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Simple Summary: Dietary protein is an important source of amino acids for livestock, while excess
protein consumption and an imbalance of amino acids in the diet result in increased feed costs and
an increased risk of diarrhea, caused by the proliferation of pathogenic bacteria. Therefore, we
investigated whether a diet with a moderate reduction of crude protein levels, supplemented with
crystalline amino acids, could alleviate these problems. The results showed that a moderate reduction
in the dietary protein level can provide similar growth performance and improve metabolism, due to
the improvement of intestinal microbiota, compared with high protein feed in Sushan nursery pigs.
These findings present new insights into the role of microorganisms in metabolism, and point to a
potential nutrition strategy for indigenous pig production.

Abstract: In this paper, we investigated the effects of a diet with a moderate reduction of dietary
crude protein (CP) level, supplemented with five crystalline amino acids (Lys, Met, Thr, Try, and Val),
on the growth, metabolism, and fecal microbiota of Sushan nursery pigs. Seventy Sushan nursery
pigs with an average body weight of 19.56 ± 0.24 kg were randomly allocated to two experimental
dietary treatments: 18% CP (high protein; group HP), and 15% CP (low protein; group LP). We
found that the differences in the two diets had no significant effect on the growth performance
of Sushan nursery pigs. Nursery pigs on the 15% CP diet showed significantly improved protein,
amino acid, and energy utilization. Furthermore, the LP diet cloud optimized the gut microflora
composition to some extent. The functional structure of bacterial communities implied improved
metabolic capabilities in group LP. Additionally, correlation analysis between fecal microbiota and
metabolic profiles confirmed that the increase of beneficial bacterial in the feces was beneficial to
the health and metabolism of the nursery pigs. In conclusion, a moderate reduction in the dietary
protein level can improve growth and metabolism due to the improvement of intestinal microbiota
in Sushan nursery pigs. This finding could provide useful reference data for the application of a
different nutrition strategy in indigenous pig production.

Keywords: nursery pigs; protein level; digestibility; blood urea nitrogen; microbiota

1. Introduction

Protein is a vital nutrient for all animals, and an inadequate protein intake results in
the poor growth and health of pigs in modern pig production [1]. On the other hand, a
diet with a high crude protein (CP) level may lead to incomplete digestion and absorption
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in the gastrointestinal tract (GIT), wasting resources and leading to excessive nitrogen
excretion [2,3]. High CP feeds are also associated with a high cost for the raw materials
and diarrhea in piglets [4].

The GIT of the pig harbors trillions of microbes, known as the gut microbiota. The
gut microbiota interacts with the host by fermenting undigested feed, affecting the host’s
intestinal health and nutrient absorption [5,6]. The microbial ecosystem of the GIT is
strongly influenced by various factors, however, the intake of the three major nutrients
(carbohydrates, protein, and fats) is considered one of the most important [7]. In particular,
when piglets are fed high-CP diets, undigested protein contributes to the proliferation
of pathogens and results in the production of deleterious metabolites through protein
fermentation, which leads to an increase in digestive disorders [8,9].

A potentially effective strategy to alleviate the above problems is to limit dietary CP
levels, while balancing the amino acid profile by using crystalline amino acids (CAAs). Pre-
vious studies have shown that reducing the dietary CP content, alongside supplementation
of CAAs, can enhance the function and health of the GIT, and thus maintain the expected
growth performance of pigs [10–12]. Other studies, however, have shown that low-CP diets
with a balanced amino acid (AA) profile had a negative effect on growth performance and
the intestinal health of piglets, especially when dietary CP levels were decreased by more
than 4% [13,14]. Moreover, a reduction in dietary CP levels did not necessarily change the
composition of the gut microbiota in piglets, although several studies have shown that a
moderate reduction of dietary CP levels can help maintain intestinal health by reducing
the remount of harmful microbial metabolites [14,15].

Nonetheless, limited data are available concerning the effects of low-protein diets
supplemented with CAAs on the composition and functions of the fecal microbiota, and
correlations between bacterial and health-related indicators in nursery piglets. In particular,
few reports on the optimal dietary CP content of improved local pigs in China are available.
The Sushan pig, which genetically is a quarter Chinese Taihu pig, a quarter Danish Landrace
pig and half British Yorkshire pig, is a newly developed Chinese breed [16]. Hence, the
objective of the present study was to explore the effects of diets with a moderate reduction
of dietary CP level, supplemented with five CAAs (Lys, Met, Thr, Trp, and Val) on the
growth performance, nutrient digestibility, serum biochemical values, and fecal microbiota
of Sushan nursery pigs.

2. Materials and Methods
2.1. Experimental Design, Animals, and Diets

This study was conducted at the Liuhe Experimental Base in Nanjing, Jiangsu province,
China, which is a breeding farm of Sushan pigs (a newly developed Chinese breed). A
total of 70 Sushan nursery pigs, with an average body weight of 19.56 ± 0.24 kg, were
randomly allocated to two isocaloric diet treatments: 18% CP (high protein; group HP)
and 15% CP (low protein; group LP), based on NRC guidelines (2012) [17] (Table 1). In
order to meet the requirements of Sushan nursery pigs for essential amino acids (Lys, Met,
Thr, Trp, and Val), appropriate levels of these five CAAs were added to the two diets and
two diets have the same grams of Lys, Met, Thr, Trp, and Val per MJ of net energy (NE).
Each group consisted of five replicate pens. Seven pigs in each pen were reared in an
environmentally controlled room, at a temperature of 20–25 ◦C and relative humidity of
65–70%. Each pen was furnished with two stainless steel feeders and two nipple drinkers,
and all of the nursery pigs could access pellet feed and water ad libitum throughout the
trial period. The experiment lasted 31 days, which included 3 days for environmental
adaptation and 28 days for the feeding trial. The protocol of this study was approved by
the Committee of the Animal Research Institute (Certification No. SYXK (Su) 2011-0036),
Nanjing Agricultural University, Nanjing, China.
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Table 1. Ingredient and nutrient composition of the experimental diets (as-fed basis).

Items
Dietary Protein Level 1

HP LP

Ingredients, g
Corn 597.5245 672.7734

Soybean meal 257.9598 160.7904
Wheat shorts 50.00 50.00

Rice bran meal 30.00 30.00
Corn germ meal 30.00 30.00

Dicalcium phosphate 4.00 17.7298
Limestone 10.00 10.00

Salt 5.00 5.00
Premix 2 13.275 13.275
L-Lysine 1.3385 4.6934

L-Threonine 0.4087 1.9448
DL-Methionine 0.3907 1.3430
L-Tryptophan 0.1028 0.5796

Valine 0.00 1.8706
Total 1000.00 1000.00

Analyzed nutrient levels, %
Crude protein 18.89 15.87
Ether extract 2.63 2.80

Acid detergent fiber 11.20 5.91
Neutral detergent fiber 9.43 5.17

Crude fiber 3.79 3.48
Calcium 0.61 0.61

Phosphorus 0.53 0.67
Lysine 1.22 1.23

Methionine 0.28 0.31
Tryptophan 0.21 0.22
Threonine 0.84 0.87

Valine 1.01 1.03
Calculated nutrient levels 3, %

NE 4 MJ/kg 10.19 10.21
1 HP = high protein group (18% crude protein); LP = low protein group (15% crude protein); 2 Premix supplied
per kg feed: vitamin A, 10,800 IU; vitamin D3, 4000 IU; vitamin E, 40 IU; vitamin K3, 4 mg; vitamin B1, 6 mg;
vitamin B2, 0.05 mg; vitamin B6, 6 mg; vitamin B12, 0.05 mg; nicotinic acid, 50 mg; biotin, 0.2 mg; folic acid, 2 mg;
choline, 1000 mg; Fe, 100 mg; Mn, 40 mg; Cu (as copper sulfate) 150 mg; Zn 2000 mg; I 0.5 mg; Se 0.3 mg; acidifier,
4000 mg; anti-mold, 500 mg. 3 Values calculated according to the NRC [17]. 4 NE, Net energy.

2.2. Measurement and Sampling

The body weight of each piglet was recorded on day 1, 14, and 28 to determine
the average daily gain (ADG). Feed intake was recorded weekly to calculate the average
daily feed intake (ADFI) and the feed/gain (F/G). The fecal and blood samples of the ten
nursery pigs from each group were collected (two nursery pigs randomly selected from
each pen and a total of 20 of the 70 nursery pigs were selected). Between day 26 and 28,
100 g fecal samples were collected by rectal palpation at 06:30 daily, then were aseptically
packed into valve bags and cryopreserved tubes, and frozen at −20 ◦C or −80 ◦C for
subsequent chemical and microbiota analysis. At 08:00 a.m., 10 mL fasting blood samples
were collected from the precaval vein. After centrifugation at 4 ◦C 3000 r/min for 15 min,
the serum was separated and immediately frozen at −20 ◦C for later analysis.

2.3. Chemical Analysis

After drying to a constant weight at 65 ◦C for 48 h, and grinding and sieving with
a 1 mm sieve (40 mesh), the diets and fecal samples were used to analyze the CP, ether
extract (EE), crude fiber (CF), and calcium and phosphorus (Ca and P), utilizing Asso-
ciation of Official Analytical Chemists (AOAC) methods (2007) [18]. The gross energy
(GE) of the diets and fecal samples was assayed by an automatic adiabatic oxygen bomb
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calorimeter (TX-6000, Tianxin Instrument, Hebi, China). Acid detergent fiber (ADF) and
neural detergent fiber (NDF) of the diets were analyzed using Ankom 200 fiber analyzer
(Ankom Technology, Macedon, NY, USA). After dried and acid-hydrolyzed, amino acid
analysis of the diets were performed by ino-exchange chromatography on a high-speed
analyzer (L-8900; Hitachi, Tokyo, Japan). The digestibility of the dietary components was
calculated based on the acid insoluble ash (AIA) that was used as an indigestible marker in
the feces [19].

Serum biochemical values, including total protein, albumin, globulin, lipoprotein
cholesterol (ALT), aspartate aminotransferase (AST), glucose, urea nitrogen, cholesterol,
triglycerides, high-density lipoprotein-cholesterol (HDLC), and low-lipoprotein-cholesterol
(LDLC), were evaluated using an automatic biochemical analyzer (Hitachi 7180, Hitachi
High-Technologies Co., Tokyo, Japan) and matching commercial kits (Medicalsystem
Biotechnology Co., Ltd., Ningbo, China).

The concentration of short-chain fatty acids (SCFAs) in the feces was analyzed by
capillary column gas chromatography (GC-14B, Shimadzu, Japan; Capillary Column:
30 m × 0.32 mm × 0.25 µm film thickness; temperature: column 130 ◦C, injector 180 ◦C,
detector 180 ◦C) [20].

2.4. Fecal Bacterial DNA Isolation, MiSeq Sequencing, and Bioinformatics Analysis

A QIAamp DNA Investigator Kit (QIAGEN, Hilden, Germany) was used to extract
total bacterial genomic DNA, following the instructions of the manufacturer. Then, the
quantity and quality of each DNA sample were assessed using a NanoDrop spectropho-
tometer (ND 2000; Thermo, Madison, Wisconsin, MA, USA).

The bacterial 16S rRNA gene V3-V4 hypervariable region was amplified using a uni-
versal forward primer, 341F (5′-CCTAYGGGRBGCASCAG-3′), and the following reverse
primer, 806R (5′-GGACTCNNGGGTATCTAAT-3′). All PCR reactions were carried out as
30 µL reactions with 15 µL of Phusion ®High-Fidelity PCR Master Mix (New England
Biolabs, Inc., Rowley, MA, USA), 0.2 µM of the forward and reverse primers, and about
10 ng of template DNA. Thermal cycling consisted of initial denaturation at 98 ◦C for 1 min,
followed by 30 cycles of denaturation at 98 ◦C for 10 s, annealing at 50 ◦C for 30 s, and
elongation at 72 ◦C for 60 s, before the final cycle of 72 ◦C for 5 min. PCR products were fur-
ther purified with the GeneJET Gel Extraction Kit (Thermo Fisher Scientific, Waltham, MA,
USA). Purified amplicons were pooled in equimolar amounts and paired-end sequenced
(2 × 250) on an Illumina Miseq platform at Shanghai Biozeron Biological Technology Co.,
Ltd. (Shanghai, China), according to the standard protocols [21]. The dates for all samples
were deposited into the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/, ac-
cessed on 4 March 2021) (Accession Number: SRP309212). Raw fastq files from 16S rRNA
Miseq sequencing were first demultiplexed and quality-filtered using QIIME (version 1.17).
After merging the paired reads and chimera filtering, operational taxonomic units (OTUs)
were clustered within a 97% similarity level using the UPARSE software package (version
7.1) [22], and chimeric sequences were removed using UCHIME [23]. The taxonomies of
each OTU were classified using the Ribosomal Database Project (RDP) 16S rRNA classifier
against the SILVA (SSU132) 16S rRNA database, with a confidence threshold of 70% [24].
To assess differences in microbial diversity among different samples, we carried out alpha
and beta diversity based on the relative abundance of OTUs. Bacterial alpha diversity
was estimated by the Mothur program (version 1.21.1) [25], including the ACE, Chao1,
and Shannon diversity indices. The differences in bacterial beta diversity were visual-
ized with non-metric multidimensional scaling (NMDS) ordination plots, based on the
Bray–Curtis distance metric [26]. Using phyla, genera and OTU with an average relative
abundance greater than 1%, 0.1% and 0.1%, respectively, and an occurrence frequency
greater than 80%, allowed at least one group to be defined as the dominant bacteria for
further analysis [27,28]. In addition, the interactive tree of life (iTOL) was used for tree
visualizations, based on the sequences and relative abundance of different OTUs in the HP
and LP groups [29].

http://www.ncbi.nlm.nih.gov/sra/
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2.5. Statistical Analysis

Power calculations identified a required sample size of ten pigs per treatment group
in order to detect an effect size of 1.40 SD for data with 85% power and a type I error of 5%
by using G*Power Data Analysis [30]. The statistical analysis of growth performance, total
tract apparent digestibility, serum biochemical indexes, and SCFAs in the two groups was
assessed for normal distribution with the Shapiro–Wilk test. Student’s t test (parametric
data) or Mann–Whitney U test (non-parametric data) was used for two-group comparisions
in SPSS 22.0 software (IBM Inc., Chicago, IL, USA). Differences in alpha diversity and
relative abundance (phylum, genus and OTU level) of bacterial communities between the
two groups were evaluated using the Mann–Whitney U test in SPSS 22.0. Data are shown
as the means± standard error of measurement (SEM) for the independent sample t test and
median for Mann–Whitney U test, and difference was considered significant at the value
of p < 0.05. In the box and whisker plot, the bottom and top edge of the box are the lower
and upper quartiles; the upper/lower whisker extends to the highest/lowest value; the
band in the middle displays the median. The beta diversity analysis was performed using
the unweighted UniFrac distance, to compare the results of the NMDS ordination plot
using the community ecology package “vegan” in R (http://www.r-project.org). Structural
variation in the microbial community among samples was assessed by permutational mul-
tivariate analysis of variance (PERMANOVA). Phylogenetic Investigation of Communities
by Reconstrution of Unobserved Species (PICRUSt) was used to predict the function of
bacterial communities, and White’s non-parametric t test, based on STAMP (version 2.1.3),
was applied to detect the differentially abundant Kyoto encyclopedia of genes and genomes
(KEGG) pathways. Spearman’s rank correlation analysis was used to assess the associa-
tions between significantly changed bacteria and different indexes (including ATTD, serum
parameters and SCFAs), and p < 0.05 was considered significant for these correlations.

3. Results
3.1. Growth Performance

As shown in Table 2, the two different protein level diets had no significant effect on
the growth performance of Sushan nursery pigs (p > 0.05).

Table 2. Effect of dietary protein levels on the growth performance of nursery pigs.

Items
Diets

p-Value
HP LP

BW, kg
day 0 19.10 ± 0.35 20.03 ± 0.31 0.152
day 14 26.00 ± 0.50 26.87 ± 0.52 0.230
day 28 33.79 ± 0.70 34.97 ± 0.63 0.158

0–14 day
ADFI, kg 1.01 ± 0.04 1.03 ± 0.03 0.736
ADG, kg 0.49 ± 0.02 0.49 ± 0.02 0.899

F/G 2.08 ± 0.07 2.11 ± 0.13 0.781
15–28 d

ADFI, kg 1.26 ± 0.05 1.27 ± 0.05 0.842
ADG, kg 0.53 ± 0.03 0.58 ± 0.03 0.215

F/G 2.29 ± 0.18 2.24 ± 0.12 0.828
0–28 day
ADFI, kg 1.13 ± 0.04 1.15 ± 0.04 0.765
ADG, kg 0.51 ± 0.02 0.53 ± 0.02 0.359

F/G 2.22 ± 0.06 2.16 ± 0.03 0.421
Data are presented as the mean ± standard error of measurement (SEM, n = 10). HP = high protein group;
LP = low protein group; BW, body weight; F/G, feed/gain; ADFI, average daily feed intake; ADG, average daily
gain; F/G, feed/gain.

http://www.r-project.org
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3.2. Apparent Total Tract Digestibility

For the apparent total tract digestibility (ATTD, shown in Table 3), in the LP group, the
EE (p < 0.05) and the GE (p = 0.083) digestibility of the nursery pigs increased, but the Ca
digestibility (p < 0.05) decreased compared with the ATTD of nursery pigs in the HP group.

Table 3. Effects of dietary protein levels on total tract apparent digestibility in nursery pigs, %.

Items
Diets

p-Value
HP LP

Gross energy 86.75 ± 0.56 88.13 ± 0.49 0.083
Crude protein 80.97 ± 0.94 81.24 ± 1.21 0.865
Ether extract 70.74 ± 1.40 75.45 ± 1.03 0.015
Crude fiber 51.01 ± 5.03 45.01 ± 3.39 0.336

Calcium 48.57 ± 3.16 37.61 ± 3.40 0.030
Phosphorus 33.28 ± 3.47 27.46 ± 3.17 0.233

Data are presented as the mean ± standard error of measurement (SEM, n = 10). HP = high protein group;
LP = low protein group.

3.3. Serum Parameters

Table 4 shows the effect of dietary protein levels on the serum parameters of nursery
pigs. Compared to nursery pigs in the HP group, the concentration of blood urea nitrogen
(BUN) was significantly reduced (p < 0.01) and the concentration of triglycerides tended
to be lower (p = 0.087) in the LP group. However, the concentration of total protein,
albumin, globulin, ALT, AST, glucose, cholesterol, HDLC, and LDLC showed no significant
differences between the two groups (p > 0.05).

Table 4. Effects of dietary protein levels on serum biochemical parameters in nursery pigs.

Items
Diets

p-Value
HP LP

Total protein, g/L 68.07 ± 1.26 67.83 ± 1.69 0.911
Albumin, g/L 28.58 ± 1.30 26.50 ± 1.04 0.227
Globulin, g/L 39.49 ± 1.55 41.33 ± 2.41 0.529

ALT, U/L 46.67 ± 4.28 45.17 ± 3.61 0.835
AST, U/L 48.83 ± 2.34 49.17 ± 3.34 0.929

Glucose, mmol/L 4.84 ± 0.31 5.33 ± 0.16 0.182
Urea nitrogen, mmol/L 4.54 ± 0.31 2.80 ± 0.17 <0.001

Cholesterol, mmol/L 2.49 ± 0.10 2.58 ± 0.14 0.633
Triglyceride, mmol/L 0.68 ± 0.07 0.53 ± 0.04 0.087

HDLC, mmol/L 0.84 ± 0.06 0.85 ± 0.03 0.928
LDLC, mmol/L 1.21 ± 0.05 1.27 ± 0.08 0.476

Data are presented as the mean ± standard error of measurement (SEM, n = 10). HP = high protein group;
LP = low protein group; ALT, lipoprotein cholesterol; AST, aspartate aminotransferase; HDLC, high density
lipoprotein-cholesterol; LDLC, low lipoprotein-cholesterol.

3.4. Fecal Microbial Community

Figure 1 shows the effect of dietary protein levels on the profiles of fecal microbiota
in Sushan nursery pigs. As shown in Figure 1A, the richness (ACE, p = 0.071 and Chao1,
p = 0.076) of fecal microbiota tended to decrease in the LP group. However, the diversity
(Shannon and Simpson) shown had no differences (p > 0.05) between the two groups
(Figure 1B). Furthermore, the NMDS, based on the Bray–Curtis distance metric, showed
that the microbial communities in the nursery pigs’ feces were not clearly separated by
dietary protein level (p > 0.05, Figure 1C).
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To further determine the effect of dietary protein levels on the microbial composition
of the nursery pigs, the bacterial taxa were subjected to taxonomic composition analysis.
Dominant and differential bacterial taxa are shown in Figures 2 and 3, respectively. At
the phylum level, Bacteroidetes and Firmicutes were the most predominant phyla in the
feces of the Sushan nursery pigs, with a total relative abundance of around 95%. Although
there was no statistical difference in Bacteroidetes and Firmicutes abundance between the
two groups, the ratio of Firmicutes/Bacteroidetes (F/B) was higher in the LP group than
the HP group (1.12 vs. 0.90), because of the increased abundance of Firmicutes (50.13%
vs. 45.90%) and the decreased abundance of Bacteroidetes (44.87% vs. 50.13%) in the LP
group (Figure 3A). The next most abundant were Proteobacteria and Spirochaeta, and the
abundance of Proteobacterial was clearly increased in the LP group (Figure 3A; p < 0.05).
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The genus-level analysis of the differential genera (Figure 3B) showed that, in the
LP group, the relative abundance of seven bacteria genera including Sphingomonas, Ter-
risporobacter, Clostridium sensu stricto 1, Bardyrchizobium, Achromobacter, Halomonas, and
Caulobacteraceae, were significantly increased (p < 0.05), whereas the relative abundance of
Coprococcus was significantly decreased (p < 0.05).

At the OTU level (Figure 3C), 1017 OTUs were detected in the feces of the two groups
of pigs. Among them, 18 of the OTUs, belonging to 13 families, showed significant
differences between the two groups (p < 0.05). OTUs closely related to Burkholderiaceae,
Halomonadaceae, Peptostreptococcaceae, Sphingomonadaceae, Xanthobacteraceae and
Clostridiaceae were enriched clearly in the LP group (p < 0.05). OTUs closely related
to Lachnospiraceae, Muribaculaceae, Prevotellaceae, Rikenellaceae, Ruminococcaceae,
Tannerellaceae and Lactobacillaceae, on the other hand, were enriched remarkably in the
HP group (p < 0.05).

3.5. The Predicted Microbial Gene Functions of the Fecal Microbiota

To investigate the effect of the dietary protein level on microbial functions, PICRUSt
analysis was performed to predict the relative abundance of metagenomic functions. As
shown in Figure 4, 17 of the predicted microbial pathways (level 3) belonging to eight
functional categories (level 2) were affected. Compared to the HP group, in the LP group,
the relative abundance of ‘Translation’, ‘Translation proteins’, and ‘Transcription’ were
decreased and ‘Inorganic Ion Transport and Metabolism’, ‘Lipid Metabolism’, ‘Amino
Acid Metabolism’, ‘Neurodegenerative Diseases’, and ‘Xenobiotics Biodegradation and
Metabolism’ was increased (p < 0.05).

3.6. Fecal SCFA Concentrations

The alternations in the bacterial community seen in our two groups could lead to
changes in SCFA metabolism; therefore, the SCFA concentrations in the feces of the nursery
pigs were determined. The concentrations of acetate were observed to be significantly
higher in the LP group (Table 5; p < 0.05). However, no effect of dietary protein level was
found in the concentrations of propionate, butyrate, isobutyrate, valerate, isovalerate, or
total SCFA (Table 5; p > 0.05).
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Table 5. Effects of dietary protein levels on SCFA concentrations in the feces of nursery pigs, µmol/g.

Items
Diets

p-Value
HP LP

Acetate 39.54 ± 2.62 46.72 ± 2.03 0.046
Propionate 18.87 ± 0.77 16.83 ± 1.27 0.191

Butyrate 8.91 ± 0.54 9.01 ± 1.05 0.937
Isobutyrate 2.16 ± 0.42 2.56 ± 1.74 0.558

Valerate 2.90 ± 0.28 3.30 ± 0.59 0.538
Isovalerate 2.59 ± 0.31 2.45 ± 0.34 0.764
Total SCFA 74.50 ± 3.34 80.90 ± 4.79 0.290

Data are presented as the mean ± standard error of measurement (SEM, n = 10). HP = high protein group;
LP = low protein group; Total SCFA, total short-chain fatty acids.

3.7. Correlations between Fecal Microbiota and Metabolic Profiles

To investigate the contribution of microbial community alteration by dietary protein
level to the metabolic status of Sushan nursery pigs, the correlation between fecal mi-
crobiota (at the genus and OTU levels) and metabolic profiles (including ATTD, serum
parameters and SCFAs) were analyzed (Figure 5).
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At the genus level, the relative abundance of Sphingomonas, Bradyrhizobium,
Achromobacter and Caulobacteraceae were negatively correlated with the ATTD of CF
(Figure 5A; p < 0.05). The relative abundance of Coprococcus was positively correlated
with serum concentrations of BUN and ALT and the fecal concentration of propionate,
but negatively correlated with the ATTD of GE (Figure 5A; p < 0.05). Additionally, the
relative abundance of Clostridiumsensustricto was negatively correlated with serum BUN
and TP and the fecal propionate, while the relative abundance of Terrisporobacter was only
negatively correlated with serum BUN (Figure 5A; p < 0.05).

At the OTU level (Figure 5B), among the OTUs with increased abundance in the
HP group, OTU45 (closely related to Rikenellaceae) and OTU293 (Lachnospiraceae) were
positively correlated with serum AST, TG, HDL-C, and ATTD of P (p < 0.05). OTU106
(Muribaculaceae) and OTU256 (Prevotellaceae) were positively correlated with serum TG
(p < 0.05). OTU67 (Lachnospiraceae) was positively correlated with serum HDL-C and
TG (p < 0.05). Conversely, OTU34 (Lactobacillaceae), OTU102 (Tannerellaceae), OTU85
(Ruminococcaceae) and OTU115 (Rikenellaceae) were negatively correlated with serum
glucose (p < 0.05). OTU67 and OTU160 (closely related to Lachnospiraceae) and OTU85
(Ruminococcaceae) were negatively correlated with fecal acetic acid (p < 0.05). On the
other hand, among the OTUs with an increased abundance in the LP group, OTU69
(Sphingomonadaceae) and OTU164 (Xanthobacteraceae) were negatively correlated with
serum TP and BUN (p < 0.05). OTU196 (Burkholderiaceae) was negatively correlated with
serum BUN (p < 0.05).

4. Discussion

Reducing dietary CP level is an effective measure to reduce diarrhea and N excretion
in piglets [31,32]. However, the optimal growth performance of pigs depends on adequate
AAs in the diet [33]. Previous studies have shown that the first four limiting AAs (Lys, Met,
Thr and Trp) should be supplemented when the CP level of a corn-soybean meal diet is
reduced, and the fifth (Val) should be considered when the CP level is further reduced [34].
Therefore, in this study, we reduced the dietary CP level by 3% and supplemented these
five CAAs (Lys, Met, Thr, Trp and Val) to meet the requirements of nursery pigs. We
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obtained a comparable growth performance to the 18% CP group, which was consistent
with the findings of previous reports [14,15,35]. The comparable ATTD of dietary protein
between the LP and HP groups in this study confirmed that the supplementation of
these five CAAs (Lys, Met, Thr, Trp, and Val) in a low protein diet can meet the growth
requirements of Sushan nursery pigs. Furthermore, the decreased serum BUN in the LP
group indicated improved protein utilization efficiency, because of the balanced AAs in
the feed [36]. Moreover, serum BUN is highly correlated with the nitrogen concentration
in urine, and the decreased serum BUN in the LP group also indicated a decrease in N
excretion [37]. Meaningfully, the increase of ‘Amino Acid Metabolism’ related microbial
genes, predicted by PICRUSt analysis in the LP group, demonstrated the contribution of
the gut microbiota in the improvement of protein and amino acid utilization in Sushan
nursery pigs.

The dietary protein level (or the amount of ingested dietary protein) appears to modify
both the diversity and the composition of the intestinal microbiota in humans, however,
the consequences of such changes to the host physiology and pathophysiology are still
poorly understood [5]. Our study also showed that, following the modification of the
dietary protein level and the impact that this had on the microbial diversity in the gut of
Sushan nursery pigs, there was lower microbial richness (ACE and Chao1) in the fecal
microbiota in the LP group, indicating that low-protein diets might decrease the amounts
of fecal microbiota in these pigs. With regard to the composition of intestinal microbiota,
Firmicutes and Bacteroidetes were the most predominant phyla in the gut, and the ratio
of F/B can often reflect the status of microbial homeostasis [38]. An increased ratio of
F/B has been widely observed in association with weight gain or obesity; conversely, a
decreased ratio has been related to weight loss [39]. In the present study, nursery pigs in
the LP group had a higher ratio of F/B and comparable body weight gain compared to HP
group with reduced dietary protein levels. Studies on mice fed a high-fat diet showed a
significant increase of Proteobacteria abundance [40]. In this study, although the increase
of the EE content caused by the increase of corn in the low protein diet was not significant,
the abundance of Proteobacteria was still significantly increased in the LP group. However,
the increase of Proteobacteria abundance has been shown to be highly correlated with the
production of LPS [40], which suggests that wheat, barley, and other feed ingredients with
a low EE content may be preferable to corn in the preparation of a low protein diet for pigs.
On the other hand, the increase of ‘Lipid Metabolism’-related microbial genes, predicted
by PICRUSt analysis in the LP group, showed the contribution of the gut microbiota to the
improvement of EE and GE utilization in Sushan nursery pigs. These results are consistent
with the results of the higher ATTD of GE and EE in the LP groups.

At the genus level, the relative abundance of Sphingomonas, Terrisporobacter, Bardyrchizo-
bium, Achromobacter and Halomonas increased in nursery pigs fed an LP diet, and feeding
that was reported for the first time in this study. Members of Sphingomonas have been re-
ported to be associated with a low concentration of ammonia, and this could be due to their
efficient degradation of ammonia and nitrite [41]. Although the concentration of ammonia
in feces was not measured in this study, the decrease in the blood urea level in the low
protein group might partly reflect that the ammonia in the intestine was used for microbial
protein synthesis, rather than urea synthesis. Terrisporobacter, a potential acetate-producing
bacterium [42], was also increased in the LP group, which is consistent with the significant
increase of the fecal acetate concentration in the LP group. Moreover, Clostridium sensu
stricto 1, which proliferates against the colonization of diarrhea-causing pathogens [43],
was increased in the LP group. The association of Bardyrchizobium, Achromobacter, and
Halomonas with dietary protein levels requires further exploration.

At the OTU level, the increase of the relative abundance of OTUs closely related
to Peptostreptococcaceae and Clostridiaceae may help maintain gut homeostasis and
produce acetic acid, respectively [44,45]. In this study, these two bacteria increased in the
LP group, which indicated better microbial homeostasis and a higher capacity for SCFA
production in the gut of the LP pigs. The increase of ‘Xenobiotics Biodegradation and
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Metabolism’-related microbial genes, predicted by PICRUSt analysis, in the LP group also
demonstrated the contribution of the microbiota to gut health, through the degrading
of toxic compounds such as DON/ZEN (deoxynivalenol and zearalenone) [46,47]. In
line with previous studies [48–50], the relative abundance of OTUs was closely related to
the abundance of Lachnospiraceae, Prevotellaceae, Rikenellaceae and Ruminococcaceae,
potential protein-fermenting bacteria, which were remarkably increased in the HP group
in this study.

For a deeper understanding of microbial contributions to host physiology and metabolism,
the correlations between fecal microbiota at the genera and OTU levels and nursery pigs’
metabolic profiles were analyzed. The OTUs with increased abundance in the HP group
contributed to the increase of serum AST, TG, and HDL-C, and to the decrease of serum
glucose and fecal acetate. Increased circulating triglycerides are often related to lipid
metabolism disorders [51], and increased AST is generally related to hepatic injury. This
result indicated that the high protein level in some feeds might harm the hepatic health
and lipid metabolism of Sushan nursery pigs. In particular, OTU45 (Rikenellaceae) and
OTU293 (Lachnospiraceae) have been reported as biomarkers of hepatic injury and inflam-
mation [52,53]. On the other hand, the OTUs with increased abundance in the LP group
were significantly correlated with a decrease of the serum BUN, further confirming the
contribution of the gut microbiota to the improvement of protein and amino acid utilization
in Sushan nursery pigs.

5. Conclusions

In conclusion, Sushan nursery pigs which were given a low protein, balanced amino
acid feed (15% CP with five CAAs (Lys, Met, Thr, Trp and Val)) demonstrated a comparable
growth performance to pigs given high protein feed (18% CP). The alteration of the gut
microbial composition found in the LP group may contribute to an improvement of protein,
amino acid, and energy utilization in Sushan nursery pigs.
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