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Simple Summary: The discovery of the genome has been one of the greatest advances in the
development of tools for the genetic improvement of cattle in the last decades. The use of information
derived from genomics has been demonstrated to be an efficient alternative for the validation
of kinship, adjusted mating, and conservation strategies to generate dairy cattle with desirable
traits. However, the impact of the genetic improvement strategies in breeding programs has closed
bloodlines in several milk breeds, consequently generating inbreeding depression. Thus, to mitigate
the negative effects of inbreeding, several tools associated with genomic analysis are currently
available that may be useful to reverse undesirable genetic trends. The present review will provide an
understanding of the importance of genomic analysis and how it can be used to mitigate the negative
effects of inbreeding depression on different traits related to production, reproduction, health, animal
welfare, linear type traits, and adaptability in dairy cattle. A historical overview of genomics and
future perspectives will also be covered.

Abstract: Genomics comprises a set of current and valuable technologies implemented as selection
tools in dairy cattle commercial breeding programs. The intensive progeny testing for production
and reproductive traits based on genomic breeding values (GEBVs) has been crucial to increasing
dairy cattle productivity. The knowledge of key genes and haplotypes, including their regulation
mechanisms, as markers for productivity traits, may improve the strategies on the present and future
for dairy cattle selection. Genome-wide association studies (GWAS) such as quantitative trait loci
(QTL), single nucleotide polymorphisms (SNPs), or single-step genomic best linear unbiased predic-
tion (ssGBLUP) methods have already been included in global dairy programs for the estimation
of marker-assisted selection-derived effects. The increase in genetic progress based on genomic
predicting accuracy has also contributed to the understanding of genetic effects in dairy cattle off-
spring. However, the crossing within inbred-lines critically increased homozygosis with accumulated
negative effects of inbreeding like a decline in reproductive performance. Thus, inaccurate-biased
estimations based on empirical-conventional models of dairy production systems face an increased
risk of providing suboptimal results derived from errors in the selection of candidates of high genetic
merit-based just on low-heritability phenotypic traits. This extends the generation intervals and
increases costs due to the significant reduction of genetic gains. The remarkable progress of genomic
prediction increases the accurate selection of superior candidates. The scope of the present review is
to summarize and discuss the advances and challenges of genomic tools for dairy cattle selection
for optimizing breeding programs and controlling negative inbreeding depression effects on pro-
ductivity and consequently, achieving economic-effective advances in food production efficiency.
Particular attention is given to the potential genomic selection-derived results to facilitate precision
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management on modern dairy farms, including an overview of novel genome editing methodologies
as perspectives toward the future.

Keywords: genomic analysis; gene edition; production; reproduction; health; welfare; environment;
nutrition; linear types; dairy cattle

1. Introduction

The discovery of the genome has been one of the greatest advances in the development
of tools used for the genetic improvement of cattle in the last decades. The use of high-
performance genomics in the selection of dairy cattle represents a remarkable advance
to increase the biological and genetic progress of different features and indices in several
animal production systems [1].

Recently, several techniques have been developed for the genomic analysis of dairy
cows genetic traits related to production, reproduction, health, animal welfare, linear type
traits, and adaptability. Several authors highlight the perspectives of using the genomic
approach as a crucial genomic selection method for several dairy breeds and stress the
great relevance and applicability of this knowledge in breeding programs to incorporate
additional alternative features into the traditional pool of traits [2]. In addition to what has
been described, several studies reveal an increment in the understanding of the expression
and heritability of genotypic traits and indices through the application of genomics for
the improvement of production yields and optimization of reproductive programs [3–7].
Currently, the use of information derived from genomic analysis is considered to be
an efficient alternative for the validation of kinship, adjusted mating, and conservation
strategies for dairy cattle with desirable traits [2]. Consequently, the exchange of reference
genomic data among countries has allowed genomic evaluation to increase the accuracy
in the prediction of the different traits of interest [8]. However, the impact of genetic
improvement strategies in breeding programs has closed bloodlines in several milk breeds,
causing a general increase of the inbreeding index which causes an accentuation of the
well-known inbreeding depression. The real effect of inbreeding on the deterioration of
production and reproductive performance due to the influence of several genotypic features
and their expression in phenotypes is still under study. Therefore, to mitigate the negative
effects of inbreeding, several tools associated with genomic analysis are currently available
that may be useful to reverse undesirable genetic trends.

Although the use of techniques based on genomic analysis has produced important
changes in selection and genetic improvement programs in common dairy cattle breeds [9],
for these changes to generate genetic improvement, the overall negative effects derived
from crossbreeding associated with an increase in the degree of inbreeding must be moni-
tored and managed granting that production yields and reproductive performance are not
affected by the inbreeding depression generated. Genomic tools have allowed determining
the substantial high-inbreeding level effect over many production and reproductive param-
eters in high-producing primiparous cows [10]. Therefore, the consideration of the effect of
inbreeding depression on the different genotypic and phenotypic characteristics during the
planning of selection and genetic improvement programs is crucial. This should be taken
with rigor so that inbreeding awareness becomes an integral part of production plans in
the dairy cattle industry.

The objective of the present review is to provide an understanding of the importance
of genomic analysis and how it can be used to mitigate the negative effects of inbreeding
depression on different traits related to production, reproduction, health, animal welfare,
linear type traits, and adaptability. From here, we will address several topics covering
the use and possible influence of genomic analysis on genotypic traits in dairy cattle as
well as its evolution from origins to the present and future perspectives. This document is
designed and organized as follows: In the first part, it will briefly describe the chronology
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and evolution of genomics. In the second part the use of genomics as a predictive tool will
be described, as well as the different methodologies used for its application. In the third
part, the incidence/impact/effect of genomics as a predictive tool for different parameters
associated with production, reproduction, health, animal welfare, evaluation of linear type
traits, and adaptability to different production systems and environments will be covered,
including causal and highly predictive genetic variants that are key to the prediction of
other complex traits.

This review will describe how genomic selection based on genomic analysis represents
a promising tool that will improve the predictive accuracy and genetic gain of genomic
traits. However, challenges lie ahead in the integration of genomic analysis models covering
all the genetic traits and expressing an ideal genomic selection method to adequately
regulate inbreeding rates. Therefore, the perspectives to increase genetic gains based on
the production and reproductive efficiency, health, animal welfare, and environmental
adaptability of dairy cattle will increase the sustainability/sustainability of the production
yields in the immediate future as a means for increasing profit in animal production systems.

2. Genomics: History and Background

The discovery of genomics and related applications in the dairy cattle industry has
led to a significant improvement in the biological prediction of different genotypic traits.
Major dairy-producing countries, like United States, Canada, Great Britain, Ireland, New
Zealand, Australia, France, the Netherlands, Germany, and the Scandinavian countries
have implemented genomic evaluations in their breeding programs, leading to significant
changes in the global dairy industry [11].

A brief history of genomics is depicted in Figure 1. In a chronological sequence,
genomics became the cutting-edge technology we know today due to its evolution from
genome sequencing, including approaches such as genome-wide association (GWAS),
whole-genome prediction (WGP), and genome-wide selection of complex traits [12]. At the
beginning of the 1990s, the early genetic evaluation identified quantitative trait loci (QTLs)
using microsatellite-dispersed markers that correlated with the variation of quantitative
traits in the phenotype of a population [13]. Necessary for the development of these tech-
nologies for the cattle industry, the first genome sequencing analyses of the bovine species
(Bos taurus) were carried out in Hereford beef cattle [14]. Later, the genome of animals of
the Holstein breed were sequenced as a reference for dairy cattle describing the genome
variations compared to the Hereford breed [15]. Around 22,000 genes have been found in
bovine species after sequencing analyses, a set of information crucial for future applications
in dairy cattle selection [14,15]. In Bos indicus the genome was sequenced as well in Gyr,
Girolando and Guzerat dairy breeds [16]. The first commercial genotyping chip involving
single nucleotide polymorphisms (around 54,000 single nucleotide polymorphisms (SNPs))
was launched in 2007, allowing genomic evaluations in several dairy breeds (Holstein,
Jersey, and Brown Swiss) in the US, beginning in 2009, and later in Ayrshire (2013) and
Guernsey (2016) breeds [17].

Later, the release of complete genome sequences granted the use of high-performance
genetic markers (10,000 to 1,000,000 SNPs), thus improving trait predictions. This inter-
esting technology requires high throughput genotyping platforms (DNA arrays or SNP
chips) [12]. In addition, other technologies such as gene expression profile analysis by DNA
microarrays (MGEP) began to be widely used in functional genomics or transcriptomics
studies. In the near future, genomics/transcriptomics based on SNP chips or microarrays
will possibly be replaced by next-generation sequencing (NGS) technologies associated
with statistical-computational biology and bioinformatics [18].
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Figure 1. Brief historical evolution of genomics. Origins of classic genetic knowledge are undoubtedly based on Mendel’s
discoveries on the inheritance of characters in plants in the XIX century. During the early XX century concepts of genes and
chromosome theory became consolidated. Later, during the XX century advances on the chemical basis of inheritance, the
breaking of the genetic code and gene regulation discoveries marked the development of genomics and the development of
genomic tools in animal science. An impacting development in genomics was the sequencing of the whole human genome
in the early XXI century, followed by the ultimate application of this knowledge, the discovery of the gene-editing tools.
This led to the awarding of the Nobel Prize to women researchers Charpentier and Doudna in 2020 [14,19–37].

There is growing concern about pedigree-based genetic evaluation analyses, as being
less efficient and accurate than genomic methods. However, linking pedigree data to
information obtained through genomics appears to be advisable, since it may significantly
improve the accuracy of predicting traits and indices in dairy breeds [38]. However, there is
conflicting work suggesting that genomics per se leads to a faster decline in genetic selection
response than phenotypic selection unless new markers and traits are continuously added
to the prediction of genetic value [39]. Furthermore, genomic selection of various sires
and cows of different dairy breeds, in association with assisted reproductive technologies
(ARTs) have significantly increased genetic gain [40]. However, when a single sire is
used in breeding selection, genetic diversity significantly decreases despite the above [40].
Furthermore, estimates of variance components from genomic and phenotypic data for one
or two generations are less accurate than for three generations, making the calculation of
heritability less accurate when using genotypes from selected animals [41]. Moreover, the
variance components are unbiased when genomic best linear unbiased prediction (BLUP)
also included the data before genomic selection [42]. Thus, it is now always possible to
include all genomic and phenotypic data in the analysis to increase the prediction accuracy.
Therefore, BLUP and ssGBLUP provide unbiased variances with complete datasets [43].

Today and in the immediate future, genomic evaluation as a functional and everyday
tool must also consider the effect of new mutations that can generate a genetic variance for
quantitative traits [11]. In this sense, it is essential to integrate additional genes to assess new
complex and low heritability traits not yet considered such as those associated with health,
food efficiency, metabolism, immunity, and methane emissions, among others [11,44].

Finally, to decipher and associate the functionality of new dairy cattle traits, other
”omic” technologies have been integrated into genomics such as epigenomics, transcrip-
tomics, proteomics, metabolomics, metagenomics, and meta-transcriptomics [5]. Therefore,
it is imperative to associate these technologies with physiological, metabolic, behavioral,
and environmental factors to improve the accuracy of estimation of current and future traits.
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2.1. Genomic Factors Related to Production

The incidence of the use of genomic selection in recent years has resulted in a sig-
nificant increase in production yields for most dairy-related traits in Holstein cattle in
countries such as the USA [45]. However, studies involving genetic evaluations of differ-
ent production traits (milk yield, fat, protein, somatic cells, and longevity) have shown
differences between homozygotes/heterozygotes that in the short term could generate
variable (high or low) rates of genetic gain [46]. A recent study proposes that genomic
selection has been more accurate than pedigree records in the selection of sires and young
heifers [47]. Today, sire classification relies on current selection indices such as net lifetime
merit (NM$), using a linear combination of approximately 13 traits [48]. Recently, an
innovative study established that for milk production traits the genetic effects are constant
during lactation [49]. However, the traits may change according to a certain lactation stage,
for example, the milk protein content may be affected [50]. Mutations (e.g., F279Y) have
also been discovered, for instance within the growth hormone receptor gene showing a
strong association with milk, fat, and protein yields [51]. Furthermore, the biological role
of at least two causal mutations of genetic loci associated with functional effects on milk,
fat, protein, and obesity performance in Holstein cattle has been studied [52].

Analyses of cattle selection pressure to increase milk production yields suggest a
positive association with a higher incidence of mastitis [53]. Whole-genome sequences
suggest that there are separate genetic variants for the above-mentioned traits. Therefore,
genomic selection would allow separating these beneficial and harmful genetic factors
through selective breeding in cattle [51]. Accordingly, the genomic parameters associated
with production are more heritable than the reproductive ones in Holstein and Jersey
cattle, for which building selection indices balancing both types of parameters are rec-
ommended [54]. Therefore, and in summary, high density genotyping techniques have
improved the association study of the whole dairy cattle genome for several traits. Yet, a
series of improving strategies are being proposed to identify more genes responsible for
other important economic traits in dairy cattle that will improve yields in the future.

2.2. Genomic Factors Related to Reproduction

Fertility rates in dairy cattle play a critical role in breeding programs [55]. Fertility
traits are among the most complex, difficult to measure, and modestly heritable [56].
Therefore, determining the benefits of genomic selection in dairy cattle breeds has been a
true challenge that will provide relevant knowledge for selection and breeding programs.
Recently, advances in genomic techniques have enabled genetic improvement because they
increase the accuracy of selection for reproductive traits [7]. Besides, genotyping has helped
to resolve existing genetic antagonisms. Interestingly, in Holstein cattle, genomic selection
for most fertility and production traits has resulted in a two- and four-fold increase in
the rate of genetic improvement, respectively [45]. Thus, genomic selection for fertility
indices in sires and young heifers without test records could be used to characterize traits of
interest, and consequently, the reliability of the estimated genomic value could be increased
if applied to animals with test records [47].

Genomic analyses of most reproductive traits in females show that they tend to be
less heritable than in males [7]. However, genomic data indicate that proper haplotype
selection in female parents could result in improved male fertility [45]. Conversely, studies
applying aggressive selection (high selection pressure) to increase milk production volumes
have shown a significant decrease in reproductive performance in the UK and Australian
dairy cows [7]. In genomic evaluations, the use of gamete variation parameters in genetic
selection programs would lead to significant improvements in genetic progress and the
control of genetic diversity [57]. Recently, the use of genomics in several dairy cattle
breeds has detected genomic regions of quantitative trait locus (QTL) associated with the
gestation period [58], ease of birth traits (paternal and maternal), and perinatal mortality
with differences among breeds [59]. This shows that genomic evaluation is an efficient
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and highly useful tool for the proper selection of animals regarding reproductive traits of
zootechnical interest.

2.3. Genomic Factors Related to Health and Animal Welfare

In the last decade, genomics has received great attention from the perspective of
the study of traits related to animal health and welfare. Hence, several traits such as
resistance against infectious and non-infectious diseases as well as adaptability to the
environment have been introduced as new selection indices in dairy cattle [60]. Recent
studies on the genetic background of immune response traits and immunocompetence
have shown relationships with functional and production traits in dairy cattle [60,61]. On
the other hand, analyses of genome telomere length have been associated with traits of
fitness related to health, survival, and longevity in dairy cows and show that these traits
are moderately heritable and highly correlated [62]. Genomic health traits have been used
to predict genomic breeding values in Holstein cattle [63].

Several companies managing commercial herds of the American Holstein breed have
recently developed and evaluated genomic predictions methods for the estimation of
predicted transmission capabilities (heritability) for welfare traits, respiratory disease, di-
arrhea, and adaptability [64,65]. Given the broad applications of genomics, other studies
in Jersey cattle developed genomic predictions for health traits such as mastitis, metritis,
placental retention, abomasal displacement, clinical and subclinical ketosis, lameness, and
hypocalcemia [63,65,66]. These reports suggest that genomic predictions of calf welfare
traits are reliable and comparable to the predictions of other traits of low and high heritabil-
ity. Thus, genomic predictions for welfare traits represent a key source of information on
genetic potential for health of individuals and provide new selection tools to improve dairy
production animal welfare [67]. For instance, the genomic trait of well-being in calves and
young heifers could be used to effectively predict significant differences applicable to the
maintenance of individual animals and herd health [64].

Finally, the epigenetic effect of assisted reproductive technologies (ARTs), such as
in vitro embryo production (IVP), has not yet been quantified or evaluated in depth. Much
more research is needed to better evaluate and understand genomics and its correlation
with IVP potentially affecting bovine health and possible effects during adulthood [68].
Furthermore, identifying and quantifying the traits to include in genomic assessments has
proven difficult because the traits are not independent of each other [5]. Overall, all of
these studies suggest that the single-trait genomic screening approach may often suffer
from antagonistic correlations with traits that are outside the target of selection. That is,
choosing multiple traits for genomic evaluations would avoid problems in estimating
future productive life in dairy cattle.

2.4. Genomic Factors Related to the Environment

The environment, directly and indirectly, plays an important role in animal genomics [69].
Determining how genome–environment interactions work is important to provide relevant
information and to better understand the behavior of genes of animal species in different
environments. Recently, genomic tests conducted in native versus commercial breeds of
cattle showed associations of genes with climatic adaptation, immunity, metabolism, and
food safety [70] highlighting genetic correlations between feed efficiency and heritability
of production traits in lactating animals [71].

Concerning the above and the current climate change scenario, the bovine species has
permanently required substantial modifications in terms of adaptability; however, not all
breeds have achieved these levels of adaptation [72]. In the mitochondrial DNA of the
ancient genome of Bos taurus, genomic introgression was found for the progenitors [73].
This adaptation of the bovine species has largely been human-created, and thus the mixing
of the genome (introgression) has been constantly promoted in the process of selecting
increasingly productive animals [73]. Consequently, genomic introgression of adapted
and non-adapted dairy cattle, whether with low or high production levels, has resulted
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in a more positive genetic change for both production and adaptation traits [72]. This has
not been the case for reproductive traits, which have seen a decrease over the years [74].
Considering this and the specialization of dairy breeds, genomic selection acted on two
negatively correlated traits, production (which is moderately heritable) and adaptation
(which has low heritability) [72].

One of the major environmental-related advances in genomics over the last decade
has been the discovery of traits linked with methane emissions, hypoxia, high altitude
adaptation, and heat stress. Several trait association studies primarily emphasize the reduc-
tion of negative impacts on the environment [71]. With the use of genomic determination
techniques, the prospects for reducing methane emissions will be one of the immediate
goals for meeting the challenges of climate change [75].

Comparative analyses regarding the high-altitude adaptation of the genome of domes-
tic yak (Bos grunniens) and domestic bovine (Bos taurus) show existing genetic differences
in protein domains related to sensory perception, energy metabolism, hypoxic stress, and
nutritional metabolism [76]. Therefore, most dairy breeds are likely to have little chance to
adapt to high altitudes.

The negative effects of heat stress on dairy yields have been noticed [77]. In bovine
genome analyses, additive genetic variations related to thermoregulation have been ob-
served in association with candidate genes and functional genes (cellular response to heat
stress) for production (milk, fat, and protein) [78]; as well as reproductive traits [79,80]. This
would suggest that cows become more sensitive to heat stress as the number of lactations
increases and as they age [81]. It should be noted that heat tolerance has not yet been
included in selection indices in dairy breeds. Thus, over time, heat tolerance by animals
has worsened due to lack of selection pressure [82]. In this way, through genomic analysis,
we can select animals with adaptation traits associated with production traits. However, it
is essential to continuously test the traits (genomic tests) and seek a balance between them
to identify the peculiarities of each dairy cattle breed and thus maintain genetic diversity
and evolutionary potential.

2.5. Genomic Factors Related to Linear Type Traits

Genomic analysis has allowed the evaluation of several dairy breeds and several
reproductive and production traits. However, there are other linear type traits of functional
meaning relevant because they are complementary and fundamental for the expression of
genomic traits linked to production and reproduction in different production systems [4].
Usually, estimates of individual linear type traits in dairy breed sires have shown moderate
genetic relationships regarding the functional life of their offspring. This may vary for
specific traits. For instance, heritability is high for udder traits and low for leg and leg set
traits [83]. In another study, estimates of genetic parameters made for 23 traits of linear
body conformation in the Holstein breed, allowed finding that the heritability estimates
were the lowest for the set of rear legs and moderate for body capacity [84]. Another
study associated the entire genome with the major loci that affect traits such as height
(H), angularity (ANG), and body depth (BD) in the Brown Swiss breed [85]. Furthermore,
full genome studies in Holstein cattle showed an association for several traits related to
udder health and milking speed, where chromosomes 10–20 and 8–19 were associated with
udder index and milking speed and chromosome 13 combined udder index and milking
speed [86]. Therefore, a focus on linear conformation traits may be valuable to identify
genes that affect economically important traits in dairy cattle.

Genomic analysis of linear conformation indices has been used to characterize several
breeds and identify crosses. In the Guernsey breed, performance, functional traits, and
linear conformation traits have been evaluated in relation to parental traits [87]. In Holstein
cattle the genomic parameters of linear conformation for body condition score (BCS),
locomotion (LOC), and angularity (ANG) have shown positive and negative correlations
with production traits; however, these traits appear to be genetically independent of other
traits [88]. For example, the body condition (BC) has presented significant differences
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concerning milk coagulation, and consequently, it could be considered as an additive trait
to improve yields in cheese production [89]. Furthermore, genomic analysis has shown
that the traits associated with locomotion and lameness problems in first lactation cows
increases as lactation advances, but the two traits remain relatively constant during the
second lactation [90]. Besides, the BC of the animals expressed as low or high BC shows
negative genetic correlations with reproductive performance and fertility, and therefore,
the BCS could be considered a potential predictor of reproductive status [91].

Genomic selection based on heritable and genetically correlated traits such as linear
conformation traits may represent an alternative approach to improve feed conversion
efficiency by enhancing the expression of genomic traits in phenotypic traits [92]. Never-
theless, the genetic association and correlation of several specific traits such as methane
(CH4) production, body conformation, and health traits have shown low heritability in
Holstein dairy cattle [93]. Hence, the use of genomic selection to estimate the functional
life of dairy cattle based on conformation traits is possible, but adequate strategies must
be proposed to control and regulate the functional traits of productive and reproductive
interest for dairy cattle operations. Therefore, genomic selection for linear conformation
traits in dairy cattle constitutes an interesting tool that proves the association of multiple
traits, increasing the power of the analysis of the complete spectrum of phenotypes that
could be affected by variants associated with genomic traits. Thus, the linear conformation
indexes could help to simplify the information given for each trait related to new variables.
This result could be beneficial for the genetic improvement of the dairy cattle population
(Figure 2).

2.6. Genomics Toolkit

The use of genomics tools in the context of genetic improvement in cattle plays an
important role in animal selection programs [94]. At present, genomic information in dairy
breeds is considered fundamental for the operation of breeding programs since it notably
contributes to estimating the expected performance of the progeny and the real index of
inbreeding in a highly precise and fast way [18].

Different studies over the last decade covering “systems genetics” or “systems ge-
nomics” approaches have tilted research towards complex traits that have been measured
through the implementation of “omics” technologies [95]. Simultaneously, several predic-
tion models have been gradually developed involving normal or Bayesian distributions
within each trait by using single-step models to multi-trait, or even more complex analyses
such as multi-breeds which have been considered for cross prediction [96]. Notably, one of
the greatest advances of the last decades leading to the development of tools for the genetic
improvement of cattle was the discovery of the genome [97]. The use of high-performance
genomics in cattle selection has shown a remarkable improvement, directing the biological
and genetic progress of different traits and indices in various animal production systems [1].

Recently, several genomic analysis techniques have been developed for dairy cattle
that are associated with different genetic traits in the fields of production, reproduction,
health, animal welfare, linear conformation, and adaptability [98]. Accordingly, genomics
has been evolving and providing selection tools for several dairy breeds. Therefore it is
perfectly suitable for implementation in genetic improvement programs, incorporating
additional and future traits [2]. Other authors pointed out that the application of genomics
has increased the understanding of the expression and heritability of genotypic traits and
indices to improve production performance, and appropriate practices in reproductive
programs [98]. Currently, the use of genomic information has proven to be an efficient
methodology in the validation of kinship, adjusted mating, and strategies of conservation
of desirable traits in dairy cattle [2].
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Figure 2. Overview of the impact of genomics on several dairy science topics. (1) Method used for
the direct selection of heritable measures of gene expression. (2) A statistical framework for genomic
estimations. (3) Genomic relationship matrices for highly accurate estimation of genomic estimated
breeding values (GEBV). (4) Unique data resolution methods in very large animal populations;
GS = iterative Gauss–Seidel; PCG = preconditioned conjugate gradient; one-step GREML = genome-
based restricted maximum likelihood used for >50,000 genotyped animal populations. (5) Analysis
of the genetic diversity determining population structure, performing high-density genetic maps
and providing genotypes for genome-wide association analysis. (6) Determination of the genomic
inbreeding footprint for a specific subpopulation by estimating the individual autozygosity. Under
each dairy science topic (production, reproduction, health and animal welfare, environment, linear
type traits) examples of relevant traits studied through genomic tools to date are listed.

The accuracy of selection for most high-complexity traits (production, reproductive,
and linear conformation traits) can be affected by several factors such as the method of
prediction used, the proportion of the categories (sires and cows), or the genetic relation-
ship between traits [99]. Similarly, other authors indicate that discovering the effects of
dominance traits regarding genetic additive traits helps to properly understand the genetic
variation of complex traits, such as fertility in dairy cattle [100].

Among the potential uses of genomic analysis in dairy cattle breeding, direct selection
of heritable measures of gene expression is available and specifically called expression-
assisted selection and genomic genetic selection of QTL and eQTL (expression quantitative
trait loci) [95]. In this sense, the objective of genomic evaluation on the different genetic
traits is to achieve an increasingly accurate selection prediction. For this purpose, different
software, sequencing methodologies, and data analysis have been improved, adapted, and
implemented. For example, cross-validation methodologies have been applied using the
Bayesian model approach (BayesB) and genomic relationship matrices (G-BLUP) [101].
These matrices incorporate new traits and enhance correlation analyses that could replace
animal model programs commonly used in traditional genetic evaluations [102]. One of the
major advances obtained to date has been the implementation of several computer meth-
ods (flexible software), which include models like SNP-BLUP, genomic BLUP (GBLUP),
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and genomic BLUP of a single step (single-step genomic best linear unbiased prediction,
ssGBLUP) to carry out studies of genome-wide association (GWAS), genomic prediction
and estimation of parameters, taking into account the index of inbreeding [103,104]. These
models implement unique data resolution methods and very large animal populations
including finite Cholesky decomposition, iterative Gauss–Seidel (GS), or preconditioned
conjugate gradient (PCG) [105]. The one-step GREML technique (genome-based restricted
maximum likelihood, GREML) is designed to be applied to populations larger than 50,000
genotyped animals [106].

An improved and more accurate methodology for genomic prediction has recently
been proposed for new individuals with a genotype, with and without phenotypes [107].
This methodology recycles parts of the inverse calculations of the coefficient matrix that
do not change and combines them with those that do change from one animal to another
without re-genotyping the entire population [107]. However, other studies describe that
the methodological basis for estimating the index of genetic merit and the accuracy of
predictions depends on the number of independent chromosome segments (genomic
structure) of the target genome associated with the trait [108]. Definitely, for certain traits,
the rate of genetic improvement has almost doubled when SNPs associated with state-
of-the-art software are used, and besides, SNPs are being developed for the analysis of
different animal populations [109]. In this sense, for instance, the Holstein breed evaluation
system could not be useful for the Jersey breed in terms of some traits [110]. Consequently,
we propose that genomic systems for the evaluation of dairy cattle cannot be extrapolated
for the evaluation of beef cattle and vice versa.

2.7. Methods in Genomics

Genomic evaluation is currently present in the leader dairy-producing countries
worldwide. The discovery of the genomic analysis in the last years has notably improved
production features (genetic merit) in most of the dairy cattle breeds [111]. However, much
remains to be done as significant reductions have been observed in the genetic merit of
animals for certain traits such as health, reproduction, fitness, and adaptability, which can
compromise animal welfare [112]. Consequently, the reliability and accuracy of genomic
analysis in breeds such as Holstein can be affected when animals of different origins (sires
and dams) or different genetic relationships are included [99].

Although genomic analysis and derived applications have a very important role in
the selection of economically relevant traits in dairy cows, the available reports referring to
new traits have not yet been clarified in an extensive and detailed manner for specialized
meat cattle breeds [113]. In this regard, several studies consider it important to improve
predictive methodologies for current genomic traits as well as incorporate new traits that
provide high reliability [3,109].

The success of genetic evaluation applying genomic analysis information derived
from breeding and selection programs have shown to be an efficient methodology to
obtain higher genetic gain rates while reducing selection times and controlling the inbreed-
ing coefficients in dairy cattle populations [98]. Likewise, analyses of genetic diversity
in various Irish cattle dairy breeds by using SNPs considered the correlations with the
different coefficients of genomic inbreeding and pedigree to maximize heterosis in breed-
ing strategies [114]. The most accurate estimate of the inbreeding rate can be associated
with the results obtained from the analysis of genomic data [115]. All research about this
methodological framework describes genomics as a fundamental tool for understanding
the functionality of genetic traits in dairy cattle. Thus, for instance, commercial individuals
of the Holstein cattle breed in the USA have been studied and genetic predictions on health
and welfare traits (placental retention, metritis, ketosis, abomasum displacement, mastitis,
and lameness) have been satisfactorily obtained through genomics. Furthermore, analyses
of the welfare traits in young cattle have been reported that can be used to effectively
predict significant differences in future individual health performance [64]. In recent years,
genomic analysis has also allowed us to understand the degree of association between
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various traits within a specific individual and within different populations, and therefore
determine associations of genomic regions with other traits to appreciate their expression,
evolution, and prospects for future performance [116]. Recently several studies described
such associations between production, reproductive and other traits. For example, genomic
predictions have been estimated for spermatogenic functional fertility traits [117] associated
with age at puberty, age at first birth, and gestation status traits in animals [118].

Recently, many applications of genomics have emerged in the animal science field. Sev-
eral countries leading in genotyping, including the United States through its Department
of Agriculture (USDA), have already begun to conduct genomic evaluations of production
and health traits in Holstein, Jersey, and Brown Swiss breeds [119]. Furthermore, genomics
of mitochondrial DNA has allowed the classification of animals into specific subspecies and
genetic lines [13]. A recent study shows reduced efficiency and low reliability of genomic
prediction in small populations of dairy cattle [120]. However, other authors, using high-
density genomics (SNPs), express that genomic selection of several breeds has increased
the accuracy of genomic evaluation in small population breeds that do not have reference
populations [121]. Regardless of the reference population, adding more genotyped animals
to genomic evaluations would significantly increase genetic gain and reduce the rate of
inbreeding in the offspring [122]. Accordingly, high-density genotypes, reference geno-
types, and those already available from several dairy breeds would improve the accuracy
of estimation of genomic evaluations of breeds with small populations [123]. Therefore, the
genotyped candidate animal without progeny may also contribute information to genomic
evaluations, affecting the estimation of other traits as well [124].

In recent years, several studies dealing with the genotyping of continuous homozy-
gous segments (runs of homozygosity, ROH) have been generated, providing a new way
to assess the degree of genomic inbreeding [125]. In addition, when very little data is
available for genotyping analysis, several strategies are suggested for the genomic evalu-
ation in dairy breeds such as pedigree BLUP, sire-model genomic BLUP, genomic BLUP
univariate-male/female, and also genomic BLUP bivariate to increase the accuracy of
genomic estimated breeding values (GEBV); [126]. This indicates that genotyped females
would improve the accuracy of GEBV concerning the progeny records of the sires evaluated.

Several studies have used genomic selection in high-yielding Holstein and Jersey
cows to determine the degree of association of the components of additive variation and
dominance for fertility and milk production traits [127–129], and to identify dominance
effects for production traits but not for fertility traits [100]. Among the major advances
in genomic analysis, the development and standardization of the genomic evaluation
system based on SNPs have been described. This system has been largely introduced
for the analysis of bovine embryo biopsies with a precision similar to that of an adult to
minimize the generation intervals as much as possible [109]. Likewise, SNPs have allowed
the identification of haplotypes with different selective pressures and evolutionary patterns
likely due to a diverse genomic selection process produced during cattle domestication,
breed formation, and recent genetic improvement [130]. Finally, several studies have
concluded that genetic gain has considerably increased through the application of genomic
selection [8]. However, simultaneously to genetic gain, a significant growth in inbreeding
rates has been observed in certain breeds such as Holstein and not in others such as
Montbéliarde and Normande [40]. All the above references are intended to provide a
fundamental understanding of the impact of genomic evaluation on various current and
future traits in dairy breeds.

2.8. Emerging Genomics: Nutritional, Metabolic, and Environmental Genomics

The genomics of nutritional and metabolic traits related to the environment opens
possibilities to develop novel concepts for production functionality in dairy cattle popu-
lations. Understanding the mechanisms through which genes are expressed and interact
with the environment is of remarkable importance because it allows correcting undesirable
features and including other traits of zootechnical interest.
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Genomic analysis has recently proven to be an efficient methodology to estimate
dairy cattle traits not traditionally considered important. Consequently, the interest in
production traits in the dairy industry has led several researchers to study specific related
genes. For example, several genes have been described that are differentially expressed
during lactation and participate in biological processes such as the development of the
mammary gland, protein and lipid metabolism, signal transduction or cell growth, and
differentiation [61]. Other studies based on genomic analyses have correlated energy
balance traits expressed as energy/protein ratio, somatic cell count, and mastitis to improve
the prediction of health traits in primiparous dairy cows. Furthermore, several authors
suggest that these traits should always be included in selection and genetic improvement
programs [131]. On the other hand, regions of the genome have also been identified as
involved in the regulation of the immune system and the several metabolic processes in
Guernsey, Jersey, and Holstein cattle [132]. Besides, other genomic regions associated with
ketosis susceptibility (metabolic health) have been identified in Jersey cattle [133], as well
as regions related to additive genetic variation of the incidence of milk fever [134].

Regarding metabolic activity, genotyping work has been done in Holstein dairy
cattle based on the number of births (first, second, and third births) highlighting the
existence of high genetic correlations between non-protein nitrogen (MUN) and several
production [135] and reproductive traits [136]. In addition, genomic selection for body
energy traits and blood metabolites could facilitate genetic improvement of fertility and
overall reproductive efficiency of dairy cattle [137]. A new role for urea in reducing egg
competition and modifying embryonic gene expression has also been observed [138].

In countries at the forefront of genomic evaluation, such as Australia, new traits
such as feed efficiency and heat tolerance have been included in association with health
traits [139]. Thus, to understand the biology of feed efficiency, genomic selection has
incorporated residual feed intake (RFI) as an important economic and environmental trait
that has been linked to production levels, feed costs, and methane emissions [140]. This
is reinforced by studies that indicate that genomic information has increased predictive
reliability for RFI enhancement compared to the exclusive use of pedigree information [141].
Consequently, the appropriate approach to genomic selection lies in the understanding that
it represents an important tool for introducing and associating new performance-oriented
traits in dairy cattle breeding.

Finally, some authors have established genomic reliabilities for different traits eval-
uated in dairy cattle breeds between 60 and 75%, and in new traits, they could be under
50% [139,142,143]. Consequently, the lower genomic reliability of new traits could re-
duce the overall reliability of the index [139]. In conclusion, improving the reliability and
accuracy of predicting traits could include phenotypic data from reference populations,
sequence data, and gene expression studies (Table 1).
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Table 1. Comparison of methods by pedigree and genomic tools for the estimation of genetic merit in dairy cattle

Trait Prediction by
Pedigree Tools

Prediction by
Genomic Tools

Reliability
High, depending on the size of the

progeny studied (between 46.00 and
72.00%) [144]

Very high (between 73.30 and 93.50%)
[145]

Time to obtain predictive data
(Progeny Testing)

High (A long waiting period must be
expected to have sufficient production

data in children and grandchildren that
in animals of long generations like cattle

can take years) [96]

Very low. A sample of ear cartilage tissue
(DNA) is sufficient and the waiting time

for the laboratory results is relatively
short. Animals can be genotyped as early

as being newborns [96]

Time involved

High, because it requires taking and
analyzing production data from

generations on a large number of
daughters and granddaughters [11]

Low [11]

Cost Low-medium
[11]

High (but constantly decreasing as
technology advances)

[11]

Modeling with unknown parent groups
to model differences in genetic merit with

0.3 and 0.1 heritability accuracy

Estimation of minor and more biased
predictions. Suggests poor estimates of
genetic trends despite having little bias

for validations in young genotyped
animals [146]

Estimates accurate and unbiased
predictions for young animals and, at the
same time, adequately considers genetic

trends [146]

Estimation of genetic variance and
genetic merit variance predicted through

the use of genome ratio or pedigree
matrices

Reliability: young bulls;
without pedigree: 0.00;

known sire: 0.22;
with full pedigree: 0.35 [147]

Reliability: young bulls;
without pedigree: 0.48;

known sire: 0.58;
with full pedigree: 0.68 [147]

Pedigree and genomically obtained prediction data can be used in combination. This is highly desirable to obtain higher accuracy in the
estimation of genetic merit. As daughter information gradually becomes available, it may be included in the bull’s genetic evaluation, and
the reliability of the bull’s data will tend to increase. [11,96,144–147].

3. Futuristic Genomics: Gene Edition

Genome editing comprises a set of genetic engineering tools that allow the direct ma-
nipulation of a sequence in the genome of an organism by removing, inserting, or replacing
nucleotides for scientific or commercial purposes. This technology employs nucleases (en-
zymes coined as “molecular scissors”), which hydrolyze or catalyze the double-stranded
DNA in a very precise way at specific sites in the genome [148]. Genome editing has
transformed genomics in the last decade, incorporating CRISPR (clustered regularly in-
terspaced short palindromic repeat), a technology application based on the prerequisite
knowledge of the genes and the whole genome [149]. CRISPR sequences form the basis
of the CRISPR-Cas adaptive immune systems of prokaryotes [150]. This technology was
developed during the process of understanding the properties of this unique defense mech-
anism in arcanobacteria [150]. Thus in 2012, the potential of CRISPR-Cas systems to trigger
specific genetic modifications that can be applied to virtually any organism was discovered,
and a year later, it was successfully applied to make specific modifications in the genome of
mammalian species [150]. This technology has become one of the most promising tools in
human medicine and animal, plant, and microorganism biotechnology [151] and allows the
efficient engineering of the genome by targeting either individual cells, whole organisms,
or both, while controlling transcription or modifying the epigenome [152]. Furthermore,
CRISPR technology is starting to be used in genetic improvement programs for dairy
cattle [153]. Although genome editing has led to fundamental genetic changes, the greatest
attention is being given to the use of CRISPR-Cas9 due to its application in the genetic
modification of germ cells (genomic editing of the germline) and human embryos, as
well as in studies of the interaction of the genome with the environment, agriculture, and
livestock issues [154].

The Cas9 protein is derived from the CRISPR Type II bacterial immune systems
(CRISPR/Cas9) that can be easily programmed to target new sites by altering the RNA
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guide sequence [155]. Recently, several novel types of systems associated with single
polypeptide CRISPR have been discovered, including Cas12a/Cpf1 and Cas13a/C2c2 [156].
These additional systems have unique structural and functional characteristics, which pro-
vide new opportunities for applications in genome editing, including nuclease regulation
and delivery, target specificity, and host repair diversity [148]. Therefore, the develop-
ment CRISPR-Cas-based tools have made the editing of specific gene sequences easier
and more reliable. For example, in Japanese black cattle (Wagyu) there is a recessive type
of pathology called isoleucyl-tRNA synthase syndrome (IARS), and thanks to the use of
CRISPR-Cas9-assisted genome editing, a single mutated nucleotide in the IARS gene was
replaced with the appropriate nucleotide to successfully correct this mutation [157].

Another cutting-edge technology in the field of genome editing besides CRISPR
involves the transcription-activating nuclease (TALEN). This system can be artificially
engineered to bind to a chosen DNA sequence, allowing it to be cut at desired locations for
use in genomic editing or in situ genome editing, a capability shared with other nucleases
like zinc finger nucleases (ZFN) that make use of the target proteins that bind to the DNA
at specific locations [155].

Homologous recombination has been used to edit genomes in different animal
species [158]. One example is the genetic modification of pigs as disease models or as
organ donors for xenotransplantation targeted for humans [159]. Examples involving
other farm animals include goats that produce human lactoferrin [160] and cattle that
produce human serum albumin in milk instead of cow native milk proteins [161]. Antiviral
proteins such as lysostaphin [78] and human lysozyme in the mammary gland [162]
have also been successfully developed in bovine species. Furthermore, in dairy cattle,
hornless animals [163] and non-allergenic dairy animals have been obtained [164]. Among
other zootechnical applications, genome editing could help dairy cattle to better adapt to
environmental conditions or specific production systems, which could improve fertility,
growth, health, and animal welfare in herds [153]. Besides, it would allow the introduction
of beneficial alleles such as those for heat tolerance or disease resistance into dairy cattle
breeds while maintaining or even accelerating the rate of genetic gain already achieved by
conventional breeding programs [165].

Regulatory perspectives may slow the widespread implementation of genome editing
in animals. Several international organizations consider that genome editing, used to
replicate a “natural” mutation, should not be of regulatory concern because it would be
equivalent to natural zootechnical management of existing alleles from the natural gene
pool. On the contrary, the US FDA considers that there is a need for regulatory oversight
of intentional genomics in animals because the editing of one target allele or nucleotide
may indirectly or accidentally result in editing another with potentially detrimental effects.
For example, there could be modifications affecting food safety due to changes in protein
expression, interruption of protein functions, protein over-expression (e.g., hormone re-
ceptors, etc.), or the creation of new expression products [166]. Therefore, it is important
to note that the FDA has integrated the regulation of intentional genomic alterations in
animals into its veterinary regulatory program [167,168]. However, focusing specifically
on dairy cattle, CRISPER technology has the potential to either modify, restore, or both,
genetic diversity by allowing dairy cattle genetic resources to be used effectively. Further-
more, genome editing technologies can reduce costs in the long term while meeting animal
health requirements in animal breeding and contribute to the creation of new biological
industries. From their origins, studies based on gene editing technologies are exponentially
expanding, suggesting that the associated applications could avoid the loss of excellent
genomic resources in dairy cattle. For example, these technologies could develop into
innovative methods for faster progress in the selection, breeding, and improvement of
desirable production and reproductive traits in dairy cattle in the future. Moreover, the
incorporation of other technologies such as nanotechnology, stem cell therapies, and ad-
vanced bioinformatics software could boost the potentials of genome editing tools such as
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CRISPR and open new horizons in the manipulation of the genome in the animal science
context.

4. Conclusions

The application of genomic analysis in dairy cattle selection provides very interesting
predictions for the genetic improvement in the short/medium term while controlling the
inbreeding coefficient, reducing the generational interval, and improving the selection
of progenitors, thus generating more productive genetic lines. The estimation of the
different traits in dairy cattle is more efficient through the use of data derived from genomic
analysis than through data derived from the pedigree. However, the association of both
methodologies significantly improves the estimates in terms of prediction and accuracy.
Genomic trait estimation accuracy must be supported by multi-generation databases to
make predictions more consistent. This will be most noteworthy with the incorporation of
new traits into the evaluations, considerably improving selection programs based on such
estimates at both the individual and population levels. Selection rates based on genomic
analysis provide a better understanding of the biology of the animals, new sources of
data, novel genome editing methodologies, and pertinence for changing economic and
environmental conditions. This becomes highly relevant as estimations derived from dairy
cattle genomic data regarding adaptability traits in different environments or settings are
more needed than ever. Genomic methodologies are a perfect fit during these challenging
times of global climate change.

Dairy cattle genomic-based selection will be used in the very near future for genetic
selection in the beef cattle industry and other animal species. The frequency of rare
alleles, recessive genes, and new mutations could generate genetic variability of desirable
economic traits. Thus, the information derived from genomic analysis represents an
important alternative for the production of databases of great interest in animal sciences
and novel genome editing applications, accelerating the process of genetic evaluations in
dairy cattle.
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