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Simple Summary: Clinical scores are practical tools that can be used in the daily management of
cattle. Score building and validation are a challenge involving various methodological and statistical
issues. This article provides a specific framework for clinical score building where the target condition
can be assessed directly or indirectly. Practical examples are given throughout the manuscript in
order to build new scores or to assess score robustness.

Abstract: Clinical scores are commonly used for cattle. They generally contain a mix of categorical
and numerical variables that need to be assessed by scorers, such as farmers, animal caretakers,
scientists, and veterinarians. This article examines the key concepts that need to be accounted for
when developing the test for optimal outcomes. First, the target condition or construct that the scale
is supposed to measure should be defined, and if possible, an adequate proxy used for classification
should be determined. Then, items (e.g., clinical signs) of interest that are either caused by the
target condition (reflective items) or that caused the target condition (formative items) are listed, and
reliable items (inter and intra-rater reliability) are kept for the next step. A model is then developed
to determine the relative weight of the items associated with the target condition. A scale is then
built after validating the model and determining the optimal threshold in terms of sensitivity (ability
to detect the target condition) and specificity (ability to detect the absence of the target condition).
Its robustness to various scenarios of the target condition prevalence and the impact of the relative
cost of false negatives to false positives can also be assessed to tailor the scale used based on specific
application conditions.

Keywords: cattle; clinical scores; methodological approach

1. Introduction

Clinical scoring is used for various purposes, including specific conditions such
as diarrhea, respiratory disease, lameness, and body condition score), and for various
target applications e.g., pre-weaned calves, post-weaned calves, adult cows. A scoring
system enables the scorers, including farmers, technicians, and veterinarians, to adopt a
systematic approach.

With the progress of on-farm technology and precision medicine, the benefits of these
human-based clinical scoring systems have been debated [1–3]. These clinical scoring
systems are still used to validate several machine learning and precision medicine algo-
rithms [3–5]. It is therefore important to understand their strengths and limitations when
using them as reference standard tests or when relying on their use to determine specific
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morbidity events on farms. Although the process of clinical scoring system building can be
similar to the building of scales used in various psychometric fields, there are some impor-
tant differences in the way they are constructed and validated, as recently reviewed [6].
For this reason, the approach proposed in this paper is tailored to clinical scoring systems
that can be used for food animals.

There are several scoring systems for relatively similar purposes. For example, at
least three different scoring systems are routinely used to evaluate respiratory diseases in
pre-weaned dairy calves [7–9] or in veal calves [10], as indicated in Figure 1.

Figure 1. Treemap of the relative weights of different clinical signs included in various scoring
systems used to detect bovine respiratory disease complex in calves. The size of the square is
proportional to the specific clinical sign weight in the Wisconsin calf respiratory score (A) [7],
California score (B) [8], Québec modified California score (C) [9], and Québec veal calf respiratory
score (D) [10]. The map clearly shows the variable signs included and the relative impact on the total
score of the same clinical sign.

Other scoring systems exist, for example, to determine calf diarrhea [7], lameness [11],
body condition [12], and pain [13]. In these cases, it is important to know the pros and cons
of the various scoring systems in order to use the best one for a specific setting. On the other
hand, when there is no specific scoring method, it is important to know how to construct a
scoring application. This manuscript highlights the possible objectives of a scoring system
and the methodological procedure that should be constructed and validated, including
the adequation between the score and what it is supposed to measure together with the
reliability issues (Figure 2).

Section 2 defines the notion of construct, which is the condition or status that the score
is supposed to measure. In Section 3, we highlight the problems of measuring the different
items that make up the score and look at how to determine the optimal combination used in
the score. Section 4 outlines the determination of score accuracy and level of discrimination.
Finally, Section 5 focuses on the most difficult constructs to define which involve similar
challenges as those found in psychometric and behavioral fields.
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Figure 2. General framework to establish and validate a clinical scoring system in veterinary medicine. Our 6-step
framework is depicted with an initial definition of the target condition (1), the potential items of interest (2), and their
reliability (3). The modeling approach then determines the adequate repartition between and within item weights (4). The
accuracy of the score is determined in step (5). The optimal threshold selection is then adapted to the specific conditions
where the test is intended to be used (6). Score users also need to be adequately trained.

2. Condition That Needs to Be Measured: Notion of Construct

Scoring systems are generally designed with an initial target condition to diagnose
that can be measured objectively using a gold-standard test. This gold standard test cannot
generally be used routinely due to cost, invasiveness, convenience, or the need for a
specialized lab. This is why a more practical first decision-making step is needed. For
example, the lameness score based on visual gait analysis could be initially compared with
the weight repartition forces on the ground and specific gait analysis measurement [14].
Again, the neonatal calf diarrhea scoring scale can be objectively determined in calves using
metabolic cages that assess fecal output and dry fecal matter [15]. Other target conditions
that need to be measured may be more difficult to describe accurately. This is also common
in human medicine, e.g., psychology. In this situation, the different scores are used to
assess a “construct” [16].

The term construct is generally used for non-easily observable characteristics in order
to identify the subject of measurement. Various types of constructs where no specific
affordable gold standard reference exists are also encountered in cattle. The bovine respi-
ratory disease complex (BRD), which is a complex mixture of infectious agents affecting
the upper and lower respiratory tract, is a common example in cattle medicine [17]. Stress
conditions and the welfare status of animals are also construct categories that are complex
to determine and define precisely [3].

The first challenge is thus when the construct cannot be easily measured or defined. In
this case, the construct is a “latent variable” that cannot be measured accurately. Each scale
or score aims to regroup different items that can be determined objectively or subjectively
and are associated with the construct. The construct validity is challenging to define. As a
rule, construct validity determines the degree to which a specific test successfully measures
what it claims to test. It can, for example, be based on a specific panel determination that
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assesses how adequately the items included in the scale are associated with the construct
to be measured. In terms of diagnosing bronchopneumonia in calves, an expert panel can
determine several clinical signs that may be of interest for the clinical diagnosis.

It is then crucial to determine other components for the validity of the score before
its practical implementation. Validity is difficult to assess since it encompasses various
dimensions. The content validity of the score is different from the construct validity. The
content validity assesses whether the test is fully representative of what it is supposed to
measure. The difference between construct and content validity is not easy to distinguish.
However, the construct validity is associated with the definition of the construct that the
test is supposed to measure. On the other hand, the content validity examines how the test
dimensions fully represent the construct characteristics [16].

When the score aims to evaluate a more complex construct that is difficult to determine
with a reference standard test (e.g., pain or stress), it is impossible to determine its accuracy
using the method previously presented. A practical example of this is a score that assesses
the stress or welfare of calves. In these situations, the construct has multidimensional
aspects in the sense that various environmental conditions and animal-based aspects
(clinical signs, behaviors, or biomarkers) may be indicative of stress without a specific
combination of tests considered as a gold standard test.

Another dimension not accounted for in the literature is the quantitative assessment
of the level of stress or welfare. In this case, the condition of interest should be gradated,
which is another specific aspect in this condition (vs. tests used for detecting a disease
or a condition (present vs. absent)). The steps for building this type of scale are similar
(with some adaptations) to those in the social and behavioral fields [6]. The three steps
for building the scale are item development and then scale development and validation.
Item development aims to identify the domains that need to be assessed for the construct
assessment. Then, specific items are built that can be based on biological and behavioral
assessments. Once these items have been developed, content validity is helpful to deter-
mine the adequation between the item and the domain of interest. The content validity
examines the content representativeness and relevance, as well as the technical quality of
measurement. These aspects should be assessed by experts (ideally different ones from the
initial team building the scale) using various quantitative and qualitative tools. The scale is
then developed after pretesting questions and administering the scale in a representative
sample of target animals.

3. How to Measure Items Present in the Score?

First, as with any measurement, the following should be defined: (i) the object of
measurement (in this specific case the calf or the cow), (ii) the property/item that is
measured (weight, rectal temperature, body condition score, specific behavior), and (iii) the
values that could be used to determine this property/item (e.g., kg, ◦C, different strata
of body condition score (BCS)). Objective items can be measured without a clinician’s
or operator’s interpretation. For example, calf weight determined with a scale is an
objective measurement that only depends on the scale’s reliability. Nevertheless, the same
variable (weight) can be associated with other sources of measurement error if, for example,
weight is estimated using heart girth measurement [18]. In this case, in addition to tape
measurement errors, other sources of uncertainty could be related to the relationship
between the heart girth and body weight and how the operator applies the tape. Some
items are obviously subjective (i.e., they depend on the rater), such as evaluating the body
condition score in cows even using guidelines. However, many objective items are, in
fact, partly subjective. For example, the rectal temperature measurement may not only
be based on the type of thermometer used, but also on how the probe is inserted [19],
which raises the same type of concern as tape application for heart girth measurement.
Imaging methods are also affected by operator technique and image interpretation, such
as quantifying lung lesions using thoracic ultrasonography in cattle [20]. This is another
example of apparently objective measurements (i.e., quantifying lung lesions with a specific
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measure) that are in reality subjective measurements when the operator is potentially an
important source of error. However, this does not mean that subjective measurements
should be excluded from scale construction, but that their intra- and inter-rater reliability
should be accounted for when developing the score and scale.

The conceptual framework that illustrates how the items are related to the construct
to measure is critically important. The two different frameworks used are either reflective
or formative (Figure 3). In a reflective model, the items are a specific manifestation of the
construct to be measured. With a formative model, the construct is the result of the item to
be evaluated. A practical way of determining whether an item is formative or reflective is
to determine whether a change in the construct would be associated with a change in the
item manifestation. Complex constructs can be based on a mixed formative and reflective
model. As a practical example in a scale assessing BRD in weaned calves, Maier et al. [21]
included reflective items (sunken eyes, cough, breathing pattern, and rectal temperature)
and formative items (e.g., body condition scoring, diurnal temperature fluctuation). A
change in BRD status or severity might easily impact on reflective items, whereas formative
items would not (Figure 3). This difference in items is not clear-cut since some formative
items may in fact be reflective (in the previous case, the body condition score can be viewed
as either a formative item (with low BCS calves at higher risk of being affected) or reflective
(duration and severity of the respiratory condition lead to a lower BCS).

Figure 3. General framework to determine the specific items to be included for a specific construct or
disease. Different items can be selected to assess a specific construct or determine a target condition.
Reflective items are generally a reflection of the target condition or part of the description of the
condition. In this example, cough or rectal temperature could be considered as part of the description
of signs of respiratory disease (or the construct can cause them). By contrast, formative items can be
considered as more causal items. They can cause the construct. In this example, diurnal variation of
external temperature could be associated with an increased risk of bovine respiratory disease complex
(BRD) but is not actually caused by BRD. For some items, it may be more difficult to determine both
their formative and reflective roles. For example, the BCS could either be formative (e.g., calves with
a low BCS could be at higher risk of being sick) or reflective (long disease duration may lead to a
low BCS).

3.1. Items Selected and Classification of the Different Possible Categories of Items

The association between the different clinical signs or factors included in the score
needs to be detailed. For example, adding highly correlated clinical signs would not
be useful from a monitoring basis. If one clinical sign is highly correlated with another,
knowing one of the clinical signs would implicitly mean that the second sign is also known
(because of the high correlation between the signs). The information gained from knowing
one rather than two signs would therefore not improve the monitoring capacity in a large
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population. However, using correlated questions could be essential for complex constructs
with various dimensions in order to gather information that differentiates between some
patients and highlights a single or multidimensional domain of the score [6].

A precise selection of the most practical signs is essential as targeted score-users
measure their reliability. The stratification of the items to be scored is another major
topic of interest. The stratification process should be clearly defined with clear mutually
exclusive definitions. Several items scored in various cattle scoring systems do not meet
these criteria. In the Wisconsin score system, nasal discharge is noted as normal serous
discharge (score = 0), small amount of unilateral cloudy discharge (score = 1), bilateral,
cloudy, or excessive mucus discharge (score = 2), and a copious bilateral mucopurulent
discharge (score = 3). What would happen if a calf only showed a small amount of mucous
discharge? And what is a “small amount” of unilateral cloudy discharge, or how should
“copious” be objectively defined? Some raters will not have the same conception of “small
amount” or “copious.” Pictures associated with the scorecards that explain the score are
helpful but not self-explanatory enough to ensure that the definition is reliable within
and between raters. This may explain a significant part of the score variability that is not
attributable to the measurement object (calf) but to the limited reliability between scorers.

This is only one example of the reliability issues when implementing scoring systems
in practice, especially when the score is a specific outcome for monitoring different in-
terventions or management changes. Improvement in definitions using more objective
measurements (e.g., the quantification of the importance of the discharge) or the dura-
tion of the observation period to define cough frequency could be used to decrease rater
subjectivity. Specific training can also improve consistency among scorers.

Using multiple categories for one item assessment is also useful for the gradation
of clinical sign modifications. The natural drawback of using multiple categories is that
it is associated with an inflated risk of altered reliability due to more choices in the item
scale [11]. This should also be accounted for when proposing the different categories
of items. Another challenge is to determine how the clinical sign is associated with the
construct, its relative importance in relation to other signs included in the score, and the
relative weight of the different categories of the scale within the same clinical sign.

3.1.1. Intra and Inter-Rater Reliability

Reliability is a key issue for any clinical measurement. When the various items to be
rated have been selected, their test-retest reliability (first by the same rater and then by
different raters) should be assessed. Depending on the type of item to be rated, several
complementary approaches can be used [22]. Kappa and kappa-like family indices are
generally used to differentiate agreements that occur purely by random chance versus true
agreements. The difference between the multiple types of agreement indices is generally
based on different definitions in agreement by chance as well as the way a partial agreement
(in ordinal scale) is accounted for [23]. We only focus on the most common parameters
used.

3.1.2. Two Raters Categorical Scale

Cohen’s kappa [24] is by far the most commonly reported agreement parameter in
veterinary medicine and many other medical fields. The general framework for kappa
calculation is to correct the percentage of agreement between the two raters corrected with
the percentage of the agreement only due to chance (i.e., the percentage of agreement that
would be obtained if the raters’ ratings were independent of each other). This concept is
explained in Table 1. When n total subjects are scored by two raters (1 and 2), the results
of the tests can either be (1,0), the subjects are cross-classified based on the test results
probability with rab (a = test result by rater 1 (0 or 1), b = test result by rater 2 (0 or 1)) and
r11+ r10 + r01+ r00 =1.
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Table 1. Example of 2 × 2 table results based on a dichotomous scale obtained by two raters scoring n different animals for
an item.

Test = 1 for Rater or Test 2 Test = 0 for Rater or Test 2

Test = 1 for rater or test 1 n11 = n×r11 n10 = n×r10
Test = 0 for rater or test 1 n01 = n×r01 n00 = n×r00 n

The observed raw probability of agreement (Pa) between the two raters is

Pa = (r11 + r00) (1)

The chance agreement (Pc) is defined as the probability of observing agreement if the
raters were independent:

Pc = (r11 + r10)× (r11 + r01) + (r01 + r00)× (r10 + r00) (2)

The kappa is then simply calculated using the following formula correcting Pa with Pc.

K =
Pa− Pc
1− Pc

(3)

The standard deviations for calculating 95% CI using the frequentist approach is [24]:

SD(K) =

√
Pa(1− Pa)

(1− Pc)2 (4)

The 95%CI of the K value can therefore be obtained using the standard normal
distribution of the K with K +/− 1.96 SE when α error is 0.05. This can further be extended
for other values of αwith the 100* (1 − α) confidence intervals for K computed as:

K + /− zα/2 ×
SD(K)√

n
(5)

The interpretation of the confidence intervals is not clinically intuitive and is generally
falsely interpreted as Bayesian credible intervals. Determining K confidence intervals has
been criticized from a frequentist perspective [25]. Benchmarking these intervals is not evi-
dent under the frequentist framework despite some recently proposed approaches [23,26].

These concepts can be easily illustrated when two raters scored a population of
100 calves using a specific scoring system (see Supplementary File). It is straightforward
to extend the kappa calculation for multiple categories (>2). In this situation, a weighted
kappa (Kw) can also be calculated if the categories are ordinal, indicating that a different
weight is applied depending on putting more weight on the error in two distant categories
versus differences in adjacent categories [23].

The Bayesian version of the K with readily applicable credible intervals calculated
without specific parametric assumption can also be obtained using the same equation for
calculating K but considering that each cell content of the 2 × 2 table has a gamma (Γ)
distribution Γ (k, θ) with shape k and relatively large scale θ. The shape is directly obtained
from the numbers in the initial classification (n11, n10, n01, n00), adding 1 (n11 + 1, n10 + 1,
n01 + 1, n00 + 1) since these variables are assumed to follow a Dirichlet distribution. The
scale θ is generally given a >1 value (e.g., 2), which helps to extend the ranges of possible
distribution. The K values are then obtained from multiple iterations of the process to
obtain the density of K distribution [27].

The Bayesian version of agreement and reliability measures is currently quite complex
as there is no easy-to-use calculator (Supplementary File). The reliability measures generally
rely on more extensive coding ability and, although promising, are only used by few
researchers [27,28].
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3.1.3. Multiple Raters

The agreement process can be extended with multiple-rater scoring by generalizing the
previous concept of agreement by chance based on Fleiss’s extension of Scott’s π statistics
(known as Fleiss’ kappa KF) [23]. Scott’s π statistic is slightly different from K since it
accounts for the mean predicted probability between r different raters (r ≥ 2) scoring an
object in q different categories.

KF =
Pa− Pc|π
1− Pc|π (6)

With:

Pa =
1
n

n

∑
i=1

q

∑
k=1

rik (rik − 1)
r(r− 1)

(7)

where rik is the proportion of the r raters affecting to the ith subjects the k categories
and with:

Pc|π =
q

∑
k=1

π̂2
k (8)

and

π̂k =
1
n

n

∑
i=1

rik
r

(9)

The confidence intervals can be obtained from a specific determination KF standard
error (for details see [23]). Although kappa-like indices are still widely used, they have
various drawbacks known as kappa paradoxes, especially when the calculated Pc is very
high and where K is close to 0 despite a high crude percentage of agreement [29]. New
indices, such as Gwet’s agreement coefficients (AC), have been explored to avoid the
pitfalls involved in calculating Pc [23]. The AC parameters complement traditional K
statistics [26,30].

There are many other agreement/reliability indices, but they are beyond the scope
of this article. However, a common situation when testing the reliability of categorical
item measurement is missing data, e.g., the different scoring sessions where different
raters assess different animals [31]. In this specific case, not all the rater–animal pairs are
available. Since they only use the complete dataset, calculations of kappa and kappa-like
statistics (e.g., Fleiss kappa) are not robust to missing data. In this situation, Krippendorff’s
alpha is the most robust approach given that it does not only exploit the complete pair-
rater scores [32]. See [23,32] for information on how to calculate this reliability index and
associated confidence intervals. The Gwet AC parameters are also robust to missing data.

In summary, the agreement assessment between raters assessing a categorical scale is
complex and can generally not be performed simply by reporting one parameter. Reporting
multiple aspects of the agreement with raw agreement and chance-corrected agreement
parameters is recommended. However, the specific association of which chance-adjusted
agreement parameter to report is still an open issue.

3.1.4. Numeric Items

The previous calculations formerly adapted to categorical scales do not work for
quantitative items that can be measured to assess the health of calves or cows. In these
situations, the measured item (M) is generally a numerical value that quantifies the true
value of interest (η) with a specific error (ε). This relationship can therefore be written
as follows:

M = η+ ε (10)

The specific ε term can further be classified as the error or measurement device,
error due to operator, or any other cause of error. Reliability concepts applied to these
measurements are associated with the variance (σ2) of ith repeated measurements M by
different raters, time or specific conditions (Mi), and the specific error term (εi). For example,
the true internal temperature (η) can be assessed by the rectal temperature measurement
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(Mi) by i different persons or using i different thermometers. The aim of the reliability
parameters is generally to quantify the variance of the true measure (σ2(η)) versus the
general variance of the error (σ2(εi)), which can further be simplified as:

Reliability =
σ2(η)

σ2(η) + σ2(εi)
=

σ2
patient

σ2
patient + σ2error

(11)

Therefore, the reliability assesses the relative error versus the true value variance, or
the ratio of the variance of interest divided by the variance of interest plus the unwanted
(noisy) variance. This family of reliability parameters is also called intra-class correlation
(ICC) measures [33]. There are multiple types of ICC that depend on how error variance
is partitioned. These include combinations between one-way or two-way random, two-
way mixed effects, and absolute (ICC(A)) vs. consistency (ICC(C)) agreement (for details
see [33]).

3.1.5. Benchmarking Reliability Parameters

Once a reliability value has been obtained for either categorical or numerical items,
it is crucial to determine whether these values are compatible with the intended use of
the score or item assessment. Most benchmarks have not been extensively validated but
are opinion-based [34]. For example, is not easy to know whether in practice a kappa of
0.8 is different from a kappa of 0.6. Based on the calculation difference, using a single
agreement reliability parameter is not enough to assess all the dimensions of agreement.
Several differences may be observed and should be discussed regarding the intended use
of the score or item [23]. Although general benchmarks have been reported for numerical
items using ICC measures [33], they have not been thoroughly validated and should be
used in the light of the specific study context.

4. How Can the Best Combination of Items Be Determined for Use in a Score?
4.1. Score Building to Determine the Relative Weight between and within Items That Are Assessed
to Measure a Simple Construct

Once different clinical items included in the score have been validated with their
inter-and intra-rater variability, the next step is to determine the strength of association
between all items and the different categories with the construct to be measured by the
different items and their values. Linear, generalized linear model, or survival analyses
possibly accounting for correlations between the patients (e.g., herd aggregation level)
should thus be built. A specific framework for diagnostic or prediction models has been
proposed with the transparent reporting of a multivariable prediction model for individual
diagnosis or prognosis (TRIPOD) statements [35]. The general framework of reporting can
be explained for a specific outcome Y, with X1, . . . ,Xn clinical signs or specific covariates
with respectively (k, . . . , nk categories) and u the random error (if any) in the form:

g(Y) = β0 + β11X11 + . . . + β1kX1(k−1) + . . . + βn1n Xn1 + . . . + βnkn Xn(kn−1) + u (12)

The link function between the construct or condition to diagnose (Y) and the different
covariates depends on the type of construct and the way it is assessed. When the construct
is a binary condition that can be diagnosed with an accurate reference standard test
(considered as a gold standard), the binomial link with logistic regression to determine the
probability of the presence of the disease (p, which is the probability that the gold standard
test is positive) is the natural choice, and this was exploited in a study using a specific BRD
case definition [8]. Survival analysis models are generally recommended when the time to
event outcome is of interest.

In many clinical conditions, there is no affordable 100% accurate diagnostic test to
determine the animal status (Y). For example, in the diagnosis of BRD where, except for
necropsy, no reference standard test is accurate enough to be exempt from classification
error. In these conditions, there are three alternatives: (i) choosing a proxy of the target
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condition which is at risk of bias due to imperfect accuracy (e.g., for BRD: thoracic ultra-
sonography); (ii) using a composite reference standard test can be a solution (e.g., for BRD,
using an association between thoracic ultrasound, serum haptoglobin, and bronchoalveo-
lar lavage) although this has its own risk of bias [36]; and finally (iii) accounting for the
imperfect accuracy of a test that can be done in a practical setting to define the latent status
of the animal [37]. The modeling approach is similar in the first two conditions since the
reference test is defined as positive (Y = 1) and negative (Y = 0) animals.

However, the framework is different when the true status (target condition or con-
struct) is considered unknown (latent) but can be described based on the known accuracy
of the imperfect test used. In this case, the probability that an animal has an outcome
(p = p(Y = 1)) can be associated with the probability that the animal reference standard
test is positive (pT+) or negative, accounting for test sensitivity (Se) and specificity (Sp)
as follows:

g(Y) = logit p = β0 + β11X11 + . . . + βnkn Xnkn (13)

pT+ = p ∗ Se + (1− p) ∗ (1− Sp) (14)

Therefore, the imperfect accuracy of the test means that unbiased model characteristics
can be determined when the outcome is measured with error [8,38].

Internal vs. External Validation of the Model

The model needs to be validated especially in terms of refining the estimates of β
parameters in order to account for potential shrinkage when applied to a new population.
This topic is also a fundamental research area in biostatistics that encompasses the current
manuscript [39,40]. Initial model selection is always associated with overestimating model
accuracy and discrimination. This is because the model performance is higher in the dataset
where the original model was developed than in a new dataset (“testimation” problem).

The value of the different β should then be the basis for calculating the individual
weights of model predictors. It is essential not to use the transformation of the estimates
as a score weight (e.g., OR) because linearity between the predictors and the construct
is only valid on the assumption of a g(.) link and not with the odds ratio derived from
the coefficients in a logistic regression approach [41]. For practical purposes, the β are
generally multiplied by a common number (e.g., 5 or 10) and rounded to obtain the full
score and items.

4.2. Measurement of Complex Construct

Measuring a complex construct with a multidimensional aspect is totally different
from the precedent approach. For example, building a tool to assess the welfare of calves
is not comparable with a standard reference test, which would only capture one specific
dimension of the construct. Measuring serum cortisol, for example, as an indicator of stress
(e.g., proxy of the target condition to measure) would be a welfare dimension. However, the
definition of welfare includes measuring a specific biomarker. In this situation, building the
score would have a different assessment framework and other specific statistical parameters
that are outside the scope of this article [6].

5. Accuracy of the Score
5.1. Case 1: The True Status of the Construct Can Be Determined (Directly or Indirectly)

Once the ideal repartition between the various items and the various categories within
the same items have been determined, it is then necessary to determine how to implement
the score in practice with a specific recommendation concerning the thresholds. For
the diagnosis of a dichotomous condition, the accuracy of the scoring system could be
determined using the ability to diagnose animals with the target condition (sensitivity) and
the ability to diagnose non-affected animals (specificity).
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The optimal combination of sensitivity and specificity can be determined using differ-
ent decision thresholds. Minimizing the total misclassification rate, and thus maximizing
the Se+Sp sum (Figure 4), is generally the default in many situations for diagnostic test
accuracy assessments [42]. However, this selection is arbitrary and does not account for the
test’s intended use and the differential value of false-positive versus false-negative cases. In
some situations, missing truly affected animals is more deleterious than the false-positive
classification of non-affected animals.

Figure 4. Determination of the optimal threshold based on a specific score. This figure represents the California respiratory
score threshold for detecting ultrasonographic lung consolidation (target condition defined as a maximal consolidation
depth ≥ 1 cm) in 608 pre-weaned calves from 39 different dairy herds [9]. The accuracy of the score is presented in the
y-axis with the sum of sensitivity (Se) and specificity (Sp) of the score depending on the threshold (≥ threshold to define a
positive score, < for a negative score). The dots represent the observed value of the score, and the 95% confidence interval
band was obtained after 1000 bootstrap estimates. Even though the threshold of ≥ 4 is numerically associated with the
highest accuracy (dashed blue line), there is no evidence that this threshold is better than any threshold between 2 and 7
(dotted red lines) due to the confidence interval width.

A specific example of this is bronchopneumonia in calves, where not finding affected
animals would have a more deleterious animal health impact in terms of the risk of
incomplete cure and negative outcome as against recommending treatment in a non-
affected calf. This relative cost would depend on the type of cost assessed. Using the same
BRD example but from a public health/rational use of antimicrobials, the associated risk
of antimicrobial use in non-affected animals would have a significant impact. The exact
definition of “cost” may depend on the context (farm, country, etc.). A complete assessment
of costs can therefore not be easily performed. It is thus important to test various plausible
scenarios that cover broad but plausible situations (Figure 5).
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Figure 5. Misclassification cost-term (MCT) analysis of a specific score to determine lung consolida-
tion. The same dataset as in Figure 3 was used to determine the misclassification cost term using:
(A) the original prevalence of the target condition in the dataset (36% of calves were detected with
ultrasonographic lung consolidation depth ≥ 1 cm); (B) a prevalence of 50%; and (C) a prevalence of
10% based on internal resampling. Different false negative (FN): false positive (FP) cost ratios (r) are
indicated. In the first scenario, r was considered as 1:1, meaning that FN and FP had the same impact.
Two scenarios where FN calves were considered more costly than FP calves with 3:1 and 5:1 r values.
Finally, two scenarios considered that false-positive calves were more costly than FN cases with 1:3
and 1:5 r values. The 5 MCT curves are then derived to determine the score threshold robustness for
various settings. The optimal threshold minimizes the y-axis value.

Various test applications in terms of the possible prevalence of the target condition
(p) and the relative cost of false-negative versus false-positive (FN:FP) cases (r) can be
determined by calculating the misclassification cost term (MCT), which should be mini-
mized [43]. The MCT calculation can be written as:

MCT = (1− p) ∗ (1− Spt) + r ∗ p ∗ (1− Set) (15)

for the various possible t thresholds of decision. The MCT is not in itself an extensive cost
analysis examination but rather a practical way to address the robustness of the cut-off
depending on different plausible (“what if”) scenarios of the target condition prevalence
and r values. If the minimum MCT area is very variable depending on p and r, the
recommendation for applying a common threshold should be determined more in depth
before applying the test in practice (Figure 5). When the MCT reaches its minimum
independently of p and r, that threshold is considered a relatively robust threshold which
can be applied in the various conditions found in practice. However, robustness is not
equivalent to accuracy since a robust threshold can have a limited accuracy.
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5.2. Case 2: More Complex Construct

Because it is beyond the scope of this paper, we have not discussed the best way to
deal with the items depending on the nature of their quantification, the dimension they are
supposed to measure, and the impact of the nature of the item (i.e., formative vs. reflective)
on scale building (for details see [6]).

In conclusion, clinical scores have an important role in determining various health
and welfare conditions for food animals. The construction, reliability and, validation
of the score depend on the construct or target condition of interest. We have focused
on constructing or targeting conditions that can be determined directly (using a gold
standard test) or indirectly (using an imperfect reference standard test). The reliability
of the possible items to be included, the acquirement of the relative item weight in the
final score, and the determination of the decision threshold to apply based on various
contexts have been explained. Future work should focus on the internal and external
validation of the decision threshold in a different population from where it was initially
derived to improve its robustness. Although this paper has focused on bovine health and
welfare condition monitoring, the proposed framework could be extended to any species
of veterinary interest since the same concepts and rules would be applicable. It is also
important to mention that automatic data collection is also a promising area of research in
the detection of animal health problems with the implementation of a machine learning
strategy and artificial intelligence technique. We chose to focus on clinical signs that can
be detected by farmers or veterinarians, but automatic behavior or anomaly detection is
definitely an important potential evolution of disease detection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11113244/s1, Supplementary File: Example of agreement calculation with frequentist
method and Bayesian method.
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