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Simple Summary: The amount of electromagnetic field (EMF) in the environment emitted by elec-
trical and electronic devices, mobile phone masts, or power lines is constantly increasing. Honey 
bee can be exposed to the EMF in the environment, and the influence of this factor on bees is still 
under consideration. Studying the impact of EMF on honey bees can give valuable information 
about whether it poses a threat to them. The honey bee is an important pollinator, playing a signif-
icant role in maintaining biodiversity and food production. Our research showed that a 50 Hz elec-
tric field at various intensities reduced the number of occurrences of walking, contacts between 
individuals, and self-grooming, and increased the activity of proteases, which are involved in the 
immune system response. 

Abstract: The effect of an artificial electromagnetic field on organisms is a subject of extensive public 
debate and growing numbers of studies. Our study aimed to show the effect of an electromagnetic 
field at 50 Hz and variable intensities on honey bee proteolytic systems and behavior parameters 
after 12 h of exposure. Newly emerged worker bees were put into cages and exposed to a 50 Hz E-
field with an intensity of 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. After 12 h of exposure, 
hemolymph samples were taken for protease analysis, and the bees were recorded for behavioral 
analysis. Six behaviors were chosen for observation: walking, flying, self-grooming, contact be-
tween individuals, stillness, and wing movement. Bees in the control group demonstrated the high-
est number of all behavior occurrences, except flying, and had the lowest protease activity. Bees in 
the experimental groups showed a lower number of occurrences of walking, self-grooming, and 
contacts between individuals than the control bees and had significantly higher protease activity 
than the control bees (except that of alkaline proteases in the 23.0 kV/m group). 
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1. Introduction 
The amount of electromagnetic field in the environment emitted by electrical and 

electronic devices, mobile phone masts, or power lines is constantly increasing [1]. The 
effect of the artificial electromagnetic field on organisms is the subject of extensive public 
debate and growing numbers of studies. The influence of the electromagnetic field on the 
honey bee has also been a topic of various research projects. The honey bee as an element 
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of the environment is constantly exposed to various stressors, including electromagnetic 
fields of various frequencies and intensities. 

50 Hz is a widely used power frequency in most countries [2,3]. If a honey bee flies 
at a height of about 2 m above ground in an open space near a power line it is exposed to 
an E-field with an intensity of 10–12 kV/m. If high obstacles appear in the honey bee’s 
way, it flies about five or more meters above the ground so it is exposed to an E-field with 
an intensity of 5–7 kV/m [3–5]. 

Bees have been proved to avoid feeding places exposed to a static electromagnetic 
field (1.5 kV/m) [6]. The success of the foraging of bees was limited by exposure to a low-
frequency electromagnetic field [7]. A 60 Hz electromagnetic field > 150 kV/m caused 
wing, antennae, and body vibrations [8]. Migdał et al. [9] show that bees exposed to a 50 
Hz electric field (E-field) at various intensities changed the activity of the bees. Bindokas 
et al. [10] show that the exposition of the honey bee to conductive tunnels increased mor-
tality. Moreover, an electromagnetic field has an impact on the honey bee’s physiology by 
modifying pupal development (mobile phone radiation) [11], increasing oxygen con-
sumption (static field 1.4–2.8 kV/m) [12], or changing biochemical parameters (50 Hz E-
field at 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, and 34.5 kV/m for 1, 3,6, and 12 h) [13,14]. Thus, 
previous studies indicate that an electromagnetic field may be one of the threats to honey 
bees. 

Numerous environmental factors, including anthropogenic ones, have an influence 
on the activity of the honey bee’s immune system. Broadly understood environmental 
pollution weakens the bee’s immune system and reduces colony health [15,16]. Two types 
of immunity can be distinguished in honey bees: individual and social. Individual im-
munity includes anatomical barriers, cellular and humoral immunity, while social in-
cludes behavioral immunity [17,18]. 

One of the important individual barriers is proteases, which occur both inside the 
honey bee organism and on the surface of its body [14]. The proteolytic system in the 
honey bee (Apis mellifera L.) organism is involved in crucial processes, such as protein 
digestion, receptor activation, the release of hormones, and activation of the zymogens 
[19–22]. Among their various functions, these enzymes play a significant role in the activ-
ity of the immune system. They are one of the basic lines of defense against pathogens 
[23]. 

Behavioral immunity consists of, among others, hygienic instinct, bee fever, and ab-
sconding. Bees show grooming, which includes self-grooming, and social-grooming (allo-
grooming). This behavioral complex helps to reduce, for example, Varroa destructor infes-
tation [16,24]. 

Our study aimed to show the effect of an electromagnetic field at 50 Hz and variable 
intensities on honey bee proteolytic systems and behavior parameters after exposure for 
12 h. 

2. Materials and Methods 
2.1. Bees 

Queens originating from the same mother-queen colony were inseminated with the 
semen of drones from the same father-queen colony. Ten mother queens were randomly 
selected and kept in isolators with empty Dadant combs (435 × 300 mm) for egg-laying. 
Each queen was kept in a separate bee colony. On the 20th day of bee development, the 
combs with the already sealed worker bee brood were transferred to an incubator with 
constant conditions (temperature of 34.4 °C ± 0.5 °C and relative humidity of 70% ± 5%) 
for emerging without adult bees. The combs were transported at the same time and put 
together in one incubator. Feed (honey and bee bread) was provided ad libitum. 
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2.2. Experimental Design 
One-day-old workers were randomly placed in 50 wooden cages (20 × 15 × 7 cm). 

Each cage contained 100 workers and two inner feeders with a 50% sucrose solution. Bees 
were fed ad libitum. The bees were divided into four experimental groups which were 
exposed to the following 50 Hz E-field intensities: 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 
kV/m for 12 h, and the control group. The control group was not treated by the artificial 
E-field; in this group, the bees were under the influence of an electromagnetic field < 1.00 
kV/m. Each group consisted of ten cages. The group name was the E-field intensity to 
which the bees were exposed. The control group is marked with the letter C. 

2.3. E-Field Generation 
A homogeneous 50 Hz E-field was generated in the exposure system in the form of a 

plate capacitor with the distance of 20 cm between two electrodes constructed as a squared 
cage made out of wire mesh, as per Migdał et al. [9]. In most countries, 50 Hz is a widely 
used power frequency [25]. The E-field intensity and the homogeneity in the test area were 
verified by an LWiMP accredited testing laboratory (certification AB-361 of Polish Centre 
for Accreditation) using an ESM-100-m No. 972153 with calibration certificate 
LWiMP/W/070/2017, dated 15/02/2017 and issued by the accredited calibration laboratory 
PCA AP-078. The measurements were done at points of a 10 × 10 × 5 cm3 mesh inside an 
empty emitter. The stability of the electric field was maintained by permanently monitor-
ing the voltage applied to the exposure system using a control circuit. The field intensity 
was fixed at 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. Changes in the homogeneity 
and stability of the E-field intensity were no higher than ±5% in the emitter, to which the 
bees were exposed during the whole experiment. 

2.4. Protease Analysis 
Hemolymph samples were collected from 100 bees randomly taken from each group. 

The hemolymph was taken after exposure by removing the antennae of a live bee using 
sterile tweezers as per Migdał et al. [26]. The hemolymph sample was collected in sterile 
glass capillaries with a volume of 20 μL end-to-end without anticoagulant. The prepared 
capillaries were placed in 1.5 mL Eppendorf tubes filled with 150 μL of 0.6% NaCl. The 
test tubes were placed on the cooling block during this procedure. The prepared tubes 
were transferred to a cryo-box and then frozen at –80 °C [27]. Determinations of the acidic, 
neutral, and alkaline protease activities were done according to the Anson method [28] 
modified by Strachecka and Demetraki-Paleolog [16]. The activities of acidic proteases 
were assayed in a buffer of 100 mM glycine-HCl at pH 2.4, neutral ones in a buffer of 100 
mM Tris-HCl at pH 7.0, and alkaline ones in a buffer of 100 mM glycine-NaOH at pH 11.2 
using the method described by Łoś and Strachecka [27]. The samples of hemolymph were 
collected immediately after the end of exposure to the E-field. 

2.5. Behavior Analysis 
Twenty-one bees were randomly taken from each group and were placed in a behav-

ioral assessment station made of glass, with a height of 20 cm and a diameter of 40 cm. 
Observations were conducted with the use of recorded material (offline). Three bees were 
recorded at the same time for 360 s (60 s for adaptation to location change and 300 s for 
analysis) using a SONY HDR-CX240E camera (Lund, Sweden). Recorded videos were 
transferred to a computer on which Noldus Observer XT 9.0 software was installed. Six 
basic behaviors were selected for observation, i.e., walking, self-grooming (self-cleaning 
of the body surface, cleaning of antennae, and cleaning of proboscis), flying (between the 
walls, the bottom and the lid of the container), stillness (time when the bee remained mo-
tionless), contact between individuals (including trophallaxis and allo-grooming), and 
wing movement (exposed Nasonov’s gland). 
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For behavioral analysis using the Noldus Observer XT 9.0 software, a project with a 
mutually exclusive type of behavior was used (observation for each bee was done sepa-
rately and only one bee was observed at any one time). The project did not use behavior 
modifiers in the form of changing conditions or interfering with the insects, as all individ-
uals were assessed under the same conditions. Independent variables in the form of age, 
body condition, and damage were excluded, as per Migdał et al. [9]. 

For analysis, we chose the average duration of behavior (how much time, on average, 
bees from one group spent on the behavior) and the number of individual behavior oc-
currences (how many times during the observation individuals from the group displayed 
the behavior). The recording of the bees was immediately after the end of exposure to the 
E-field. 

2.6. Data Analysis 
The normality of the data distribution was analyzed using the Shapiro–Wilk test. The 

statistical significance of data between groups was determined by the Kruskal–Wallis test 
and Dunn’s post hoc rank sum comparision using the package “pgirmess” for “krus-
calmc” function. For all tests, RStudio [29] was used with a significance level of α = 0.05. 

3. Results 
3.1. Protease Analysis 

In all experimental groups, the level of protease activity was higher than in the con-
trol group (Figure 1). Differences between all experimental groups and the control group 
were statistically significant except for the 23.0 kV/m group in the case of alkaline prote-
ases (Table 1). 

An intensity of 5.0 kV/m increased the activity of acidic proteases by 78%, neutral by 
74%, and alkaline by 40% compared to the control group. Bees treated with an intensity 
of 11.5 kV/m were characterized by 63% higher activity of acidic proteases, 61% higher 
neutral protease activity, and 5% higher alkaline protease activity in comparison to the 
control bees. An intensity of 23.0 kV/m caused an increase of acidic protease activity by 
142%, neutral protease activity by 125%, and alkaline protease activity by 4% compared 
to the control group. Bees exposed to an E-field with an intensity of 34.5 kV/m had 261% 
higher acidic protease activity, 74% higher neutral protease activity, and 27% higher alka-
line protease activity compared to the control bees. 

 
Figure 1. The average protease activity in bee organisms after 12 h under the influence of an E-field at 50 Hz and an 
intensity of 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. The group name is the E-field intensity to which the bees were 
exposed. The control group is marked with the letter C. 
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Table 1. Comparison of protease activity between all groups. 

Groups 
Protease Activity (U/mg Protein) 

Acidic Neutral Alkaline 
C 1.18 (±0.11) a 2.45 (±0.07) a 1.35 (±0.10) a 

5.0 kV/m 2.09 (±0.24) b 4.26 (±0.26) b 1.89 (±0.25) b 

11.5 kV/m 1.92 (±0.08) c 3.94 (±0.08) c 1.42 (±0.11) c 

23.0 kV/m 2.84 (±0.07) d 5.52 (±0.25) d 1.40 (±0.09) ac 

34.5 kV/m 4.24 (±0.32) e 4.26(±0.11) b 1.72 (0.20) d 

The average protease activity in bee organisms after 12 h under the influence of an E-field at 50 Hz 
and an intensity of 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. The group name is the E-field 
intensity to which the bees were exposed. The control group is marked with the letter C. Standard 
deviation is shown in round brackets. Different letters (a, b, c, d, e) indicate statistical differences 
between the groups at the p ≤ 0.05 significance level. 

3.2. Acidic Proteases 
The highest activity of acidic proteases was recorded in bees treated with an intensity 

of 34.5 kV/m, while the lowest was in the control group. Among the experimental groups, 
the least influence on acidic protease activity was for an intensity of 11.5 kV/m (Figure 1). 
All differences between the groups were statistically significant (Table 1) (p-value < 2.2 × 
10−16). 

3.3. Neutral Proteases 
An intensity of 23.0 kV/m caused the highest increase of neutral protease activity. 

Control bees were characterized by the lowest activity of neutral proteases. Among the 
experimental groups, the least influence on neutral protease activity was for an intensity 
of 11.5 kV/m (Figure 1). The activity of neutral proteases in bees from the 5.0 kV/m and 
34.5 kV m groups did not differ significantly (Table 1) (p-value < 2.2 × 10−16). 

3.4. Alkaline Proteases 
The highest alkaline protease activity was recorded within bees exposed to an E-field 

with an intensity of 5.0 kV/m while the lowest was in the control bees. Among the exper-
imental groups, the least influence on alkaline protease activity was for an intensity of 23.0 
kV/m (Figure 1). The control group and the 23.0 kV/m group did not differ significantly 
(Table 1). Changes in the activity of alkaline proteases between the experimental groups 
and the control group were smaller compared to acidic and neutral protease activity (p-
value < 2.2 × 10−16). 

3.5. Behavior Analysis 
Bees in the control group and the 5.0 kV/m group displayed all six behaviors (Figures 

2 and 3). For the 11.5 kV/m, 23.0 kV/m, and 34.5 kV/m groups, all behaviors were observed 
except wing movement. The number of stillness and wing movement observations was 
too small to show statistically significant differences between the groups (Tables 2 and 3). 
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Figure 2. The average number of behavior occurrences displayed by bees after 12 h under the influence of an E-field at 50 
Hz and an intensity of 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. The group name is the E-field intensity to which the 
bees were exposed. The control group is marked with the letter C. 

 
Figure 3. Average time spent on behavior by bees after 12 h under the influence of an E-field at 50 Hz and an intensity of 
5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. The group name is the E-field intensity to which the bees were exposed. 
The control group is marked with the letter C. 

Table 2. Comparison of the number of behavior occurrences between all groups. 

Groups 
Behavior Parameters 

Walking Self-Grooming Flying Stillness Contact between Individuals Wing Movement  
C  17.57 (±5.83) a 4.13 (±2.35) a 9.64 (±6.89) ab 2.22 (±1.92) 3.82 (±2.70) a 4.07 (±3.07) 

5.0 kV/m 12.08 (±9.05) b 2.33 (±1.88) ab 8.37 (±6.29) a 2.00 (±1.41) 3.03 (±2.38) ab 1.00 
11.5 kV/m 15.74 (±10.32) bc 1.97 (±1.97) b 11.77 (±9.57) a 1.00 (±0.01) 2.73 (±1.41) ab NO 
23.0 kV/m 10.44 (±6.45) b 1.17 (±0.39) b 7.23 (±6.05) ab 1.50 (±0.71) 2.59 (±1.04) ab NO 
34.5 kV/m 16.51 (±9.28) c 1.68 (±1.07) b 13.90 (±9.53) b 1.44 (±0.73) 1.81 (±0.88) b NO 

The average number of the behavior occurrences displayed by bees after 12 h under the influence of an E-field at 50 Hz 
and an intensity of 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. The group name is the E-field intensity to which the 
bees were exposed. The control group is marked with the letter C. Standard deviation is shown in round brackets. Different 
letters (a, b, c) indicate statistical differences at the p ≤ 0.05 significance level. NO—not observed.  
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Table 3. Comparison of the average time spent on each behavior between the groups (s). 

Groups 
Behavior Parameters 

Walking Self-Grooming Flying Stillness Contact between Individuals Wing Movement 
C  14.07 (±6.47) a 7.43 (±8.87) a 1.38 (±0.45) a 5.72 (±2.86) 5.99 (±4.00) a 7.36 (±6.07) 

5.0 kV/m 29.78 (±22.95) bc 12.18 (±11.82) b 1.86 (±0.52) b 16.87 (±15.78) 21.66 (±20.89) b 2.40 
11.5 kV/m 22.09 (±14.20) b 11.78 (±10.70) b 1.60 (±0.46) ab 17.15 (±20.43) 8.80 (±7.93) c NO 
23.0 kV/m 32.94 (±16.75) c 7.98 (±6.80) a 1.73 (±0.72) ab 47.71 (±12.52) 6.48 (±3.73) ac NO 
34.5 kV/m 21.46 (±13.41) b 12.75 (±10.43) b 1.45 (±0.25) a 14.07 (±13.54) 8.78 (±7.19) c NO 

Average time (s) spent on each behavior by bees after 12 h under the influence of an E-field at 50 Hz and an intensity of 
5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. The group name is the E-field intensity to which the bees were exposed. 
The control group is marked with the letter C. Standard deviation is shown in round brackets. Different letters (a, b, c) 
indicate statistical differences at the p ≤ 0.05 significance level. NO—not observed. 

3.5.1. Number of Behavioral Occurrences 
The most frequently shown behavior in all groups was walking and the least stillness 

or, in the case of the 5.0 kV/m group, wing movement, which was noticed only once (Fig-
ure 2, Table 2). Bees in the control group demonstrated the highest number of all behavior 
occurrences, except flying, which was most often displayed by the 34.5 kV/m group (p-
value = 0.0001). Differences in walking occurrences between the control group and all ex-
perimental groups were statistically significant (Table 2) (p-value < 6.96 × 10−7). The 23.0 
kV/m group displayed the lowest number of flying, walking, and self-grooming occur-
rences. Contact between individuals was displayed least frequently by the 34.5 kV/m 
group and stillness by the 11.5 kV/m group. The number of occurrences of contact be-
tween individuals decreased with increasing intensity; however, a statistically significant 
difference occurred only between the control group and the 34.5 kV/m group (Figure 2, 
Table 2) (p-value = 0.0032). 

3.5.2. Time Spent Performing Behaviors 
Bees in the control group, the 5.0 kV/m, 11.5 kV/m, and 34.5 kV/m groups, on aver-

age, spent most of the time walking (Figure 3). The average time spent walking by the 
control group statistically differed from the other groups (Table 3) (p-value = 3.69 × 10−8). 
In the 23.0 kV/m group, the bees remained still most of the time. In all groups, the bees 
spent the least time flying (p-value = 0.0001). The control group displayed the shortest 
average duration of all behaviors, except wing movement. Walking was displayed the 
longest by bees in the 23.0 kV/m group, self-grooming by bees in the 34.5 kV/m group, 
flying by bees in the 5.0 kV/m group, stillness by bees in the 23.0 kV/m group, and contact 
between individuals in the 5.0 kV/m group. 

4. Discussion 
4.1. Protease Analysis 

Proteases are enzymes that catalyze the hydrolysis of peptide bonds which link 
amino acid residues [30]. They occur in all types of organisms—eucaryotic, procaryotic, 
and viruses [31]. Proteases are involved in physiological reactions, e.g., digestive, apopto-
sis, blood clotting. The material of our research was the hemolymph in which serine pro-
teases occur [32]. This group of proteases plays an important role in regulatory and sig-
naling processes, digestion, transport, and degradation of the damaged protein. Serine 
proteases are involved in the correct action of insect resistance barriers and antioxidant 
systems. They are responsible, among others functions, for melanization, wound healing, 
and phagocytosis stimulation by taking part in phenol pro-oxidase cascade activation [33]. 
Based on the optimal pH in which these enzymes are active, proteases can be classified as 
alkaline (basic), neutral, or acid. 

In our present study, treating bees with an E-field at 50 Hz and an intensity of 5.0, 
11.5, 23.0, or 34.5 kV/m for 12 h caused an increase in the level of proteases in comparison 
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to the control group (Figure 1, Table 1). The activity of proteases did not increase with 
increasing electromagnetic field intensity. In our previous study [13], bees exposed to an 
E-field with identical parameters for 1, 3, and 6 h had higher acid and neutral protease 
activity than the control group. Regarding alkaline proteases, their activity was higher 
only in those bees treated with an E-field with an intensity of 23.0 or 34.5 kV/m. Changes 
in the protease activity in the honey bee organism after long exposure (12 h) to an E-field 
still persist. The increased activity of proteases in hemolymph was also noticed after treat-
ing bees with bromfenvinphos [34]. The authors assumed that Varroa treatment with 
bromfenvinphos markedly suppresses the honey bee biochemical defense levels. We hy-
pothesized that increased protease activity after E-field exposure could also cause such 
effects. 

Changes in protease activity occurred after treating bees with curcumin, coenzyme 
Q10, or caffeine. The addition of curcumin and coenzyme Q10 in sugar syrup caused the 
decreased activity of proteases in hemolymph [35,36]. Caffeine caused an increase of neu-
tral protease activity and a decrease of alkaline and acidic protease activity [37]. Bees 
treated with Q10, curcumin and caffeine lived longer than control bees [35–37]. Based on 
these studies, it can be assumed that these substances have a potentially positive effect on 
longevity by decreasing protease activity. Strachecka et al. [15] assumed that the activity 
of proteases on the body surface differs in polluted and clean environments. 

Additionally, after treating bees with imidacloprid, a decrease in acidic and alkaline 
protease activity and an increase in neutral protease activity was noticed regardless of the 
doses of insecticide (5 or 200 ppb) [38]. 

It is difficult to clearly state what effect the increased activity of proteases has on bees’ 
immunity. Decreases and increases of protease activity occur in healthy bees and are con-
nected with the age of the insect. The increase of acidic, neutral, and alkaline protease 
activity can be noticed until the age of 18–20 days and decreases after this time [34]. 

4.2. Behavior Analysis 
Behavior plays a significant role in insect immunity. Bees as social insects have 

evolved mechanisms of individual and social behavioral defense that can minimalize the 
presence of pathogens, pests, and parasites [17,18]. Factors that threaten bees often affect 
insect behavior and change their activity. These phenomena can influence disease suscep-
tibility by affecting behaviors related to immune responses, like self-grooming (even 
when the threatening factor does not alter the immune response of the bee). 

In our study, treating bees with an E-field at 50 Hz and an intensity of 5.0, 11.5, 23.0, 
or 34.5 kV/m for 12 h caused a reduction in the number of occurrences self-grooming, 
contact between individuals, and walking while increasing the average time spent on the 
behavior in comparison to the control group (Figures 2 and 3). Contact between individ-
uals is a significant behavior in pheromone transmission and any disorder of this behavior 
results in a modification of the relationships between individuals and thus community 
functioning. Self-grooming is an important trait that contributes to the defense against 
pests, pathogens, and parasites. Thus, if an E-field changes the behavioral pattern of the 
honey bee, it can indirectly affect the honey bee’s immune system. 

Since bees in the control group changed their behavior more often than the experi-
mental bees, the average time spent on an individual behavior was shorter in the control 
group (Figures 2 and 3). Bees in the experimental groups were less active (changing their 
behavior less often). Our previous study shows that treating bees with an E-field with the 
same parameters for 1, 3, and 6 h caused a similar behavioral change. Bees in the experi-
mental group were cleaning themself and displayed contact between individuals less fre-
quently than the control bees [9]. Our present study shows that bees after longer exposure 
(12 h) to an E-field still displayed modified behavioral patterns compared to the control 
bees. 

Only a few publications have evaluated the impact of an E-field on honey bee behav-
ior; thus, a comparison of the results to other factors was necessary. Changes in honey bee 
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activity were observed in studies on the effect of pesticides on bees, in particular, neuro-
toxins, which affect neural processes by affecting the conduction of the electrical signals 
between nerve cells (neurons). We can hypothesize that an E-field can also change the 
processing and conduction of nerve impulses. Depending on the dose, imidacloprid may 
induce an increase or a decrease in activity. The lowest dose used in the studies by Lambin 
et al. [39] (1.25 ng per bee) caused an increase in motor activity, while higher doses (2.5–
20 ng per bee) caused a decrease. In sublethal doses, cypermethrin, tetramethrin, and tau-
fluvalinate reduced the motor activity in honey bees. In our present study, the E-field 
caused a reduction in the number of occurrences of most behaviors (Table 2, Figure 2). 
Control bees were more active—they changed behavior more often (41 times on average 
during the whole observation time) than bees in the experimental groups (from 23 to 35 
times). James and Xu [40] assumed that by influencing the motor activity of bees, neuro-
toxic insecticides can affect disease resistance even not affecting individual immunity. 

Imidacloprid provoked problems with coordination, convulsions, excessive agita-
tion, or stillness in honey bees [39,41,42]. Exposure for 12 h to an E-field caused stillness 
to be displayed by the bees, but the number of occurrences of this behavior was too small 
to show significant differences (Tables 2 and 3). Even so, it is worth paying attention to 
the fact that the control bees were still for 5.72 s, while bees in the experimental groups 
were motionless for from 14.07 s (34.5 kV/m group) to 47.71 s (23.0 kV/m group) (Table 3). 
Bee stillness after contact with imidacloprid results from the disturbance of impulse con-
duction caused by a binding of this insecticide with acetylcholine receptors [39]. Morfin 
et al. [43] found that chronic sublethal exposure to clothianidin affected the proportion of 
bees grooming intensively and, based on RNAseq, found an effect on pathways linked to 
neural function, which could be related to the bees’ ability to perceive external stimuli. It 
is possible that E-field and neurotoxic insecticides can cause changes in the bee nerve im-
pulse transmission; however, the mode of action is probably different. Bees exposed to 
esfenvalerate and permethrin spent, respectively, 43% and 67% less time in social interac-
tion compared to control bees [44]. Bees in our present work treated with an E-field with 
an intensity of 34.5 kV/m or 11.5 kV/m spent on average 47% less time in contact between 
individuals than control bees, while bees in the 23.0 kV/m group spent on average 8% less 
time on this behavior. Bees treated with an E-field with an intensity of 5.0 kV/m spent on 
average 262% more time in contact between individuals. Nevertheless, bees in the control 
group displayed this behavior more often than the other groups (Figures 2 and 3; Tables 
2 and 3). 

Chronic exposure to thiamethoxam significantly impairs a bee’s ability to fly: It re-
duces the flight time (−54%), flight distance (−56%), and its average speed (−7%) [45]. Ac-
cording to our present study, bees in the control group spent the least time flying, alt-
hough, the differences between the groups, except the 5.0 kV/m group, were not statisti-
cally significant (Figure 3, Table 3). Regarding the number of flying occurrences, the 34.5 
kV/m group had the highest number of this behavior occurrence (Figure 2). The difference 
between this group, the control group, and the 23.0 kV/m group was not statistically sig-
nificant. The bees in the 5.0 kV/m and 11.5 kV/m group flew significantly fewer times than 
bees in the 34.5 kV/m group (Table 2). In conclusion, E-fields cause changes in bee behav-
ior, most often by reducing the number of occurrences of individual behavior. 

4.3. Behavior and Protease Analysis Comparison 
In our present study, the level of protease activity increased in the experimental bee 

organisms (Figure 1). Experimental bees also displayed a reduced number of behavior 
occurrences in comparison to control bees (Figure 2). In our previous study, bees that were 
treated with an E-field for 1, 3, or 6 h have higher activity of neutral and acidic proteases 
than control bees. In the case of alkaline proteases, only bees treated with intensities of 
23.0 or 34.5 kV/m have a statistically significant higher activity of this enzyme than control 
bees [13]. Our previous behavioral research shows that bees in the experimental groups 
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have a reduced number of contacts between individuals and self-grooming occurrences 
[9]. 

Bees’ immune system response consists both of individual and social immunity, 
which includes anatomical barriers, cellular and humoral immunity, and behavioral im-
munity [17,18]. Serine proteases which occur in hemolymph are responsible for melaniza-
tion, wound healing, and phagocytosis stimulation [33]. 

Based on our present and previous studies [9,13], it can be concluded that bees after 
E-field exposure are characterized by higher protease activity and reduced contact with 
other individuals and clean themself less often. Protease activity and behavior parameters 
analysis can give valuable information about the effect of an E-field on the bees’ immun-
ity. Changes in these parameters may indicate the interaction of behavioral immunity and 
protease activity, which are designed to protect honey bee’s organisms against environ-
mental stressors (pesticides, pathogens, etc.) 

5. Conclusions 
The amount of artificial electromagnetic field in the environment is constantly in-

creasing, thus the honey bee is exposed to this factor. In our study, bees in the control 
group demonstrated the highest number of all behavior occurrences, except flying, and 
had the lowest activity of all types of proteases. Bees in the experimental groups showed 
a lower number of walking, self-grooming, and contact between individual occurrences 
than control bees and had higher protease activity than control bees. Our results show 
that an E-field is potential harmful factor to the honey bee. However, we do not know if 
the changes in behavior and protease activity of the honey bee after E-field exposure per-
sist and for how long. It would be important to investigate behavior parameters and bio-
chemical markers at different time intervals after the end of exposure to an E-field. It can 
be helpful to determine the interaction between the biochemical marker activity and be-
havioral parameters. Such an observation could provide a better understanding of the 
immune response of the honey bee exposing to environmental stressors. 
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