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Simple Summary: To assist researchers in processing large amounts of bird image data, many algo-
rithms have been proposed, but almost all of them aim at solving the problems of bird identification
and counting. We turn our attention to the recognition of habitat elements in bird images, which will
help with automatically extracting habitat information from such images. To achieve this goal, we
formed a dataset and implemented our proposed method with four kinds of deep convolutional
neural networks, and the recognition rate reached a minimum of 89.48% and a maximum of 95.52%.
The use of this method will supplement the extraction of bird image information and promote the
study of the relationships between birds and habitat elements.

Abstract: With the rapid development of digital technology, bird images have become an important
part of ornithology research data. However, due to the rapid growth of bird image data, it has
become a major challenge to effectively process such a large amount of data. In recent years, deep
convolutional neural networks (DCNNs) have shown great potential and effectiveness in a variety of
tasks regarding the automatic processing of bird images. However, no research has been conducted
on the recognition of habitat elements in bird images, which is of great help when extracting habitat
information from bird images. Here, we demonstrate the recognition of habitat elements using
four DCNN models trained end-to-end directly based on images. To carry out this research, an
image database called Habitat Elements of Bird Images (HEOBs-10) and composed of 10 categories
of habitat elements was built, making future benchmarks and evaluations possible. Experiments
showed that good results can be obtained by all the tested models. ResNet-152-based models yielded
the best test accuracy rate (95.52%); the AlexNet-based model yielded the lowest test accuracy rate
(89.48%). We conclude that DCNNs could be efficient and useful for automatically identifying habitat
elements from bird images, and we believe that the practical application of this technology will be
helpful for studying the relationships between birds and habitat elements.

Keywords: bird images; deep convolutional neural networks; habitat elements

1. Introduction

Monitoring the populations and habitats of wild animals and plants is not only very
important for protecting biodiversity but also closely related to human survival and de-
velopment. Because of their wide distribution, great mobility, and high sensitivity to
environmental changes [1], birds have naturally become extremely important groups for
monitoring. Time-lapse videos [2,3], camera traps [4–9], and unmanned aerial vehicle
(UAV) [10–12] aerial photographs are widely used in bird monitoring. The advantages of
using these devices are high security, long-term use, uninterrupted monitoring, minimal

Animals 2021, 11, 1263. https://doi.org/10.3390/ani11051263 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-8866-7680
https://orcid.org/0000-0001-7307-2249
https://doi.org/10.3390/ani11051263
https://doi.org/10.3390/ani11051263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11051263
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11051263?type=check_update&version=1


Animals 2021, 11, 1263 2 of 21

interference with birds, and surveying in areas where humans cannot easily stay for long
periods of time. In addition, the captured images can be stored conveniently. A large num-
ber of bird images can be easily obtained by a professional ornithologist or birdwatcher
using a variety of image acquisition devices (e.g., regular cameras or smartphones). As an
important part of bird monitoring data, bird images are of great significance in bird moni-
toring activities. Proverbially, a picture says more than a thousand words, and bird images
can record the appearances, behaviours, population characteristics, and habitat elements of
the observed birds directly and quickly. In particular, by analysing the habitat elements in
bird images, we can find patterns between birds and habitat elements (e.g., preferences
for pine foliage or trunks for foraging or nesting [13]), and these patterns are helpful for
understanding bird behaviour and monitoring the impacts of environmental changes on
birds. However, the collection of bird images from around the world is growing so rapidly
that it has greatly outpaced the abilities of image analysis tools [14]. It is conceivable that
the cost of manually extracting habitat elements from a large amount of image data for
analysis purposes is extremely high or even unfeasible. Unfortunately, no algorithm that
can automatically identify habitat elements in bird images has been proposed, which has
prevented scientists from using bird images to carry out relevant research.

In recent years, deep learning [15,16] has made remarkable achievements [17] in com-
puter vision [18,19]. Deep learning has yielded great improvements in object detection [20],
object recognition [21], scene recognition [22], image segmentation [23], and other tasks.
Deep learning techniques, such as deep convolutional neural networks (DCNNs), have
also attracted the attention of ecologists. DCNNs can automatically learn from data. Taking
image classification tasks as an example, DCNNs can automatically learn features for
classification from a large number of input images, without relying on human domain
knowledge. This remarkable advantage makes researchers only need to collect correspond-
ing data according to the target when using this technology, instead of making various
attempts for feature selection and extraction. To assist ecologists and zoologists in rapidly
and effectively processing large-scale bird image data, computer vision research has long
dealt with bird image analysis-related problems, such as bird detection [24], the counting
of crowded birds [25,26], fine-grained classification [27–30] of birds, and even individual
recognition with small birds [31], using DCNNs. DCNNs have achieved surprising results
in these tasks.

Such studies are very helpful for performing bird monitoring research. However,
few studies have been conducted on the recognition of habitat elements, which are very
important for studying the relationships between birds and the environment. Habitat
elements are generally located in image backgrounds. In studies by [32,33], an algorithm
was proposed that can identify whether animals (including birds) are present in an image.
This algorithm can quickly divide animal images into two categories; this has been of great
help to researchers but still fails to meet their actual needs. When studying the relationships
between birds and habitat elements, such as those between birds and wires [34,35], even
though researchers can collect a large amount of relevant image data using various image
acquisition equipment, they must use artificial methods in the data processing stage and
analyse the obtained images one by one or frame by frame. Such a process requires
considerable manpower and time; the manual processing method is only suitable for a
relatively small amount of data, and it is almost impossible to utilize for a large amount of
image data.

Therefore, it is necessary to study an algorithm for the automatic recognition of habitat
elements from bird images, as this will be of great help for ornithology research. The
automatic identification of habitat elements can be regarded as an image classification
problem. Given the extraordinary performance of DCNNs in image classification problems,
we assume that the use of this technology to identify habitat factors from bird images is
also feasible and effective.

To our knowledge, this study is the first attempt to identify habitat elements in bird
images and to build a database for this kind of research. In summary, the contributions of
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this article to the field mainly include: We built a dataset, Habitat Elements of Bird Images
(HEOBs-10), for identifying habitat elements from bird images; HEOBs-10 contains 2135
images across 10 categories. We used four popular DCNNs to implement automatic identi-
fication for habitat elements and achieved good results, which verified the effectiveness
of DCNNs in solving the problem of identifying habitat elements from bird images and
provided a baseline for future research.

2. Materials and Methods
2.1. Data Acquisition

Since no public image dataset exists for identifying habitat elements, it was necessary
to build an appropriate dataset. For this reason, we built a database called HEOBs-10.
The database contains 10 categories, each with approximately 200 images; all images in
the database are randomly divided into three parts at a ratio of 3:1:1 (for the training set,
the validation set, and the test set), and the distribution of samples for each subset tends
to be balanced (Table 1). The training set data are used to train the developed models;
the validation set data are used to monitor the training process, which decides when to
stop training and find the best model; and the test set data are only used to evaluate the
performance of the obtained model and cannot be used for model training.

Table 1. Partitions of the 10 categories in the HEOBS-10 dataset.

Categories Training Set Validation Set Test Set

Broad leaves 118 41 41
Coniferous tree 122 42 42
Hard ground 118 41 41

Leafless 138 47 47
Stalk 139 47 47
Stone 124 42 42
Trunk 131 44 44

Grassland 118 41 41
Water 133 46 46
Wire 127 44 44
Total 1268 435 435

The majority of the images in the database were mainly contributed by the citizen
science project called BirdFans in China [36] and before the start of this study, our team
had obtained approximately 20,000 bird images from BirdFans in China for use in bird
image analysis. First, we determined the tags that may be used for the identification of
habitat elements. This process was completed by looking up related literature, consulting
bird researchers, and quickly browsing existing images. Combining actual needs and
existing image data, we initially selected 17 alternate labels (such as water, sky, broad
leaves, etc.) that were used as habitat element category labels. Then, we used the labels
to create corresponding category folders and manually classified the abovementioned
images. During the classification process, images with clear categories were preferentially
selected, and images whose habitat elements were difficult to identify due to blurred
backgrounds were removed. Then, we checked and removed duplicate and unreadable
images. This process was automatically completed by scripting in Python. The number
of images used for model training is a key component of the development of a quality
assurance process [37]. Some categories with fewer than 200 samples were not included
in the database. After completing the above steps, we obtained a dataset containing 10
categories. We also collected some images from Macaulay Library at the Cornell Lab of
Ornithology and eBird [38] as a supplement, and these new images were used to replace
some different but similar images that may have been caused by continuous shooting. This
processing step can increase the diversity of a single data category, which is beneficial
for the stability of the proposed algorithm [39]. Very few pictures contained two or more
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habitat elements, and we only used the most significant category as the true label in such
cases. Figure 1 shows some of the samples in the database.
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Figure 1. Sample images from our proposed database, HEOBs-10. Ten habitat elements are included.
The three images in each column belong to the same category, and the letters a to j refer to broad leaves,
hard ground, stalk, stone, leafless, wire, grassland, trunk, coniferous tree, and water, respectively.

2.2. DCNN Models

Deep convolutional neural networks are very similar to artificial neural networks
(ANNs) [40], which are composed of large numbers of neurons with learnable weights and
biases. Typically, these neurons are aggregated into layers. A typical DCNN consists of a
sequence of layers, and every layer of the network transforms one volume of activations
into another through an activation function. Three main types of layers (convolutional
layers, pooling layers, and fully connected layers) are used to build DCNN architectures.
Note that convolutional layers and fully connected layers contain learnable parameters
(the weights and biases of the neurons). For image classification tasks, during the training
phase, when a DCNN receives input data, it produces a prediction through forward
propagation [15]. The prediction is usually interpreted as the probability distribution of the
categories predicted by the model, and a higher value in the probability distribution usually
indicates that the DCNN is more confident that the image belongs to the corresponding
category (Figure 2). The distance between the predicted probability distribution and the
one-hot encoding-based [41] representation of the data label is recorded as a loss. Then,
the network adjusts its parameters through backpropagation [15] to minimize this loss.
Backpropagation is usually implemented by the gradient descent method [15].

In image classification tasks, cross entropy (CE) [43] is often used to calculate the loss.
The CE indicates the distance between what the model believes the output distribution
should be and what the target distribution is [43]. We use P and Q to represent the
output vector of the model predictions and the target vector composed of the true labels,
respectively.

The cross-entropy H(p, q) of the two probability distributions P and Q obeys the
following system of equations:

P = {p(x1), p(x2), p(xi), . . . , p(xn)}, (1)

Q = {q(x1), q(x2), q(xi), . . . , q(xn)}, (2)

CE = H(p, q) = −
n

∑
1

p(xi) × q(xi), (3)

where i represents the index of the output vector component (or the categories in the target
vector), and n represents the number of categories.
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Figure 2. Overview of the deep convolutional neural network (DCNN) architecture. A DCNN
consists of several layers (including but not limited to a convolutional layer, pooling layer, and
fully connected layer) of abstraction that tend to gradually convert raw data into more abstract
concepts [42]. For example, the raw pixels of the input data are first transformed into low-level
features, then more complex features, and then high-level features until a final prediction is made
by the final fully connected layer, which employs a softmax function that can return a vector of the
same size as the number of categories to be identified. Each element of the vector is a value between
0 and 1, with higher values signalling higher confidence of the model in the predicted category of the
input image.

AlexNet [44] won the 2012 ImageNet Large Scale Visual Recognition Challenge, a
benchmark in object category classification with millions of images, with a significant
advantage. Since then, algorithms based on DCNNs have been widely used in various
computer vision tasks. DCNNs not only have outstanding performance in various tasks
but also use an end-to-end approach. Manual intervention is greatly reduced, making
the applications of DCNNs more convenient; therefore, their application range has been
further expanded. After AlexNet was developed, additional new DCNNs with excellent
performance were proposed, such as the Visual Geometry Group (VGG) network [45],
ResNet [46,47], GoogLeNet [48], and DenseNet [49]. Compared with AlexNet, these new
network models increase the number of layers and optimize the structure of the network.
For example, VGG replaces the large convolution kernel used by AlexNet with two smaller
convolution kernels; ResNet adds a residual structure. These optimizations enable the
networks to not only increase their fitting abilities but also obtain significant performance
improvements.

A DCNN can also be regarded as being composed of two parts: a feature extractor
and a classifier. The feature extractor can extract low-level features, more complex features,
and high-level features from the original image to obtain a feature map, which is then
expanded into a high-dimensional feature vector. The high-dimensional feature vector
is then fed to the classifier, where the vector undergoes some linear transformations and
nonlinear transformations, and finally passes through the softmax function; the output is a
vector of the same size as the number of categories to be identified.

In this work, we used four DCNN models in the PyTorch [50] model library as our basic
networks, including AlexNet and VGG19 [51], and two ResNet series networks, ResNet50
and ResNet152. The architectures of various models are represented in Figure A1.

2.3. Transfer Learning

Transfer learning is used to improve a model from one domain by transferring infor-
mation from a related domain [52] and is widely used in various image classification tasks
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because it can shorten the required training time, make the model converge faster, and
significantly improve the performance of the model when the data size is relatively small.
In practice, a model pretrained on ImageNet is often used as the initial network model, and
then the structure is modified according to the specific task. Then, the new data are used
for training, that is, fine-tuning [53]. This approach has achieved good results in solving a
wide range of computer vision problems [54]. DCNNs require a large number of image
instances for training; however, in this work, because the data size was not large enough,
we adopted the transfer learning method, and the classifier part of the utilized network
was modified according to the number of categories in HEOBs-10.

2.4. Implementation and Preprocessing

A Linux server with one GV100GL (a Tesla V100 PCIe GPU with 32 GB of memory,
Santa Clara, CA, USA) was used to train all the networks. The networks were implemented
using Python 3.7.4 and PyTorch (Version 1.3.1, Facebook, Menlo Park, CA, USA) [50]. We
used 60% (1268 images) of the dataset for training, 20% (435 images) as verification images,
and the remaining 20% as test images; the counts of all habitat element categories are
shown in Table 1. The code for the CNN training and prediction method described in this
paper is available on GitHub [55].

After the dataset was preprocessed through the method described above, we needed
to set the hyperparameters involved in the training process. These hyperparameters have
different effects on the model training time, convergence, and equipment load. Therefore,
before starting the training process, we employed several pre-experiments and obtained
the best combination of hyperparameters using the grid search method [56]. Table 2 sum-
marizes the primary hyperparameters that governed the DCNNs during our experiments.

Table 2. Hyperparameters used in our experiments.

Hyperparameters Values

Initial learning rate [57] 0.001
Optimizer [58] stochastic gradient descent (SGD) [59]

Learning rate policy [57] step decay [60] (momentum = 0.9; step size = 7; gamma = 0.1)
Batch size [57] 32

Number of epochs [61] 50

The learning rate controls how much the model should be changed in response to
the loss each time the model’s weights are updated. A large learning rate may cause the
model to oscillate during the training process and fail to converge; a learning rate that is too
small greatly increases the convergence time. Here, we adopted a policy called step decay,
which can adaptively change the learning rate automatically as the training procedure
progresses. Given the machine’s capacity and algorithm convergence, usually, an entire
dataset (training set, validation set, or test set) is not passed through a model at once.
Instead, the complete dataset is passed to the same model iteratively in batches. The batch
size refers to the number of training images utilized in one iteration. One epoch represents
that the entire dataset is passed forward and backward through the model only once. To
obtain a model with good performance, the model needs to be trained for several epochs.

2.5. Training Models

We obtained four DCNN models, which were pretrained on approximately 1.28 mil-
lion images (1000 object categories) from the ImageNet, from PyTorch’s model management
library. We modified the models according to the number of categories in our dataset and
used each modified model as the initial network model. During the training phase, to
increase the size of the training set and decrease overfitting problems [62], multiple image
transformations, such as rescaling (all input images were resized to 224 × 224 to follow the
model specification); random rotation; random changes in the brightness, contrast, and
saturation of an image; random horizontal flip; and center-crop augmentation, were used
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to train each model. The data augmentation procedure was automatically computed before
training.

The whole experiment in our work was performed in two separate stages. In the
first stage, we used the training set and validation set data to fine-tune each pretraining
model in turn, recording the training loss and validation accuracy of the model in each
epoch. In the training phase, the model with updated parameters after the first epoch
was automatically saved as a temporary optimal model. At the end of the new epoch,
we compared the verification accuracy of the new model with that of the previous model.
If the validation accuracy of the new model was higher than that of the previous model,
the new model overwrote the previously saved optimal model. Otherwise, the previous
model was retained. This was repeated until the last (50th) epoch was finished. After
performing these steps (Figure 3), we obtained 4 retrained DCNN models with optimal
validation accuracies.
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In the second stage, to observe the effect of the size of the training dataset on the
effectiveness of the DCNNs in identifying habitat factors, we specifically processed the
initial dataset. We kept the validation set and test set unchanged. We copied the four
original training datasets and randomly selected 20%, 40%, 60%, and 80% of the images
from these copied datasets to generate four new training datasets. Then, we used these
subdatasets of different sizes and the original verification set and test set to repeat the
procedure of the first stage.

For deep learning, generally, it is difficult for the same team in the same location to
obtain the exact same results on different experiments with the same precision under the
same experimental setup, such as the hardware and software settings used during multiple
trials [63]. To obtain more reference data, we repeated the two experimental stages 10 times.

2.6. Performance Evaluation Indicators

We used the 435 test images to evaluate the retrained models. Note that during the
model evaluation stage, each model’s parameters were not updated. All the test images
were divided into four categories according to the real labels and the prediction results.
There are altogether four basic counts: true positives (TPs), true negatives (TNs), false
positives (FPs), and false negatives (FNs). The numbers of correctly predicted test images
are indicated by the TPs and TNs, and the numbers of incorrectly predicted images are the
FNs and FPs. Based on the above definitions, the following four indicators commonly used
to evaluate the performance of classification models can be defined: accuracy, precision,
recall, and F1-score.

Accuracy: This metric is defined as the ratio of correctly classified images to the total
number of images in the dataset and can be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4)
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Precision, Recall, and F1-score: These metrics are used to measure how close the results
obtained for each category are to the corresponding real labels. Take the trunk class of test
images as an example. The precision refers to the ratio of the number of images correctly
predicted as trunks (TPs) to the total number of images predicted as trunks (TP+FP); the
recall rate refers to the ratio of the number of images correctly predicted as trunks (TPs) to
the number of images with the true label of “Trunk” (TP + FN). The F1-score is computed
as the harmonic average of precision and recall. Therefore, the above three indicators can
be defined as:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1− score =
2× Precision× Recall

Precision + Recall
. (7)

3. Results

In our experiment, during the training phase, the proposed models tended to converge
in approximately 20 epochs, and the verification accuracy of each model also tended to
stabilize, which indicates that each network was fully trained (Figure 4).
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Figure 4. Training losses and accuracies of the tested models. (a) For each of the models, as the
number of training rounds increased, the loss between the model’s predicted value and the true value
showed a decreasing trend. (b) At the same time, the model’s accuracy on the validation set showed
an upward trend. The models tended to converge in approximately 20 epochs, and the validation
accuracy of each model also tended to stabilize, which indicates that the networks were fully trained.

On the whole, good results were obtained for the proposed models (Table 3). The
ResNet152-based model yielded the best test accuracy rate (95.52%). The AlexNet-based
model yielded the lowest test accuracy rate (89.48%).

Table 3. Classification accuracies of various models on the test set.

Model Name Validation Accuracy (Mean ± SD%) Test Accuracy (Mean ± SD%)

AlexNet 91.11 ± 0.54 89.48 ± 1.05
VGG19 96.05 ± 0.59 93.45 ± 0.79

ResNet50 97.16 ± 0.38 95.34 ± 0.39
ResNet152 97.76 ± 0.36 95.52 ± 0.40

The F1-score of each habitat factor is greater than 0.80 (Figure 5, Table A1), which
indicates that the models exhibited good performance on the test set. There were significant
differences (analysis of variance (ANOVA) p < 0.05, Table A2) in the abilities of the models
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to identify various habitat elements on the test set. This significance is mainly reflected in
the fact that the average F1 scores of “leafless” and “stalk” were significantly lower than
those of other categories (Table A3), and there were no significant differences for the other
habitat elements.
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We utilized AlexNet to make predictions for 10 samples randomly picked from dif-
ferent categories in the test set. We observed that the model was very confident in the
predictions of these sample images, and most of the probability values were above 0.90
(Figure 6).

We observed that the four DCNN models performed well in terms of the recognition of
water, and no errors occurred. When identifying “leafless” and “stalk”, the performances
were relatively poor; this was consistent with the F1-score evaluation (Figure 5). For
“leafless” recognition, the numbers of errors were not less than 5; for “stalk recognition”,
the numbers of errors were greater than or equal to 4. ResNet152 misidentified 5 leafless
sheets as stalks and misidentified 2 sheets of stalks as leafless images, indicating that
ResNet152 was easily confused by “leafless” and “stalk” (Figure 7); this was consistent
with the T-SNE visualization results (Figure 8).
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Figure 6. The predictions given by AlexNet for the images in the test set. The real labels and the top
10 predictions are shown. The number beside each label indicates the corresponding probability or
prediction confidence. For each image, the sum of the probability values of all its corresponding tags
is equal to 1, and this was determined by the activation function used in the proposed algorithm.
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Figure 7. Confusion matrix (or error matrix) comparison among the above models. Taking the
confusion matrix of AlexNet as an example, I and J represent the row number and column number of
the elements in the matrix, respectively; then, the element (i, j) of each confusion matrix represents
the number of predictions of category j given that the actual label was class i, with i and j referring to
the classes from the category names at the left and top of the figure. Note that AlexNet recognized
“leafless” as “wire” most times, while the other three networks did not. However, the other three
networks confused “leafless” and “stalk” with each other.

Although DCNNs have higher requirements than other networks regarding the num-
ber of samples, in our research, when using 20% of the training set data, the test accuracies
of the four networks exceeded 0.80 (Figure 9). In our experiments, the impact of increasing
the training set size on different networks is not consistent. For AlexNet (Table A4), using
20% of the images in the original training set as the sub-training data set, the test accuracy
was significantly lower than that of other larger training data sets; as the training set size in-
creased, the test accuracy rate did not show a significant change. For VGG19 (Table A5) and
ResNet152 (Table A6), when the training set size is increased to 60% of the initial training
set size, the test accuracy is significantly improved; but when a larger training set is used
to train the model, the test accuracy does not change significantly. For ResNet50 (Table A7),
as the training set increased, the test accuracy showed a significant improvement trend,
but there was no significant difference between the 60% and 80% training sets size.
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Figure 8. T-distributed stochastic neighbour embedding (T-SNE) [64] visualization of the last hidden
layer representations produced by ResNet152 for ten habitat element classes (the coloured point
clouds represent the different habitat element categories, showing how the algorithm clustered these
categories). Most habitat elements were grouped independently according to their categories, but
broad-leaved trees, leafless plants, and stalk were more concentrated, and wires were closer to these
three categories.
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Figure 9. Average test accuracies of the proposed models trained with training sizes ranging from
20% to 100% of the images in the original training set. Error bars displaying the standard deviations
within 50 epochs are shown.

4. Discussion

As expected, our study verified the feasibility and effectiveness of using DCNNs
to automatically identify habitat elements, and the best accuracy rate reached 97.76%.
Although we only used ten habitat elements as the objects of recognition in our research,
DCNNs have also achieved good results in terms of the recognition of 1000 categories in
the ImageNet recognition task [65], so we have reason to believe that if more categories of
images are provided, our method can also identify more habitat elements.

In our work, when the four network models recognized “leafless” and “stalk”, the
recognition rates were relatively low, and the two categories were prone to being confused
with one another. However, the training images of these two habitat factors were not the
least common. This result may have been caused by the visual similarity of the two types
of habitat elements.

We can identify habitat elements from bird images, which will help us to understand
the characteristics of bird habitats and a given bird’s preferences for habitat elements by
analysing the object co-occurrence [66] relationships in each image. However, it should be
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noted here that it is not sufficient to infer the habitat types of birds based on the identified
habitat elements alone. Taking an image containing water as an example, without the
support of more information, it cannot be inferred that the habitat is in a puddle, lake, or
sea, and it is not even easy to judge whether the image is a country or town scene. On
the one hand, some different habitats share the same habitat elements, such as water; on
the other hand, the identification of the habitat category itself may also be disturbed by
shooting elements, such as the camera view angles and depth of field. In terms of judging
habitat types, we can obtain more reliable and richer information based on identifying
habitat elements and combining image metadata [67], such as global positioning system
(GPS) data and shooting time data, and this will be a worthwhile approach.

The continuous in-depth research and application of image recognition technology
in various fields have also caused some concerns among researchers [68–71] about their
personal data being parsed; this kind of worry should be paid attention to and taken
seriously. Some image datasets used for species identification, such as the Snapshot
Serengeti dataset [72], may inadvertently capture faces or other pictures containing personal
information during the image collection process. If they are not processed, there will be
a risk of privacy leakage. However, this risk is not uncontrollable. From a technical
point of view, if the data containing personal information are filtered out during the
model training phase or the use of personal information as a category label is avoided,
the model recognition range can be limited to a predetermined target category. In our
research, during the processes of data collection and labelling, we did not identify categories
that had little to do with the identification of habitat factors as identification objects and
screened out images of human faces and hands. For the development of related software or
applications, a qualified professional department can review and record the code provided
by the developer to clarify the scope of identification. Different types of users should be
given different permissions. For example, for some closed/protected areas or sanctuaries,
supervision is costly and difficult. Image analysis technology can be used to monitor illegal
hunting and poachers. However, for ordinary users, functions involving face recognition
or human behaviour analysis should be strictly controlled.

We used a single-label method to annotate the images in our experiments; this ap-
proach could not fully express the information about the habitat elements in the images,
although most images in the dataset could be processed in this way. In addition, our
algorithm is invalid for unfamiliar data (the real labels of which are not included in our
dataset); this fact is caused by the activation function used by the algorithm. Therefore,
for future research, we believe that the use of multi-label learning [73,74] methods can
compensate for these deficiencies. In addition, due to time and human factors, we only
identified 10 habitat elements, which are far less than actual needs. We hope that more
collaborators can try to identify more types of habitat elements, as this will be meaningful
work for animal ecology and zoology research.

Mining interesting knowledge from bird image data is helpful for promoting bird
research. Tryjanowski et al. [75] used YouTube video resources to study the interesting
phenomenon of alcohol ingestion by birds; Stoddard et al. [76] used image processing
technology to study which features of eggs and the background substrate may be effective
in preventing predator detection. The combination of bird species recognition, habitat
recognition, and bird behaviour recognition will facilitate such research. This will make
it possible to automatically understand bird images, allowing researchers to save consid-
erable data processing time and spend more time and energy thinking and discovering
new knowledge.

In general, the promising performance of this line of research provides us confidence
that DCNNs can be used to automatically identify habitat elements from bird images.
The practical application of this technology will promote research on the relationships
between birds and habitat elements. At the same time, this technology may also contribute
to improving the accuracy of bird recognition because some studies [77,78] have shown
that image background information can improve target recognition accuracy.
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5. Conclusions

In the present study, we demonstrated the effectiveness of DCNNs in automatically
identifying habitat elements from bird images. For the needs of research, we established
a dataset called HEOBs-10, which is composed of bird images related to 10 categories of
habitat elements. Good results were obtained from all the proposed models. ResNet-152-
based models yielded the best validation accuracy rate (95.52%); the AlexNet-based model
yielded the lowest test accuracy rate (89.48%). The set of experiments performed in this
work provides baseline results for the introduced database, which may minimize the lack
of a robust public dataset in the field of automatically identifying habitat elements in bird
images, thereby making it possible to conduct future benchmarks and evaluations. An
evaluation of the performance of the proposed dataset in the real world requires further
research. First, the dataset needs to be supplemented by additional bird images containing
new categories of habitat elements. Second, the dataset should encourage the use of
multilabel learning methods to identify habitat elements, as such methods will be more
suitable for the needs of real scenarios than the single-label method. Third, DCNNs can
be used to establish relationship graphs between birds themselves and habitat elements,
which will be a meaningful exercise.
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of convolutional layers, pooling layers, and fully connected layers, AlexNet also adds Rectified 
Linear Unit (ReLU) [79] layers and dropout [80] layers. These new structures are one of the rea-
sons why the performance of AlexNet is more prominent than the performance of previous convo-
lutional neural networks. VGG19 replaces the large convolution kernel with a smaller convolution 
kernel based on AlexNet, which further improves the performance. ResNet50 and ResNet152 go a 
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Figure A1. Architecture of the four tested models: (a) AlexNet, (b) VGG19, (c) ResNet50,
(d) ResNet152 and (e) residual structure: the bottleneck in (c) and (d). In addition to the typi-
cal structures of convolutional layers, pooling layers, and fully connected layers, AlexNet also adds
Rectified Linear Unit (ReLU) [79] layers and dropout [80] layers. These new structures are one of the
reasons why the performance of AlexNet is more prominent than the performance of previous con-
volutional neural networks. VGG19 replaces the large convolution kernel with a smaller convolution
kernel based on AlexNet, which further improves the performance. ResNet50 and ResNet152 go a
step further. They use a stacked residual network structure to make the model deeper so that this
type of network can obtain improvements without performance degradation.

Table A1. Metrics of various models.

Model Class Precision Recall f1-Score

Alexnet

broad leaves 0.85 0.95 0.90
coniferous tree 0.92 0.81 0.86

grass land 0.95 0.95 0.95
hard ground 1.00 0.88 0.94

leafless 0.84 0.81 0.83
stalk 0.89 0.89 0.89
stone 0.93 0.88 0.90
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Table A1. Cont.

Model Class Precision Recall f1-Score

Alexnet
trunk 0.98 0.93 0.95
water 0.92 1.00 0.96
wire 0.84 0.98 0.91

VGG19

broad leaves 0.95 0.93 0.94
coniferous tree 0.97 0.90 0.94

grass land 0.95 1.00 0.98
hard ground 1.00 0.98 0.99

leafless 0.95 0.83 0.89
stalk 0.85 0.94 0.89
stone 0.93 0.93 0.93
trunk 0.98 0.95 0.97
water 0.98 1.00 0.99
wire 0.92 1.00 0.96

ResNet50

broad leaves 0.98 0.98 0.98
coniferous tree 0.98 0.95 0.96

grass land 0.95 0.98 0.96
hard ground 1.00 0.95 0.97

leafless 0.89 0.87 0.88
stalk 0.86 0.91 0.89
stone 0.95 0.95 0.95
trunk 0.98 0.98 0.98
water 0.98 1.00 0.99
wire 0.98 0.95 0.97

ResNet152

broad leaves 0.95 0.98 0.96
coniferous tree 1.00 0.95 0.98

grass land 0.95 0.98 0.96
hard ground 1.00 0.98 0.99

leafless 0.91 0.89 0.90
stalk 0.88 0.89 0.88
stone 0.95 0.93 0.94
trunk 0.96 0.98 0.97
water 0.98 1.00 0.99
wire 0.98 0.98 0.98

Table A2. ANOVA results regarding the F1-scores of various categories.

Sources SS df MS F p-Value Eta-sq RMSSE Omega Sq

Between Groups 0.0459 9.0000 0.0051 6.8324 p < 0.001 0.6721 1.3069 0.5675
Within Groups 0.0224 30.0000 0.0007

Total 0.0682 39.0000 0.0017

Table A3. Tukey’s HSD Post Hoc Test results regarding the F1-score of various categories.

Group 1 Group 2 Mean Std Err q-Stat Lower Upper p-Value Mean-Crit Cohen d

broad leaves coniferous tree 0.0100 0.0137 0.7323 (0.0559) 0.0759 0.9999 0.0659 0.3662
broad leaves grass land 0.0175 0.0137 1.2816 (0.0484) 0.0834 0.9951 0.0659 0.6408
broad leaves hard ground 0.0275 0.0137 2.0139 (0.0384) 0.0934 0.9098 0.0659 1.0070
broad leaves stone 0.0150 0.0137 1.0985 (0.0509) 0.0809 0.9984 0.0659 0.5493
broad leaves trunk 0.0225 0.0137 1.6478 (0.0434) 0.0884 0.9723 0.0659 0.8239
broad leaves water 0.0375 0.0137 2.7463 (0.0284) 0.1034 0.6426 0.0659 1.3731
broad leaves wire 0.0100 0.0137 0.7323 (0.0559) 0.0759 0.9999 0.0659 0.3662
broad leaves leafless 0.0700 0.0137 5.1263 0.0041 0.1359 0.0303 0.0659 2.5632
broad leaves stalk 0.0575 0.0137 4.2109 (0.0084) 0.1234 0.1282 0.0659 2.1055

coniferous tree grass land 0.0275 0.0137 2.0139 (0.0384) 0.0934 0.9098 0.0659 1.0070
coniferous tree hard ground 0.0375 0.0137 2.7463 (0.0284) 0.1034 0.6426 0.0659 1.3731
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Table A3. Cont.

Group 1 Group 2 Mean Std Err q-Stat Lower Upper p-Value Mean-Crit Cohen d

coniferous tree stone 0.0050 0.0137 0.3662 (0.0609) 0.0709 1.0000 0.0659 0.1831
coniferous tree trunk 0.0325 0.0137 2.3801 (0.0334) 0.0984 0.7960 0.0659 1.1900
coniferous tree water 0.0475 0.0137 3.4786 (0.0184) 0.1134 0.3288 0.0659 1.7393
coniferous tree wire 0.0200 0.0137 1.4647 (0.0459) 0.0859 0.9873 0.0659 0.7323
coniferous tree leafless 0.0600 0.0137 4.3940 (0.0059) 0.1259 0.0980 0.0659 2.1970
coniferous tree stalk 0.0475 0.0137 3.4786 (0.0184) 0.1134 0.3288 0.0659 1.7393

grass land hard ground 0.0100 0.0137 0.7323 (0.0559) 0.0759 0.9999 0.0659 0.3662
grass land stone 0.0325 0.0137 2.3801 (0.0334) 0.0984 0.7960 0.0659 1.1900
grass land trunk 0.0050 0.0137 0.3662 (0.0609) 0.0709 1.0000 0.0659 0.1831
grass land water 0.0200 0.0137 1.4647 (0.0459) 0.0859 0.9873 0.0659 0.7323
grass land wire 0.0075 0.0137 0.5493 (0.0584) 0.0734 1.0000 0.0659 0.2746
grass land leafless 0.0875 0.0137 6.4079 0.0216 0.1534 0.0030 0.0659 3.2040
grass land stalk 0.0750 0.0137 5.4925 0.0091 0.1409 0.0160 0.0659 2.7463

hard ground stone 0.0425 0.0137 3.1124 (0.0234) 0.1084 0.4777 0.0659 1.5562
hard ground trunk 0.0050 0.0137 0.3662 (0.0609) 0.0709 1.0000 0.0659 0.1831
hard ground water 0.0100 0.0137 0.7323 (0.0559) 0.0759 0.9999 0.0659 0.3662
hard ground wire 0.0175 0.0137 1.2816 (0.0484) 0.0834 0.9951 0.0659 0.6408
hard ground leafless 0.0975 0.0137 7.1403 0.0316 0.1634 0.0007 0.0659 3.5701
hard ground stalk 0.0850 0.0137 6.2248 0.0191 0.1509 0.0042 0.0659 3.1124

stone trunk 0.0375 0.0137 2.7463 (0.0284) 0.1034 0.6426 0.0659 1.3731
stone water 0.0525 0.0137 3.8448 (0.0134) 0.1184 0.2114 0.0659 1.9224
stone wire 0.0250 0.0137 1.8308 (0.0409) 0.0909 0.9473 0.0659 0.9154
stone leafless 0.0550 0.0137 4.0278 (0.0109) 0.1209 0.1657 0.0659 2.0139
stone stalk 0.0425 0.0137 3.1124 (0.0234) 0.1084 0.4777 0.0659 1.5562
trunk water 0.0150 0.0137 1.0985 (0.0509) 0.0809 0.9984 0.0659 0.5493
trunk wire 0.0125 0.0137 0.9154 (0.0534) 0.0784 0.9996 0.0659 0.4577
trunk leafless 0.0925 0.0137 6.7741 0.0266 0.1584 0.0015 0.0659 3.3870
trunk stalk 0.0800 0.0137 5.8587 0.0141 0.1459 0.0083 0.0659 2.9293
water wire 0.0275 0.0137 2.0139 (0.0384) 0.0934 0.9098 0.0659 1.0070
water leafless 0.1075 0.0137 7.8726 0.0416 0.1734 0.0002 0.0659 3.9363
water stalk 0.0950 0.0137 6.9572 0.0291 0.1609 0.0011 0.0659 3.4786
wire leafless 0.0800 0.0137 5.8587 0.0141 0.1459 0.0083 0.0659 2.9293
wire stalk 0.0675 0.0137 4.9433 0.0016 0.1334 0.0411 0.0659 2.4716

leafless stalk 0.0125 0.0137 0.9154 (0.0534) 0.0784 0.9996 0.0659 0.4577

The p values in bold font represent significant differences between groups (p < 0.05). The p values indicate that the average F1-score
between “leafless” and “stalk” is significantly lower than those of other categories, and there are no significant differences among the other
habitat elements.

Table A4. Tukey’s HSD Post Hoc Test results regarding AlexNet’s test accuracies of various training set sizes.

Group 1 Group 2 Mean Std Err q-Stat Lower Upper p-Value Mean-Crit Cohen d

s1 s2 4.9952 0.2703 18.4796 3.9090 6.0814 p < 0.001 1.0862 5.8438
s1 s3 5.4183 0.2703 20.0452 4.3322 6.5045 p < 0.001 1.0862 6.3388
s1 s4 5.2564 0.2703 19.4460 4.1702 6.3426 p < 0.001 1.0862 6.1494
s1 s5 5.2465 0.2703 19.4093 4.1603 6.3327 p < 0.001 1.0862 6.1378
s2 s3 0.4232 0.2703 1.5655 (0.6630) 1.5094 0.8020 1.0862 0.4951
s2 s4 0.2612 0.2703 0.9664 (0.8250) 1.3474 0.9591 1.0862 0.3056
s2 s5 0.2513 0.2703 0.9297 (0.8349) 1.3375 0.9643 1.0862 0.2940
s3 s4 0.1620 0.2703 0.5992 (0.9242) 1.2481 0.9930 1.0862 0.1895
s3 s5 0.1719 0.2703 0.6358 (0.9143) 1.2581 0.9913 1.0862 0.2011
s4 s5 0.0099 0.2703 0.0367 (1.0763) 1.0961 1.0000 1.0862 0.0116

The p values in bold font represent significant differences between groups (p < 0.05). S1, s2, s3, s4, and s5 respectively refer to the sub-training
set composed of 20%, 40%, 60%, 80%, and 100% of the initial training set images. The p values indicate that using 20% of the images in the
original training set as the sub-training data set, the test accuracy of AlexNet was significantly lower than that on other larger training data
sets; as the increased training set size, the test accuracy rate did not show a significant change.
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Table A5. Tukey’s HSD Post Hoc Test results regarding VGG19′s test accuracies of various training set sizes.

Group 1 Group 2 Mean Std Err q-Stat Lower Upper p-Value Mean-Crit Cohen d

s1 s2 2.4316 0.3067 7.9272 1.1990 3.6642 p < 0.001 1.2326 2.5068
s1 s3 3.9287 0.3067 12.8078 2.6961 5.1612 p < 0.001 1.2326 4.0502
s1 s4 4.5214 0.3067 14.7402 3.2888 5.7540 p < 0.001 1.2326 4.6613
s1 s5 5.0723 0.3067 16.5362 3.8397 6.3049 p < 0.001 1.2326 5.2292
s2 s3 1.4971 0.3067 4.8806 0.2645 2.7296 0.0102 1.2326 1.5434
s2 s4 2.0898 0.3067 6.8130 0.8572 3.3224 0.0002 1.2326 2.1545
s2 s5 2.6407 0.3067 8.6090 1.4082 3.8733 p < 0.001 1.2326 2.7224
s3 s4 0.5928 0.3067 1.9325 (0.6398) 1.8253 0.6518 1.2326 0.6111
s3 s5 1.1437 0.3067 3.7285 (0.0889) 2.3763 0.0806 1.2326 1.1790
s4 s5 0.5509 0.3067 1.7960 (0.6817) 1.7835 0.7106 1.2326 0.5680

The p values in bold font represent significant differences between groups (p < 0.05). S1, s2, s3, s4, and s5 respectively refer to the sub-training
set composed of 20%, 40%, 60%, 80%, and 100% of the initial training set images. The p values indicate that, for VGG19, when the training
set size is increased to 60% of the initial training set size, the test accuracy is significantly improved; but after a larger training set is used to
train the model, the test accuracy does not change significantly.

Table A6. Tukey’s HSD Post Hoc Test results regarding ResNet50′s test accuracies of various training set sizes.

Group 1 Group 2 Mean Std Err q-Stat Lower Upper p-Value Mean-Crit Cohen d

s1 s2 1.9267 0.1455 13.2459 1.3422 2.5112 p < 0.001 0.5845 4.1887
s1 s3 3.3105 0.1455 22.7592 2.7260 3.8950 p < 0.001 0.5845 7.1971
s1 s4 3.1395 0.1455 21.5833 2.5550 3.7240 p < 0.001 0.5845 6.8252
s1 s5 4.2655 0.1455 29.3245 3.6810 4.8500 p < 0.001 0.5845 9.2732
s2 s3 1.3838 0.1455 9.5133 0.7993 1.9683 p < 0.001 0.5845 3.0084
s2 s4 1.2128 0.1455 8.3374 0.6282 1.7973 p < 0.001 0.5845 2.6365
s2 s5 2.3388 0.1455 16.0786 1.7543 2.9233 p < 0.001 0.5845 5.0845
s3 s4 0.1710 0.1455 1.1759 (0.4135) 0.7555 0.9194 0.5845 0.3719
s3 s5 0.9550 0.1455 6.5653 0.3705 1.5395 0.0003 0.5845 2.0761
s4 s5 1.1260 0.1455 7.7412 0.5415 1.7105 p < 0.001 0.5845 2.4480

The p values in bold font represent significant differences between groups (p < 0.05). S1, s2, s3, s4, and s5 respectively refer to the sub-training
set composed of 20%, 40%, 60%, 80%, and 100% of the initial training set images. The p values indicate that as the training set increased,
the test accuracy of ResNet50 showed a significant improvement trend, but there was no significant difference between the 60% and 80%
training sets size.

Table A7. Tukey’s HSD Post Hoc Test results regarding ResNet152′s test accuracies of various training set sizes.

Group 1 Group 2 Mean Std Err q-Stat Lower Upper p-Value Mean-Crit Cohen d

s1 s2 3.4617 0.2011 17.2106 2.6535 4.2699 p < 0.001 0.8082 5.4425
s1 s3 4.3855 0.2011 21.8033 3.5772 5.1937 p < 0.001 0.8082 6.8948
s1 s4 4.8908 0.2011 24.3156 4.0826 5.6990 p < 0.001 0.8082 7.6893
s1 s5 5.0555 0.2011 25.1344 4.2472 5.8637 p < 0.001 0.8082 7.9482
s2 s3 0.9238 0.2011 4.5927 0.1155 1.7320 0.0178 0.8082 1.4523
s2 s4 1.4291 0.2011 7.1051 0.6209 2.2373 0.0001 0.8082 2.2468
s2 s5 1.5938 0.2011 7.9238 0.7855 2.4020 p < 0.001 0.8082 2.5057
s3 s4 0.5053 0.2011 2.5124 (0.3029) 1.3136 0.3996 0.8082 0.7945
s3 s5 0.6700 0.2011 3.3311 (0.1382) 1.4783 0.1467 0.8082 1.0534
s4 s5 0.1647 0.2011 0.8188 (0.6436) 0.9729 0.9775 0.8082 0.2589

The p values in bold font represent significant differences between groups (p < 0.05). S1, s2, s3, s4, and s5 respectively refer to the sub-training
set composed of 20%, 40%, 60%, 80%, and 100% of the initial training set images. The p values indicate that, for ResNet152, when the
training set size is increased to 60% of the initial training set size, the test accuracy is significantly improved; but when a larger training set
is used to train the model, the test accuracy does not change significantly.
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