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Simple Summary: The ornamental fish trade is a growing, developing global industry. However,
on a scientific level, most aspects of aquarium fish nutrition remain to be a totally uncharted territory,
awaiting to be explored. Thus, a feeding trial was conducted to compare the long-term effects of
commercial flake feeds and dietary supplementation with natural food on the condition of neon
tetras and glowlight rasboras, a setup which exemplified ordinary household community tanks.
Even though there were no differences in growth between experimental groups, laboratory analyses
revealed that the used feeding strategies had different outcomes in each species. Particularly, natural
food appeared to cause a pathological lipid accumulation in the livers of rasboras, while no such
effect was found in the tetras. The study highlights the need to conduct more in-depth feeding
studies on ornamental fish, with special attention paid to their taxonomic origin and diversity.

Abstract: Little to no research has been conducted thus far regarding aquarium fish nutrition. In order
to ensure the welfare of house-kept ornamentals, such studies should take into account that there are
distinct biological differences occurring between different fish species/taxa, especially in regard to
the structure of their digestive organs. Accordingly, a 12-week trial was executed to assess the effects
of two commercial flakes and a mix of lyophilized natural food on the condition of co-reared neon
tetras, Paracheirodon innesi (Characidae), and glowlight rasboras, Trigonostigma hengeli (Danionidae).
The four feeding groups were as follows: (T)—Tetra flakes; (O)—Omega flakes; (TO)—Tetra + Omega;
(TOL)—Tetra + Omega + Lyophilizate (twice a week). There were no differences in final body weight
(FBW) between the feeding groups of either species, but in the case of neon tetras, FBW increased
significantly from the initial value only for the T group. However, histological observations and
measurements of digestive organs (livers, intestines) showed pronounced differences between the
two species. The supplementation with natural food in group TOL caused lipoid hepatic degeneration
only in the rasboras. The healthiest histological structure of livers and longest intestinal folds were
found in group T of the tetras and group TO of the rasboras. Whole-mount staining for bone and
cartilage did not reveal any significant deformities or differences in terms of bone mineralization.
In conclusion, it was outlined that concurrent feeding of co-housed, anatomically diverse ornamental
fish species is a highly ambiguous task, because the nutritional strategy applied for a community
tank may yield radically divergent effects, most of which may remain unnoticed when depending
only on external body observations and measurements. Most emphatically, this was highlighted
in regard to the dietary supplementation with natural food—although no significant effects were
observed in neon tetras, severe lipoid liver degeneration occurred in glowlight rasboras.

Keywords: ornamental fish; aquaristics; histology; liver; digestive organs; skeletal double staining

1. Introduction

The ornamental fish trade is a vast market of near-global range which generates an es-
timated yearly income surpassing tens of billions euro, with freshwater species accounting
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for more than 90% of the trade [1,2]. These numbers obviously pale in comparison with
the sizes of both the aquaculture production and capture fisheries [3], but it is a distinct
and noteworthy industry nonetheless. It is, therefore, surprising that there is little to no
scientific information available in regard to various aspects of aquarium fish keeping,
such as dietary preferences or recommended feeding regimes for different species [4].

Feeding is arguably the most important variable in the course of fish rearing, both from
a commercial and animal welfare standpoint. Therefore, the composition and contents of
formulated inert diets are being dissected thoroughly in aquaculture studies, in a species-
specific manner, with the main focus being placed on protein and lipid sources [5–10],
but even advanced additives such as nucleotides [11], prebiotics [12] and probiotics [13]
are in the scope of investigation. Furthermore, means to improve natural food, which is
crucially important during early weaning, are being studied profoundly [14].

In comparison, the majority of scientifically verified reports about aquarium fish
nutrition also concern the application of natural food for larval stages [15–24], but there
are mostly vague reports about diets for fish which already underwent larval metamor-
phosis [25–35]. More attention has thus far been paid only to the Siamese fighting fish,
Betta splendens [36–44], commonly known as the “betta”. For this species, natural food in
the form of mosquito larvae (Culex sp.) apparently improves its coloration [39,43]. Further-
more, best fecundity was attained when using at least 50% of Tubifex sp. larvae in their diet,
in expense of artificial feed [44], and when providing two meals per day (growth rate was
improved, too) [36]. Similar results (better feeding efficiency and breeding indices) were
shown when using Spirulina sp. as a supplementary ingredient in formulated pellets for
poecilid livebearers [32,33]. In addition, a highly diversified mixture of natural and artificial
food proved to be the most preferable for the green swordtail, Xiphophorus hellerii [27],
while different live feed were shown to be an upgrade from commercial flakes when
fed to the guppy, Poecilia reticulata [35]. Finally, nutritional studies on the model species,
the zebrafish Danio rerio (Danionidae), have shown that intensive rearing with only Artemia
sp. may drastically accelerate fish growth and maturation [45], and HUFA-enrichment
of Chironomidae sp. larvae also improves fecundity [46]. However, well-balanced artifi-
cial diets can be highly beneficial for the overall performance of zebrafish, too [47–50]
and dietary fish meal should not always be fully replaced with live food [51]. All in all,
these results generally point toward a presumption that natural food is highly desirable
in the nutrition of aquarium fish, especially when used in addition to formulated feed.
Unfortunately, apart from some of the aforementioned studies on the betta [40–43] and
zebrafish [45,47,48,51], most of the scientists cited above [26–39,46,49,50] did not use almost
any analytical methodology other than standard growth parameters. Thus, they did not take
into account that there are distinct internal biological features which distinguish the studied
species, which may be of consequence during their co-housing in community tanks.

In terms of taxonomy, ornamental fish are a highly heterogenous collective. Neverthe-
less, they are classified together in ambiguous groups (such as herbi-, omni- or carnivores)
by commercial feed producers [52], with disregard for essential differences in their anatomy,
morphology and physiology. To outline an example, many popular, small freshwater
species (<6 cm total body length) belong to two teleost families—the Characidae (“tetras”)
and the Danionidae (“danios”, “rasboras”). Both families are classified, not-so-distantly,
within the series Otophysi [53], but they differ in regard to the structure of their alimentary
tracts, as danionids possess highly specialized pharyngeal teeth instead of typical maxillary
teeth [54,55] and do not have a typical stomach (they are agastric) [56].

The neon tetra, Paracheirodon innesi (Myers, 1936) is a South American characid and
is one of the most well-established and commercially important species in the aquarium
hobby [57]. In fact, breeding protocols were already developed years ago, including actual
scientific research [58–61]. Meanwhile, some relatively basic feeding-oriented studies were
conducted on the species [29–31,62–67] and its congener, the cardinal tetra Paracheirodon
axelrodi (Schultz, 1956) [34], but only standard body morphometrics were reported, without
providing any insight into the structure and condition of internal organs.
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The glowlight rasbora, Trigonostigma hengeli (Meinken, 1956) is an ornamental danionid
species from Borneo and Sumatra [68]. It is by far not as popular as P. innesi, or even its
own congener—the harlequin rasbora, Trigonostigma heteromorpha (Duncker, 1904)—both
of which are already recognized as highly domesticated species [69]. Truly, apart from its
original taxonomic description and reports about its natural populations, this species has
not been the object of any published scientific experimentation.

When assessing the effects of feeding in aquaculture studies, the histology of the
digestive organs is naturally one of the major features which is being looked at [70–72];
however, skeletal performance (mineralization) and feeding-induced deformities are also
often described in various farmed fish [73,74]. While some of the aforementioned papers
included relatively advanced analytical methods, such as digestive enzyme activity [41–43],
histology has never been used before in feeding-related studies on ornamentals, with the
exception of the zebrafish [45,51]. Skeletal development of aquarium fish is also a sparsely
discussed topic. Thus far, it was only shown that low dietary phosphorus content results
in vertebral column deformations in the guppy [75], while the deficiency of vitamin C
causes comparable pathologies in juvenile oscars, Astronotus ocellatus (Cichlidae) [76].
Deformities also appear in zebrafish stocked at too high densities [77], but early transition
from Artemia sp. to micro-diets [48] and adequate dietary phospholipid sources [47] reduce
the occurrence of such anomalies.

Therefore, to improve the state of knowledge about this little-studied topic of aquar-
ium fish nutrition, an experiment was designed to imitate a simple-yet-typical, two-species
setup found in home aquaria, with P. innesi and T. hengeli used as representatives of the
characid and danionid families, respectively. The main aims of the study were (1) to evalu-
ate the effects of two commercial flake diets on the condition of co-housed, anatomically
disparate ornamental fish and (2) to challenge the legitimacy of the common habit of aquar-
ists to supplement formulated diets (flakes and pellets) with natural food. The ensuing
laboratory analyses involved regular histological analyses of the digestive organs (includ-
ing morphometrics of liver cells and intestinal folds), as well as the assessment of skeletal
performance using whole-mount double staining for bone and cartilage.

2. Materials and Methods
2.1. Fish and Experimental Setup Preparation

Sub-adult specimens (~2 cm total length) of both neon tetra and glowlight rasbora
were purchased from a local wholesaler and quarantined for two weeks in a 100 L tank,
with highly diversified food provided twice daily, ad libitum. The pool of administered
food included four different commercial flake products, as well as spirulina, frozen brine
shrimp and frozen bloodworms. Afterwards, all fish were weighed (body mass, BM) and
16 specimens of each species were euthanized in 0.5‰ MS-222 solution (Sigma Aldrich
Co., St. Louis., MO, USA) to provide a point of reference sample (named “Initial” group)
for laboratory analyses.

The experimental setup was constituted by the co-stocking of remaining quarantined fish
into eight 20 L aquaria, with eight tetras (mean initial body weight [IBW] = 272 ± 49 mg) and
eight rasboras (mean IBW = 227 ± 67 mg) per each tank. In order to model the conditions of
regular home aquaria and to minimize inter- and intraspecific antagonisms, four different
artificial plants were placed in every tank and the bottom was lined with basalt substrate.
Each aquarium was equipped with its own 25 W thermostat heater and cascade filter.
The maintained temperature was 25 ± 0.5 ◦C and other water parameters were monitored
daily using ProAquaTest Easy 7in1 test strips (JBL GmbH & Co. KG, Neuhofen, Germany).
Tank water was replaced once daily (20% of the volume) with freshly demineralized water
in order to keep its parameters within the following ranges: pH ≈ 6.4, nitrates <50 ppm
and nitrites <10 ppm. A 10 h:14 h artificial photoperiod was provided throughout the
entire study (ceiling light was switched on at 8:00–18:00).
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2.2. Feeding Experiment

A duplicate of tanks with the co-stocked tetras and rasboras was assigned to one of
four experimental feeding groups, with food being offered twice daily (at 9:00 and 16:00)
and the daily rations equaling ~3–4% body weight (slightly exceeding the maintenance
feeding requirement suggested for neon tetras [29] and zebrafish [78]). Non-eaten particles
and feces were siphoned out after every feeding. Three different feeds were used in the
study: TetraMin Flakes (Tetra GmbH, Melle, Germany), Omega One Freshwater Flakes
(Omega Sea LLC, Painesville, OH, USA) and a pulverized lyophilizate mix of natural food
(Katrinex, Sosnowiec, Poland). The basic proximate composition of the feeds (protein, fat,
fiber, ash and moisture) was analyzed according to AOAC methods [79]. The ingredients
and compositions of the feeds are shown in Table 1.

Table 1. Proximate composition and main ingredients of the three feeds used in the study.

TetraMin Flakes Omega One Freshwater Flakes Lyophilizate Mix

Crude protein * (%) 47.8 43.3 36.4
Crude fat * (%) 10.4 11.6 7.7

Crude fiber * (%) 2.7 0.9 5.4
Ash * (%) 6.3 8.0 4.9

Moisture (%) 5.7 6.6 5.2

Main ingredients

Fish and fish derivatives,
Cereals, Yeasts,

Vegetable protein extracts,
Mollusks and crustaceans,

Oils and fats, Various sugars
(Oligofructose 1%), Algae,

Minerals

Salmon (20%), Halibut (16%),
Pollock (14%), Herring (13%),

Shrimps (11%), Krill (10%),
Wheat Flour (9%), Wheat Gluten (4%),

Kelp (2%)

Lyophilized:
krill (20%),

tubifex (20%),
brine shrimp (20%),
bloodworms (20%),

cyclops (20%)

Additives Vit. A (37,680 IU/kg),
Vit. D3 (1990 IU/kg)

Vit. A (15,400 IU/kg), Vit. C (0.88 g/kg),
Vit. D3 (2200 IU/kg), Vit. E (750 IU/kg),

Vit. B2 (22 IU/kg), Vit. B3 (0.11 g/kg),
Vit. B5 (0.015 g/kg), Vit. B7 (0.055 g/kg),
Vit. B9 (0.08 g/kg), Vit. B12 (0.055 IU/kg),

Inositol (0.11 g/kg), Astaxanthin (0.6 g/kg),
Lecithin (0.5 g/kg), Tocopherol (0.1 g/kg),

Ethoxyquin (1 g/kg)

N/A

*—Calculated as a percentage of dry matter (DM).

The four experimental feeding groups in the study were as follows:

• Group T was only given the Tetra flakes;
• Group O was only given the Omega flakes;
• Group TO was alternately given the Tetra and Omega flakes;
• Group TOL was alternately given the Tetra and Omega flakes, but also the lyophilizate

mix (only twice a week, instead of one of the flake meals).

The detailed feeding schedule is outlined in Table 2. This feeding regime was chosen
to represent a typical approach of hobbyists, who usually attempt to diversify the diets
of their pets by alternating different commercial flakes with some forms of natural food
(usually frozen or lyophilized). Therefore, flakes T and O were not mixed, but kept and
administered separately, as this is common practice in aquaristics. Two meals per day is a
schedule which was suggested in previous research on other ornamental fish [36,41].

Additionally, fish were deprived of food one day per week, which was supposed to
resemble a “starvation day”, commonly practiced by hobbyists. The commenced experi-
mental feeding lasted for 12 weeks (time of rearing, t = 84 days).
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Table 2. Weekly feeding schedule applied for the four experimental groups during the trial period of 12 weeks.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Meal Time 9:00 16:00 9:00 16:00 9:00 16:00 9:00 16:00 9:00 16:00 9:00 16:00 9:00 16:00

Group T T T T T T T T T T T T T

No meals
Group O O O O O O O O O O O O O

Group TO T O T O T O O T O T O T
Group TOL T O T O T L O T O T O L

T—TetraMin Flakes; O—Omega One Freshwater Flakes; L—Lyophilizate mix.

2.3. Sampling and Basic Body Parameters

Dead fish were removed daily and final survival rate was calculated. After the trial,
all living fish were starved for an additional 24 h, euthanized in MS-222 and weighed (final
body weight, FBW). The specific growth rate (SGR, % day−1) was calculated from group
means of IBW and FBW, using the following formula:

SGR = 100 × (ln FBW − ln IBW) × t−1.

After weighing, fish were sampled for laboratory analyses. For histology, five tetras
and five rasboras from each group (including the “Initial” group; 50 fish in total) were
fixed in Bouin’s solution for 24 h in 4 ◦C, followed by 48 h in Surgipath Decalcifier II
(Leica Biosystems Nussloch GmbH, Nussloch, Germany) and final flushing with 70%
ethanol, in which they were also kept in 4 ◦C prior to processing. For whole-mount skeletal
assessment, the remaining sampled fish (also including the “Initial” group) were fixed in
PBS-buffered 4% paraformaldehyde for 96 h in 4 ◦C, then flushed with distilled water and
preserved in 70% ethanol in 4 ◦C.

2.4. Histological Analysis

Bouin-fixed fish were subjected to a standard paraffin embedding procedure, using
xylene as the intermediate fluid. Whole fish were sectioned longitudinally using a RM2265
microtome (Leica Biosystems Nussloch GmbH) at 6 µm thickness. Microscope slides were
stained with hematoxylin and eosin (HE). Observations and pictures were made using an
Eclipse Ni-E microscope, equipped with a DS-Fi3 camera and NIS Elements software (all
set parts: Nikon Corporation, Tokyo, Japan).

The nuclear area (NA) and cytoplasmic area (CA) of liver cells was measured for 100 cells
per fish (20 hepatocytes × 5 fields of view × 5 fish per feeding regime; group n = 500), which is
the minimal amount required to neglect the error generated by such planar morphometric
approach, as suggested by Rašković et al. [80]. The nucleo-cytoplasmic index (NCI) was
calculated separately for each cell using the following formula [71]:

NCI = 100 × NA × CA−1.

Intestinal fold length (FL) [81,82] was measured for 30 folds per fish (group n = 150),
which were chosen randomly from the post-pyloric part (neon tetra) or the anterior part
(glowlight rasbora) of the guts. The lamina propria was measured from the base to the tip.

2.5. Whole-Mount Skeletal Analysis

A double staining protocol for bone and cartilage was applied to the paraformaldehyde-
fixed fish, as outlined by Fernández et al. [83,84]. In short, after rehydration, fish were
stained overnight for cartilage with non-acidic alcian blue (200 ppm, 80 mM MgCl2),
similarly followed by alizarin (50 ppm). Afterwards, they were bleached for 3 h (1% KOH,
1.5% H2O2) and then macerated for 3 weeks (0.25% trypsin, 5% Na2B4O7), and rinsed in
dH2O. Then, they were stained for bone with alizarin (50 ppm) for 3 days, rinsed in 1%
KOH and finally preserved and photographed while immersed in pure glycerin, in 6-well
plates. Pictures were taken using a SZ-430T stereomicroscope, with a DLTA6300CMOSSEU3
camera and DLT-Cam Viewer software (Delta Optical, Mińsk Mazowiecki, Poland).
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2.6. Statistical Analysis

Firstly, the obtained numerical datasets were analyzed for normality using Shapiro–
Wilk’s test. For each species separately, the differences in FBW between groups and between
the IBW and FBW of each group were analyzed for significance (p < 0.05) using the non-
parametric Kruskal–Wallis test. Meanwhile, differences in hepatocyte NA, CA and NCI,
and intestinal FL were analyzed for significance (p < 0.05) using a one-way ANOVA with
Fisher’s post-hoc test. All calculations were performed using Statistica v13 (TIBCO Software,
Palo Alto, CA, USA). Parameters were displayed as group means ± standard deviation (SD).

3. Results
3.1. Body Weight, Survival and Other Observations

Basic fish parameters are shown in Table 3. No differences in FBW were found between
any of feeding groups of either species. For neon tetras, only group T had a significantly
higher FBW when compared to each group’s IBW. Meanwhile, all four groups of glowlight
rasboras had a significantly higher FBW than IBW. The SGR was higher in T and TO groups
of tetras (than in O and TOL), while the highest SGR for rasboras was found in group TOL.
In addition, the average SGR of rasboras in the experiment was almost 40% higher than the
SGR of tetras. In terms of survival, pooled group values revealed that tetras had a lower
survival rate (70%) than rasboras (92%) within the whole trial.

Table 3. FBW, IBW, SGR and final survival of neon tetras and glowlight rasboras in the trial.

T O TO TOL

Neon
tetra

IBW (mg) 275 ± 44 269 ± 48 272 ± 50 274 ± 58
FBW (mg) 384 * ± 55 344 ± 72 371 ± 118 343 ± 47

SGR (% day−1) 0.398 0.289 0.371 0.269
Survival 12/16 (75%) 9/16 (56%) 11/16 (69%) 13/16 (81%)

Glowlight
rasbora

IBW (mg) 225 ± 64 229 ± 61 226 ± 56 228 ± 89
FBW (mg) 352 * ± 86 348 * ± 125 359 * ± 81 380 * ± 159

SGR (% day−1) 0.534 0.497 0.548 0.609
Survival 16/16 (100%) 15/16 (94%) 16/16 (100%) 12/16 (75%)

Initial body weight (IBW) and final body weight (FBW) were given as group means ± SD. *—Statistically
significant differences (p < 0.05) between the IBW and FBW of each group.

3.2. Histological Analysis

At first notice, histological analysis of livers revealed cases of lipoid degeneration,
which occurred (mostly) locally within the parenchyma and were observed with varying
frequency throughout the experimental groups, in both species (as illustrated in Figure 1).

The results of morphometric measurements in the livers are displayed in Table 4
(raw data in Supplementary Materials Table S1). Similarly for both species, the mean
NA reached the significantly highest value in the TOL group, while in TO, it was lower
than in both TOL and O groups. In contrary, hepatocyte CA changed differently for each
species: the CA in all four groups of neon tetra diminished in comparison to the “Initial”
group, likewise reaching the lowest values in TO and TOL groups, while a similar pattern
was observed for glowlight rasboras but with a pronounced exception of the TOL group,
which showed the highest CA, significantly higher than in the “Initial” group and more
than twice as high and CA in the TO group. The NCI had the lowest value in the “Initial”
groups of both species, but the highest either in group TOL (tetras) or TO (rasboras).
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Table 4. Hepatocyte parameters of neon tetras and glowlight rasboras in the experiment.

“Initial” T O TO TOL

Neon
tetra

NA (µm2) 20.76 C ± 2.81 21.23 C ± 3.27 22.08 B ± 4.22 20.91 C ± 2.96 23.01 A ± 5.12
CA (µm2) 79.74 A ± 28.21 55.87 C ± 23.97 62.32 B ± 58.42 47.66 D ± 17.39 45.61 D ± 20.15
NCI (%) 28.78 D ± 9.25 45.32 C ± 20.50 44.94 C ± 18.52 49.15 B ± 17.59 59.01 A ± 25.02

Glowlight
rasbora

NA (µm2) 17.23 BC ± 2.51 17.18 BC ± 3.22 17.46 B ± 2.81 16.88 C ± 2.73 18.13 A ± 3.59
CA (µm2) 164.98 B ± 34.77 139.52 C ± 65.13 113.35 D ± 31.34 98.95 E ± 34.41 204.39 A ± 147.00
NCI (%) 10.89 E ± 2.73 14.03 C ± 4.80 16.41 B ± 4.68 18.66 A ± 5.72 12.38 D ± 6.15

Nuclear area (NA), cytoplasmic area (CA) and nucleo-cytoplasmic index (NCI) were given as group means ± SD. Means with no common
superscript letters indicate statistically significant differences between groups (p < 0.05).

Exemplary histological pictures of livers (representative of each groups’ mean hepa-
tocyte CA) are given in Figure 2. The most pronounced cytoplasmic eosinophilicity was
observed in group T of neon tetras and group TO of glowlight rasboras. Cytoplasmic
vacuolization of hepatocytes was noticeable in groups O and TO of neon tetras (group TOL
to a lesser extent), while in glowlight rasboras, it was especially visible in group TOL.

Gross observations of the digestive tracts did not reveal any significant pathologies
in the experimental fish, in neither species. To support the obtained morphometric data,
exemplary histological pictures of measured intestinal folds are displayed in Figure 3.

Morphometric measurements of intestinal FL are displayed in Table 5 (raw data in
Supplementary Materials Table S1). Mean FL changed differently for each species: in neon
tetras, the FL was the significantly highest in group TOL and lowest in TO, while in glowlight
rasboras, the FL in group TO was significantly higher from the other, indifferent groups.
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Table 5. Intestinal fold length (µm) of neon tetras and glowlight rasboras in the experiment.

“Initial” T O TO TOL

Neon tetra FL 157.76 C ± 56.04 259.03 A ± 80.83 231.00 B ± 94.17 171.77 C ± 71.18 215.55 B ± 91.66
Glowlight rasbora FL 158.91 B ± 69.26 157.55 B ± 77.40 160.77 B ± 68.53 179.18 A ± 63.32 159.01 B ± 53.63

Intestinal fold length (FL) was given as group means ± SD. Means with no common superscript letters indicate statistically significant
differences between groups (p < 0.05).

3.3. Whole-Mount Skeletal Analysis

Upon close examination of the axial skeleton of the double-stained fish, no apparent
skeletal deformities were found, neither in neon tetras, nor in glowlight rasboras, with the
sole exception of a minor instance of vertebral compression in a rasbora specimen from
group T (Figure 4). Exemplary pictures of caudal sections of the skeleton of fish from all
experimental groups are shown in Figure 5.
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Figure 4. The image of a skeletal deformity found in a specimen of glowlight rasbora from group T.
The black arrow points towards an abnormal flexion angle (compression) between the 4th and 5th
caudal vertebrae. Whole-mount double staining for bone and cartilage, scale bar = 100 µm.

None of the stained fish of either species demonstrated any pronounced signs of
skeletal demineralization, as all skeletal elements were thoroughly stained with alizarin,
even the tips of fin rays. However, the tissues of glowlight rasboras from the “Initial” group
appeared to bind alizarin in a much stronger way than in the four experimental groups,
resulting in a dark-purple color (even when using excessive illumination). This occurrence
was especially visible when comparing the pictures of the cranium (Figure 6).
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4. Discussion

Anecdotal observations made by hobbyists and fish producers indicate that both
species are relatively mild-tempered, seldomly proceeding with actions such as fin-nipping;
thus, they can be safely stocked in community tanks with other small ornamentals. In the
discussed experiment, however, there were some behavioral interactions, with neon tetras
showing minor acts of both intra- and interspecific aggression, which could have con-
tributed to their lower survival rate. Most of the time, both species were swimming mixed
up together, although P. innesi usually occupied areas closer to the substrate, while T. hengeli
remained closer to water surface. In the study by Saxby et al. [85], a two-fold increase
in the stocking number of individuals (from five to ten) had a profoundly calming effect
on neon tetras and white cloud mountain minnows, Tanichthys albonubes (Cypriniformes),
while also improving their shoaling tendencies. Albeit the initial fish stocks in our study
were in between these numbers (eight per species), it nevertheless will be a reasonable
idea to follow such scientifically verified outlines in future research on small ornamentals
(especially when studying community aquaria), which means keeping the fish in groups of
10+ individuals of each species. It needs to be considered, however, that larger tanks will
likely be required to avoid overcrowding, as this may cause stress and anxiety, and often
accelerates the onset of diseases [86].

The final BW of neon tetras was significantly higher than the starting BW only in
the T group. Among the few papers on P. innesi which could provide a point of ref-
erence [29–31,62–67], it was established that these characids prefer high-protein diets
(>50%) [30,31] and that animal protein provides better growth rates than plant protein [30].
This might be a slight suggestion that of the two tested commercial feeds, the protein
content/origin of TetraMin flakes was preferred by neon tetras, at least due to its higher
total dietary percentage (47.8%, as opposed to 43.3% in the Omega flakes). Unfortunately,
this statement should be treated with extreme caution, as the mortalities recorded in each
group could have had an effect on the final statistical calculation. On the other hand,
the content and ingredients of the two flake diets differed almost completely one from
another, which further prevents us from drawing any credible conclusions regarding this
matter. More advanced nutritional studies, using precisely formulated diets, definitely
need to be conducted to address this ambiguity.

Meanwhile, all groups of glowlight rasboras recorded a significant increase in BW (as
evidenced by the higher SGR values), which possibly indicates their younger relative age
when compared to the tetras. As no studies were ever performed on T. hengeli and only
irrelevant, basic feeding evaluations were made for some other species of the Rasborinae
subfamily [87,88], the drawing of any further conclusions is severely hindered. Conversely,
more and more is known about the nutrition of Danioninae [89], the other popular subfam-
ily of danionids, precisely about their one major representative—the zebrafish. However,
in order to avoid deviating too much from the currently discussed issues, we have included
an expanded commentary at the end of this section.

All in all, it appears that this simplistic approach of comparing only the BW mea-
surements did not reveal any crucial discrepancies between the tested dietary groups,
which was the exact outcome we expected to occur. As we have shown in our previous
nutritional experimentation on juvenile crucian carp, Carassius carassius [82,90], similar
growth rates do not always give the whole picture of the condition of aquarium-reared
fish, particularly in regard to the structure of digestive organs or the skeleton. Therefore,
additional laboratory analyses (focused on body internals) were performed to confirm or
deny whether the studied feeding regimes were truly indifferent in terms of impacting
both of the ornamental species.

In consequence, either an imbalance or overflow of dietary fatty acids was likely
evidenced in the lyophilizate-fed TOL group of glowlight rasboras by gross histological
observations of livers and morphometric measurements of hepatocytes, as emphasized by
their significantly larger and little-stained CA, especially in comparison with group TO.
In contrary, no such difference between these two groups was found for the neon tetras.
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In ichthyological research, it is known that the size and degree of eosinophilicity of these
cells may be a direct indication of lipid and/or glycogen accumulation [91,92], which hap-
pens to be a reversible process [93–95], although in the long term, excessive steatosis may
result in necrotic changes in the organ [96]. However, in fish aquaculture, lipoid liver
degeneration usually coincides with lower growth parameters and arises when fish are fed
exclusively on commercial inert diets [97], marking the exact opposite to sparse natural
food supplementation which appeared to be the causative factor for this phenomenon in
the current trial. In fact, studies on cyprinids: vimba bream, Vimba vimba [98] and crucian
carp [82], as well as the pike-perch, Sander lucioperca (Percidae) [99], all showed that natural
food had a predominantly positive effect on hepatocyte structure (size and vacuolization),
but note that these experiments were conducted on fast-growing larvae or post-larval
juveniles, not on near-adult fish such as the questioned tetras and rasboras.

Nevertheless, it appears to be a quite justifiable presumption that the composition
of lipids in the used lyophilizate mixture was highly inadequate for the rasboras, but its
administration twice per week might have been simply too excessive, as well. In support
of this reasoning, it was revealed that a total replacement of fish oil with vegetable oils in
the diet of gilthead sea bream, Sparus aurata (Sparidae) resulted in increased hepatic accu-
mulation of fat, as well as early signs of developing lipoid liver disease [100], and similar
observations were also made simply for high-fat diets given to this species [91]. The latter
report was backed up by a subsequent study on the Wuchang bream, Megalobrama ambly-
cephala (Cypriniformes), which yielded similar results [101]. Furthermore, an increase of
dietary lipid content (from 5% to 12%) promoted body fat accumulation in the characid
fish, Brycon orbignyanus [102]. Replacing dietary fish meal with black soldier fly, Hermetia
illucens, at rates higher than 50% also caused hepatic steatosis in zebrafish [51].

Meanwhile, when looking at other existing studies conducted on fish closely related
to the two discussed ornamental species, it was shown that prolonged fasting of the
trahira, Hoplias malabaricus (Characiformes) [103] and pond loach, Misgurnus anguillicauda-
tus (Cypriniformes) [104], as well as the cyprinids: common carp, Cyprinus carpio [105] and
tench, Tinca tinca [106] caused a significant decrease of their hepatocytic areas, implying
the depletion of stored lipids and glycogen. In our trial, starvation was definitely out of
the question, but it seems that the combined use of two flake diets in group TO resulted
in a more effective nutrient utilization. However, the cytoplasmic eosinophilicity of neon
tetra hepatocytes was more pronounced in group T (not in group TO as in the rasboras),
especially when compared to the vacuolized hepatocytes in all three groups given the
Omega flakes. This implies that the Tetra flakes are probably more adequate for the tetras
as they allow for a higher glycogen accumulation with lesser lipid vacuoles. Obviously,
specific nutritional studies, oriented towards the preferred dietary lipid content of both
species, would have to be performed in order to verify these claims. At least, it can be
concluded that all fish have been visibly overfed prior to the experiment (during the
quarantine period), as shown by their large hepatocytes in the “Initial” groups.

In addition, the nuclear size and shape of hepatocytes is a supportive indicator of
the metabolic condition of the liver, with shrunken, amorphous nuclei implying lower
levels of nucleic acid transcription, which in turn leads to impaired hepatic activity due to
decreased protein synthesis. Such changes may be elicited by malnutrition [71,107–109].
Most noticeably, in both species, the dietary supplementation of the lyophilizate in group
TOL significantly improved the NA of hepatocytes (compared to TO), despite the fact
that the nuclei of the largest adipocyte-resembling cells in the rasboras were flattened and
pushed aside towards the cell membrane due to accumulated lipid vacuoles [82].

Apart from measuring hepatocyte sizes, the intestinal FL is another commonly used a
histomorphometric parameter, especially in nutritional studies on cultured fish. Longer
folds are naturally a positive growth indicator, as they ensure a larger absorptive area of the
mucosa [81,82,110]. There definitely appears to be a convergence between the FL and some
of the previously discussed results. In the case of neon tetras, group T was characterized by
the significantly longest intestinal folds, mirroring the data for FBW and SGR (only group
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T had a significantly higher FBW than IBW), while the FL in TO showed the lowest value,
similarly to hepatocyte NA and CA (which likely confirms the inadequacy of this regime
for P. innesi). Meanwhile, only group TO of rasboras distinguished itself from the others
in terms of FL, which possibly confirms our previous remarks about this feeding strategy
being advantageous for these danionids.

In ornamental fish, it is known that excessive stocking density may increase the risk
of body deformation, but only at very high numbers, typically found in zebrafish housing
systems of research facilities rather than in regular aquaria or even wholesaler tanks (above
12 fish L−1) [86]. Meanwhile, aquaculture research shows that skeletal deformities are
relatively frequent in some farmed fish species [73] and can be prompted by a number of
reasons [74], although improper nutrition remains to be the main causative factor. In such
cases, decreasing mineralization of skeletal tissues may lie at the foundation of these
pathologies, since softer bones become more and more prone to twisting and bending
forces [111]. This phenomenon begins with insufficient intake/absorption of the three
crucial macroelements (Ca, P, Mg) [112], which are then emergently recovered from skeletal
tissues for more important physiological purposes, either via osteoclastic resorption [113]
or halastatic demineralization [114]. Unfortunately, these processes have not been studied
extensively in freshwater fish, but we made such observations in our trial on juvenile
crucian carp [90], where the use of commercial feeds significantly decreased bone hardness
and resulted in vertebral anomalies. Skeletal double staining was, therefore, conducted in
the current study to inspect whether such remarks could be made for housed ornamentals
fed exclusively on artificial flakes.

As a result, we did not find any clear signs of such pathologies in the stained fish
(only one minor, random incident of vertebral compression). In reality, this was not very
surprising, since skeletal deformities mainly occur in rapidly growing, young fish larvae
and juveniles [73] (with the exception of salmonids [115]), while the ornamentals used for
the purpose of our experimentation were already relatively large, given the size standards
of the two species. Thus, it appears that the dietary addition of the lyophilizate was not
necessary to sustain the level of skeletal tissue mineralization in grown-out specimens of
neon tetra and glowlight rasbora. The latter species, however, probably revealed early signs
of demineralization in all four groups when compared to the smaller “Initial” fish group
sampled at the beginning of the study. After all, Cypriniformes tend to develop skeletal
pathologies when fed exclusively with commercial feeds [90,116–124], which possibly
could have been happening here, as well. Notwithstanding, such statement requires to be
validated in future trials, which should last much longer than three months.

All of this research gently points toward a general conclusion that the two studied
species differ from each other in terms of nutritional demands, as presumed in regard
to the dietary lipid composition. Even though the addition of natural food usually may
have a beneficial effect on liver metabolism, the exact tested lyophilizate did not cause any
profound changes when introduced to neon tetras, while being of high risk when given
to glowlight rasboras due to the probability of developing hepatic steatosis. Furthermore,
it seems that the alternated use of both flake feeds in TO also brought different results for
each species, proving beneficial for the rasboras but inappropriate for the tetras, the latter
of which had a healthier structure of livers and the longest intestinal folds when fed
monotonously with the Tetra flakes. Interestingly, it also appears that the addition of
natural food helped to mitigate some of the negative effects of the Omega flakes on P. innesi,
as shown via histology. Meanwhile, the varied diets did not have any obvious effects on
the skeletal structure of the two species, although a slight trend towards demineralization
has been observed in all rasboras.

In our study, we highlight the necessity to perform advanced scientific analyses during
the exploration of the little understood subject of ornamental fish nutrition. There are
simply too many unknowns which need to be addressed, to ensure not only the progress
of the industry, but also the improvement of fish welfare (which should be the centerpiece
of the puzzle). Diets need to be better matched to the nutritional demands of the fish, as it
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is clear that even thoughtful, solicitous owners of home aquaria may easily overdo with
the feeding of their aquatic pupils, causing potentially irreversible pathologies.

There is some likelihood, however, that awareness among ornamental fish breeders,
sellers and hobbyists about different aspects of fish nutrition will be raised, and in a not-
so-distant future. The last two decades have seen a near-exponential growth of biological
research conducted worldwide on an emerging laboratory species, which also happens
to be an ornamental danionid—the zebrafish [125]. Not surprisingly, along with the over-
abundance of studies in which D. rerio is used only as a model organism, more and more
published papers focus on the species itself, analyzing and discussing various aspects of
breeding and rearing, including nutrition during all life stages, from larvae [18–24], through
juveniles [45,49,51,126,127], up to adults [46–48,50,78,128–132]. Obviously, to compare ze-
brafish husbandry in research facilities to the reality of household or shop aquaria is a
far-reaching simplification, at best. It seems plausible, however, that in order to verify the
various demands of particular species, this science-based approach could be extrapolated
into the ornamental fish industry and hobby, but only as a result of a joint cooperation
of practitioners and researchers. If this truly happens, then the emphasis of such studies
should likely be placed on the determination of nutritional preferences of small, closely
related taxa, simply because conducting such research independently on every single
popular aquarium species would prove economically unjustified, as well as ethically unnec-
essary. In consequence, this approach would lead to the composition of highly dedicated
commercial feeds and optimized feeding protocols for different families/genera, definitely
improving the welfare of ornamentals kept either privately, by distributors or suppliers.

5. Conclusions

Although more expensive and less practical in use than dry feeds, natural food is
universally recognized as superior within the global aquaristics community. The results
of the discussed experiment may, therefore, surprise many practitioners, as it was shown
that while just two such lyophilized planktonic meals a week significantly affected the
condition of small omnivorous ornamentals, the results were not exactly favorable as
would be originally presumed. Although there were no clear negative outcomes of such
supplementation in neon tetras, a highly undesired lipid accumulation was revealed in
livers of glowlight rasboras. After all, prolonged hepatic steatosis can have a serious impact
on fish health and may even cause untimely mortalities. Measurements of intestinal folds
further outlined differences between the two species, with the monodiet consisting of only
TetraMin flakes proving superior for the tetras, while the dual-feeding with TetraMin and
Omega One yielded the best results for the rasboras. Skeletal analyses further disproved
the theory that dietary supplementation with natural food is indispensable for housed
ornamentals. In truth, while no attempt was made to assess the exact dietary demands
of both species, the study clearly showed that co-housing of ornamental fish can be a
challenging task, as applying a balanced feeding regime can be difficult due to hidden
biological differences which may distinguish the species within a community tank.

This study also emphasizes profoundly that not only should research-based evalua-
tions of dietary requirements for aquarium fish be conducted on a much more frequent
basis (which would allow the formulation of adequate feeds/regimes), but special attention
has to be paid obligatorily to the anatomical and physiological features of the species and
differences therein. Ultimately, the taxonomic diversity of ornamentals goes far beyond the
few common divisions, according to which commercial feed producers prepare most of
their products (herbi-, omni-, carnivores; cichlids, guppies, goldfish, bettas, etc.).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11123520/s1, Table S1: Complete histological measurements.
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