Taken together, determining associations in large, epidemiological datasets can
inform both future research and management practices and therefore interrogation of these
datasets is of value.

The analysis presented here is the first large scale analysis of data from the previously
published multiple linear regression models that utilize both cow data and milk analysis
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to predict blood BHB with greater than 83% accuracy in Holstein cows [4]. More compre-
hensive prediction models, such as those used in this analysis, have been demonstrated
to be more accurate than using milk FTIR-predicted BHB or acetone alone [4,12]. Cutoffs
have been suggested for milk FTIR-predicted BHB and acetone [13] and they have been
incorporated into more comprehensive models or considered together with other vari-
ables [4,13]. Within this dataset, using milk FTIR-predicted BHB or acetone alone had at
least 80% diagnostic agreement for pNonHYK cows, but only 75% agreement for pHYK
cows. Differences in diagnostic agreement results in a predicted prevalence of 25% or
34% using only milk FTIR-based acetone or BHB, respectively. It is important to note that
without the gold-standard blood BHB reference, relative diagnostic accuracy cannot be
determined. Milk FTIR-predicted BHB and acetone, along with other milk components, are
important contributors to comprehensive pHealth models, and it is likely that continued
advancements in milk FTIR analysis will continue to provide proxy measures of cow health
and productivity.

The hypothesis driving this research was that epidemiological analysis of cow- and
herd-level data generated from HYK predictions will identify HYK risk factors that are
generally associated with peripartum challenges and HYK outcomes associated with shifts
in nutrient partitioning reflective of negative energy balance. The diverse dataset described
herein includes a cross section of farm size and production levels within which we could test
our hypothesis. Cow data were contributed from herds of all sizes and assuredly represent
different management practices and nutritional approaches. The dataset included a wide
range of herd sizes with RHA analysis based on a minimum of 33, a maximum of 7512, and
a median of 228 cows tested. This demonstrates that the very large farms were included
but were not overrepresented in the dataset. Importantly, development and validation
of the multiple linear regression models used to predict HYK within this dataset was
within this same region [4]. Herds also varied in production with RHA milk production
ranging 5500 to more than 18,000 kg of milk and RHA milk fat and protein percent ranging
from 2.82 to 5.31 and 2.82 to 3.64%, respectively. The breadth of the dataset in cow and
herd demographics provides a broader scope of interest for interpreting associations at
the herd- and cow-level. Herd-level prevalence of pHYK was inversely associated with
RHA protein percent, but not fat percent. Interestingly, pHYK decreased as RHA milk
production increased within this dataset, suggesting that greater HYK prevalence is not a
consequence of greater herd-level production.

Previous lactation performance and insults during the transition to lactation period
can influence postpartum health and examination of herd demographics and events prior
to HYK onset can provide insight into these potential risk factors. Within the current
dataset, previous lactation SCC was greater for pHYK cows. Dry period length was greater
for pHYK cows across lactation groups, which is consistent with past studies and has been
suggested to be related to increased adiposity associated with longer dry periods [16,17].
Additionally, calving ease score was greater for cows with pHYK. Greater calving ease score
and dystocia can create challenges at parturition leading to decreased feed intake and has
been noted as a risk factor of clinical ketosis in some [18] but not all [19,20] analyses. There
was also a greater calf mortality in calves born to pHYK first lactation cows. Stillbirths
can contribute to maternal immune or energy challenges and, like dystocia, contributes to
uterine disease, displaced abomasum, and culling risks [21]. Together, factors such as dry
period length and calving challenges may increase HYK risk indirectly through increased
body condition score prepartum or decreased feed intake peripartum. Although causality
cannot be determined from this type of data, repeated associations between key factors
such as days dry and dystocia support implementing management that would decrease
these factors or more closely monitoring cows that fit these criteria.

One of the often-reported negative impacts of untreated HYK is decreased milk
production [18,22]; however, this is not always observed when proactive diagnostic and
treatment protocols are implemented [23,24]. Within the current data set, pHYK cows had
lower milk yield which was not simply a product of herd milk average, since herds in the
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higher quartiles of RHA milk yield had a lower HYK prevalence. It has been previously
suggested that the negative impact of HYK on milk yield is temporary, without having an
overall impact on predicted 305 d milk yields [16]. Given that milk yield is reflective of so
many factors (e.g., farm, genetics, diet, environment, detection and treatment approaches,
etc.) it is challenging to determine the impact of HYK on short- or long-term milk yield
from datasets that do not include all of these factors.

Given the association of HYK with energy balance, it is also important to consider milk
components which greatly influence milk energy output. Specifically, milk fat represents
half of the energy in milk [25] and the profile of FA within the milk can shed light on the
source of milk fat [26,27]. Milk fat percent is commonly reported as being greater in cows
with HYK [16,17,23,28], consistent with the data presented herein. When calculated, both
fat-corrected and energy-corrected milk are greater in cows with HYK [23], which suggests
that the impact of HYK on milk synthesis may reflect a shift in nutrient partitioning
rather than generalized negative impacts on milk synthesis. Dynamic nutrient partitioning
postpartum is a key component to optimizing metabolism and health [29,30]. Coordinated
shifts to spare glucose may result in decreased milk yield while relying on the more
abundant mobilized fat to maintain milk energy output.

Not only does milk fat yield increase, the profile of milk FA may shift postpartum
when comparing cows with HYK or fatty liver [31,32]. When triglycerides are mobilized
from adipose tissue postpartum, blood FA increase, and the blood FA profile resembles the
FA profile of adipose tissue more closely. Circulating blood FA provide a precursor to milk
fat synthesis so in addition to resulting in increased milk fat, increased adipose triglyceride
mobilization can lead to a downstream shift in milk FA profile to reflect the change in
milk fat precursors, as determined by gas chromatography [33–35]. High-throughput
analysis of milk FA groups by FTIR analysis is being explored [27,36] and although not
perfectly aligned with gas chromatography analysis, FTIR-based predicted FA can be
grouped as de novo (<C16), mixed (C16), and preformed (>C16) and can provide insight
into the physiology described above. Within the current dataset, the percent of milk
de novo FA were lower, while the percent of mixed and preformed FA were greater in
pHYK cows. This shift may be reflective of the increased fat mobilization that occurs
postpartum and is associated with HYK. Interestingly, an early attempt to detect shifts
in milk FTIR-determined FA groups corresponding to blood FA changes during HYK
yielded the same numerical patterns, although not significant in that relatively small
sample size [37]. Identification of clear patterns of FTIR-determined milk FA groups in the
current analysis provides valuable insight into the use of these data relative to health and
physiology on a larger high-throughput scale.

Within this data set, pHYK cows also had lower previous lactation ME protein percent
and milk protein percent in the first milk test, which has been noted previously [16,28].
Milk protein percent was also decreased in cows diagnosed with HYK by blood diagnostics,
blood BHB ≥ 1.2 mM, and immediately treated [23]. It is interesting that milk protein
percent is decreased despite the presence, absence, or presumed mixture of HYK treatments.
It was previously suggested that the inverse relationship between milk protein and HYK
was primarily due to negative energy balance, given the positive association between
energy balance and protein synthesis [17]; however, the association with a lower previous
ME305 protein percent may suggest an additional connection. Alternatively, decreased
ME305 milk protein may reflect patterns of lactational energy or protein imbalance that
could influence metabolism or nutrient partitioning that favors gluconeogenesis from
amino acids decreasing availability for milk protein synthesis, although neither have been
directly examined. Unfortunately, milk components are not always reported within HYK
experiments and therefore only a subset of HYK studies can be examined for these connec-
tions. Potential interactions between whole-body and tissue-level protein metabolism and
metabolic state should be further explored in future work and milk composition should be
analyzed and recorded in sample sets of this type.
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In addition to milk energy components, milk SCC is a DHI-provided indicator of udder
health and milk quality that is widely accepted and used by farms, management and clinical
teams, and milk processors [38–40]. First test milk SCC and SCS were both greater for pHYK
cows across lactations. Associations between elevated SCC and both body weight loss
and ketosis have been identified previously and it has been proposed that the underlying
greater negative energy balance may predispose cows to udder inflammation [41]. In
addition to the association between ketosis and increased SCC, more direct markers of
immune status, including activation of the inflammatory signaling pathways and increases
in proinflammatory cytokines, have been observed during ketosis [42,43]. Quantification of
dSCC has allowed for quantification of polymorphonuclear neutrophils and lymphocytes,
relative to total SCC, and may provide further insight into intra-mammary infection [44,45].
Within the current dataset, dSCC was greater for pHYK in parity 2 and 4. Interestingly,
the pattern of SCC and dSCC between pHYK and pNonHYK cows is not identical across
parity in this data or in a previous study that examined two herds [45]. Direct research will
be needed to determine if dSCC can provide additional value in understanding the type of
local inflammation or infection or identifying chronic or persistent inflammatory cases.

Not all herds routinely record health events in a consistent, exportable manner; there-
fore, the current dataset was censored to include health events only from farms that
recorded and provided health records. When combined with the nature of convenience
sampling, these factors may artificially influence the prevalence of disorders presented.
Additionally, since some cows contributed several lactations worth of data, maintaining
cows with lower risk in the herd may have diluted lactational prevalence than reported in
randomly sampled herds [46]. Relationships between comorbid transition cow health disor-
ders including HYK, DA, and retained placenta within the current dataset are consistent or
lower than previous reports [18,20–22,47], despite the aforementioned potential limitations
to health records retrieval. In contrast, recorded events of ketosis were lower than expected
based on incidence during research with well-defined detection programs [4–6] and the
predictions implemented within this research, which highlights the low detection of sub-
clinical disorders and reiterates the need for data-based detection and prediction tools.
Another limitation to using farm-reported dairy management software is that all farms
record health events differently creating limitations in analysis. In contrast to on-farm
records, what is recorded in herd management software is often recorded as treatments
rather than disorder, recorded using names or codes that are not compiled into larger
datasets, and reflect non-sampling error. For example, across farms ketosis (subclinical
and clinical) is entered as KET, SCK (sub-clinical ketosis), CK (clinical ketosis), PG (propy-
lene glycol), DEX (dextrose), K (ketosis), BHB, etc. and some farms record as a protocol
rather than an event, especially considering limitations on lifetime event entries in some
programs. In all cases, specific treatment is not always evident from the recorded event
and therefore cannot be accounted for in research based on farm-recorded data. This is
further confounded for sub-clinical disorders because when dairy management software
event data is exported, it is not linked to the presence, absence, or compliance of a detection
program and by definition, sub-clinical disorders do not have readily observable symptoms.
Together these reasons likely explain the low agreement of farm-reported cases of ketosis
within pHYK cows and highlight the value of low-input, low-expense detection methods
for sub-clinical disorders. The need for a unified and consistent recording system has
been widely recognized [2,48–50], but until formats can be broadly applied and merged
downstream are adopted, these will continue to be limitations.

As has been observed previously, there was increased incidence of farm-reported
DA in pHYK cows, although occurrence of DA was later in lactation for pHYK cows
than pNonHYK cows. Across cows with completed lactations, days open and number of
artificial inseminations were both greater for pHYK cows. Reproductive inefficiencies not
only represent an economic challenge, but also perpetuate the cycle of later breeding and
longer dry periods: cows that are not bred back quickly often have longer lactations and dry
periods, presenting HYK risk factors going into the next lactation. Despite the limitations
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noted above, the patterns for comorbidities and culling noted here are consistent with
what has been observed previously [18,20–22,47]. Here, and elsewhere, caution should be
used in interpreting associations between comorbidities as they do not indicate causality
and analysis does not include a longitudinal aspect and timing of the postpartum events
varies between prior to, concurrent with, or subsequent to the pHYK event across cows
within the dataset. As noted above regarding HYK treatment, the treatment regimens for
comorbidities are not included in the analysis and therefore can influence the associations.
Despite these limitations, understanding disease etiology through more intense research
studies [22,23,51,52] and aligning that knowledge with on-farm outcomes such as those
presented here allows for a more robust understanding of the impact of metabolic disorders.

Ultimately, occurrence of multiple health events during the transition to lactation
period is a contributor to early lactation culling, with decisions often reflecting both health
events and production variables. Involuntary culling is often listed as an outcome of
metabolic disorders and within the current dataset is at least twice as great within pHYK
cows across lactations. In first lactation animals, culling was 2.4 times greater for pHYK
cows. Involuntary culling can put constraints on voluntary culling and limit profitability,
especially in cases of first-lactation cows that have not recovered heifer raising costs. Time
to culling for pHYK cows was longer than pNonHYK cows which is consistent with timing
for DA. Exploration of reasons provided for culling reveals death and injury/disease being
cited more often for pHYK cows than pNonHYK cows.

A unique aspect of this dataset is the ability to analyze production for pHYK and
pNonHYK cows within the culled and retained cohorts which can provide insight into
farm-level decisions that may curtail negative outcomes. For example, cows sold for dairy
are not viewed as negatively as injury/disease or death; however, they still represent a
farm decision to not retain that cow in the herd which provides useful information. This
may be evident by similar peak milk yield between pHYK and pNonHYK in retained,
but not culled, subsets of cows which likely reflects the influence that a peak milk has on
culling decisions. Despite this, ME milk yield portrayed a production disparity by HYK
status regardless of culling decisions. Across first-test ME milk yield and protein, pHYK
cows that were retained in the herd had significantly lower yields than pNonHYK cows,
although the production gap is less obvious in second and greater lactation pHYK cows.
This suggests that the culling decisions successfully sorted out cows with the greatest
production disparity, even if pHYK was not the only contributor. Retained pHYK cows had
greater ME fat yield, yet this was not observed in culled pHYK cows in first and second
lactations. This is an interesting finding, especially within context of the relative value
verses harm of mobilized fat during the transition period [29,30,53]. As discussed above,
milk fat yield is a downstream reflector of mobilized fat but the contrasting pattern of
retained verses culled cows suggests that the mobilized fat may not have been detrimental
and could, as postulated above, be an aspect of coordinated energy partitioning. An
alternative suggestion is that component yield may have a weighted value in culling
decisions on farm.

Genetic selection is an important component of comprehensive herd management
to improve cow health and productivity. Previous research has supported the role of
genomic selection in both reducing HYK and genome-guided management practices [54].
Genome-wide association studies have identified associations that may provide value as
markers of HYK risk [55–57]. Within the current analysis, the lower genetic resistance (or
PTA) for ketosis observed for pHYK cows confirms that the predictive models and genetic
evaluations are mutually identifying cows experiencing or more disposed to a case of
ketosis. On a broader scope, associating trait PTA to pHYK status could provide additional
evidence of factors that predispose cows to HYK before pHYK diagnosis; however, it is
important to remember that these PTA are informed by phenotypes potentially realized
after a disease incidence. Although not observed in a previous smaller dataset [23], milk and
milk component yield PTA were lower for pHYK cows across parities, in agreement with
the phenotypic observations described herein. This pattern of congruency is maintained
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for the lower PTA for daughter pregnancy rate, productive life, and SCS for pHYK, which
was reflected in the phenotypic observations of fertility (DA and artificial insemination
services), herd retention, and SCS. These associations either provide further evidence
for the discussed relationships or suggest value in accounting for metabolic health in
evaluation of the traits. Either way, these findings support previous suggestions [2] to use
genetic markers or PTAs in identifying individual cows that may have increased risk for
HYK or other metabolic disorders to improve management practices.

5. Conclusions

In addition to providing a diagnostic and monitoring value to farms, broad adoption
of data-based predictions of health incidences generates large datasets that can be used for
epidemiological examination of outcomes in real-world settings. Application of predictions
for HYK in the Midwest region of the United States has allowed for population-level
exploration of production and health outcomes although it must be noted that HYK,
other disease incidence, and treatments cannot be verified in a dataset of this size. As
hypothesized, and consistent with past research, factors that represent a challenging
peripartum period such as previous lactation SCC, days dry, and dystocia, are greater for
cows subsequently pHYK. Milk yield and milk protein percent were less at first milk test
and milk fat percent, energy-corrected milk yield, and SCC were greater for pHYK at first
milk test. Novel findings include that mixed and preformed FA were greater in pHYK
across parities, and differential SCC is greater in pHYK in some parities. Culling within
60 d postpartum was greater for pHYK, and ME milk yield and protein yield were less
for pHYK both within the culled and retained subsets of cows. Conversely, ME fat yield
was greater for retained pHYK cows; however, this was only true in third or greater culled
HYK cows. Although pHYK was associated with greater incidence of DA, it should be
noted that information regarding treatments for any health events was not included in
the analysis.

Overall, data are consistent with previous outcomes associated with HYK. The range
of farm sizes and production levels increases the value of data inference. Although HYK is
sometimes attributed to high levels of production, it was interesting to find that within this
dataset, pHYK linearly decreased as farm RHA milk yield increased. More recent advances
in milk FA groups and differential SCC provide additional insight and warrant future
investigation on characterizing postpartum fat metabolism and inflammation. Differences
between pHYK and pNonHYK cows in peak milk yield and ME milk fat yield, and less
severe differences between ME milk yield and ME milk protein between culled and retained
cohorts, supports that on-farm culling practices are curtailing pHYK outcomes. Future
work should further explore the dichotomy of decreased milk yield and protein content
but increased energy-corrected milk yield in pHYK cows as a way to understand the role
of nutrient partitioning in etiology of HYK and other metabolic disorders.
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