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Simple Summary: Mesenchymal stem cells are located in bone marrow, adipose tissue, synovial
membrane, and muscular tissue. They have an immunosuppressive, anti-inflammatory, and an-
tifibrotic effect. Tissue engineering considers the usage of mesenchymal stem cells as a possible
option for regenerating tissues, with respect to bone and cartilage, due to their ability to differen-
tiate into multiple cytotypes (including chondrocytes and osteoblasts). Herein, we characterize a
non-invasive solution based on Rigenera® technology, a mechanical disaggregation method able
to produce autologous adipose tissue-derived micrografts which are analogous to adipose-derived
stem cells.

Abstract: Within the adult canine population, disabilities and symptoms including joint pain and
functional impairment are commonly observed in articular cartilage lesions and present a challenging
feat in the operating room. Clinical settings require less invasive and more minimally manipulated
measures facilitated by innovative and advanced technology. Mesenchymal stem cells have recently
been proposed and, furthermore, autologous adipose tissue administration via injection has emerged
as a new albeit somewhat controversial therapeutic tool. The purpose of this study is to characterize
canine autologous micro-fragmented adipose tissue (micrografts) by mechanical approach without
substantial manipulations. Adipose tissue samples collected from six dogs were processed by a
Rigenera device and by enzymatic digestion from two different body regions (lumbar and thigh
region). Interestingly, the immunophenotypic analysis attested that cells from Rigenera® were highly
positive for the mesenchymal stem cells markers CD73 and CD90, less positive for hematopoietic
CD45 and CD34, and negative for MHC class II antibodies (which play a role in immune responses).
Finally, the Rigenera® technology obtained micrografts with a 35% higher expression of the IL10
gene with relevant anti-inflammatory activities compared to the enzymatic digestion protocol. This
evidence suggests a potential improved clinical outcome capable of modulating inflammation and
immune responses.

Keywords: microfragmented adipose tissue; micrografts; Rigenera technology; adipose stem cells;
canine adipose tissue
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1. Introduction

Osteoarthrosis (OA) is a common degenerative, chronic, inflammatory, painful, and
disabling condition which affects the joints. High rates of OA have been observed in
dogs [1,2] and in 20% of the canine population older than one year presenting OA across
different stages [3,4]. OA is one of the most disabling diseases in dogs [5–9] and is charac-
terized by lameness, chronic pain, and functional impairment with a reduced quality of life.
OA ultimately results in a reduction of mobility and can result in the complete loss of motor
function [10]. Treatment of OA aims mainly to reduce pain and inflammation through
drug administration, appropriate diets, and physiotherapeutic sessions. Typically, the
non-operative approach is the most common. However, when this fails, surgical treatment
can be performed [11–15]. Nonetheless, OA is still today the main cause of non-traumatic
euthanasia in dogs since pharmacological drugs (FANS/FAS) mitigate articular pain with-
out affecting OA progression. In recent years, scientific research has focused on substances
able to slow down the progression of OA, regenerating the damaged tissues through local
delivery instead of oral or parenteral drug administration, to avoid systematic side effects.
For this purpose, the use of oral visco-supplementation and intra-articular substances such
as hyaluronic acid, platelet rich plasma (PRP), and mesenchymal stem cells (MSC) have
increased over time [16,17]. MSCs are located in the bone marrow, adipose tissue, synovial
membrane and muscular tissue, exerting an immunosuppressive, anti-inflammatory, and
antifibrotic effect. Tissue engineering considers adopting MSCs as an option for regenerat-
ing tissues, with reference to bone and cartilage, due to their ability to differentiate into
multiple cytotypes, including chondrocytes and osteoblasts [18,19], but MSCs are also able
to heal the damaged tendon [20]. Therefore, the “stromal vascular fraction” (SVF), which is
mainly located around blood vessels, is a heterogeneous solution stemmed from adipose
tissue and composed by adipose stem cells (ASCs), endothelial cells, and stromal cells. [21].
According to the literature, ASCs are genetically and morphologically stable in long-term
cultures and are characterized by slow senescence and a high proliferation rate [22–24].
Cell therapies and “minimally manipulated” tissue micrografts mainly differ in that the
adipose tissue is not enzymatically digested but only processed mechanically. Autologous
adipose micrografts consequently contain MSCs and an extra-cellular matrix (ECM) [25,26].
Mechanically-obtained micrografts approaches are considered advantageous compared to
enzymatic digestion treatments due to the ability to preserve the stromal vascular niche,
permitting adequate growth factor release as well as discharging bioactive molecules by
exosomes rich in mechanically processed fat. Furthermore, mechanically obtained-Adipose
SVF techniques can retain the structure and morphology of the micro-environment where
micrografts reside. Previous studies regarding “minimally manipulated” adipose tissue
administration have confirmed its safety [27,28], but certain issues are not as clear-cut.
The benefits, for instance, of SVF in repairing tissue and its bridging potential of new
and old tissue is well-known, but these advantages are not as appropriate concerning
intra-articular fat injections due to the lack of tissue fragments to connect [29]. Interestingly,
SVF possesses key trophic, anti-apoptotic, anti-scarring, mitogenic and immunomodula-
tory properties [30,31] which aid in generating numerous bioactive elements as well as
growth factors and cytokines. Such cells can perceive and mark modifications within the
specific microenvironment [32]. The field of research has also addressed the use of purified
adipose tissue and revealed positive anti-inflammatory and reconstructive outcomes re-
lated to cartilage regeneration [33] with in vitro and in vivo studies. Good manufacturing
practice regulations [34] exert restrictions on enzymatic therapy, and therefore minimally
manipulated autologous adipose tissue is a favorable treatment alternative. In this context,
micro-fragmented adipose tissue has been promptly used and commercialized to offer min-
imally manipulated [35] options avoiding both cell expansion and enzymatic treatments. It
is worth recalling, however, that optimal acquirement of the SVF is not always possible [26].
However, some authors have recently demonstrated [36–42] the efficacy of a medical device
named Rigenera® (CE certification, Class II, Human Brain Wave, Turin, Italy) which is
able to obtain adipose micrografts enriched by cellular progenitors which are immediately
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available for common clinical practice. Adipose micrografts are characterized by high cell
viability and are obtainable through mechanical disruption [25,43]. The aim of this work is
to characterize the SVF obtained by a well-known commercial system (Rigenera®) through
mechanical disruption of canine adipose tissue without substantial manipulations.

2. Materials and Methods
2.1. Isolation and Expansion of ASC

Adipose tissue samples (8 mL) were harvested from two different anatomical region
(lumbar and thigh) of n = 6 dogs, donated by the owners and with appropriate informed
consent to the University of Camerino, using a standard surgical procedure previously
described [43]. The study was conducted according to the guidelines of the Declaration
of Helsinki and approved by the Animal Welfare Organization (or OPBA) of Camerino
University (protocol code 1D580.18A).

Each adipose sample was divided into two portions. The first portion was processed
in the Rigenera® technology: the device is composed of an engine in which the mechanical
disaggregation is performed inside a disposable sterile capsule featuring steel blades rotat-
ing at 80 rpm and followed by filtration through 80 µm pores [25,43]. Specifically, 4 mL of
lipoaspirate and 4 mL of complete culture medium Dulbecco Minimum Essential Medium
(DMEM) (Sigma-Aldrich, Milan, Italy) containing 10% of Fetal Bovine Serum (FBS), 1%
of a mix of penicillin/streptomycin 1:1 (GIBCO Life Technology, Monza, Italy) and 0.5%
amphotericin B (GIBCO Life Technology, Monza, Italy) were added in the sterile capsule
and Rigenera® device was activated for 1 min. The obtained micrografts, were collected
from the capsule by a syringe, filtered through a 70-µm nylon mesh, and centrifuged at
3000 rpm for 7 min. The supernatant was discarded, while cell pellet was resuspended
in 1 mL of complete medium and then counted. The second portion of lipoaspirate was
digested enzymatically as reported by Senesi et al. [26]. Briefly, 4 mL was digested with
1 mg/mL type I collagenase (GIBCO Life Technology, Monza, Italy) in Hank’s Balanced Salt
Solution (HBSS) and 2% bovine serum albumin (BSA) at 37 ◦C for 45 min. The enzymatic
action was neutralized adding complete medium. Then, the sample was centrifuged at
3000 rpm for 7 min, the supernatant was discarded, and the cell pellet was incubated with
3 mL of 160 mM NH4Cl at room temperature for 10 min to lyse the erythrocytes. After cen-
trifugation, cells were resuspended in 1 mL of complete medium, filtered through a 70-µm
nylon mesh, and counted. The obtained cells (Lumbar Rigenera, Thigh Rigenera, Lumbar
Enzymatic Digestion (ED), Thigh ED) were plated on a 25 cm2 T-flask and incubated at
37 ◦C with 5% CO2. Three days after the cells’ extraction, the complete medium was
changed and then every 48 h until 80% confluence and used for the subsequent analyzes.

2.2. Cells Yield

Cells obtained, both from the Rigenera® and the ED process, were counted through the
Trypan Blue exclusion method by dividing the number of viable cells per mL of processed fat.
Data are expressed as number of viable cells/mL fat ± standard error of the mean (SEM).

2.3. Cell Colony Forming Unit Assay

Colony forming unit-fibroblast (CFU-F) assay was performed for tissue processed
with Rigenera® and ED. Briefly, isolated cells were plated into six-well culture plates at a
density of 1000 cells/cm2 and cultured in the complete media. On the 15th day after plating,
the total number of cell colonies (CFU-F, a cluster of at least 50 adhered and fibroblast-like
cells) was rinsed with phosphate-buffered saline twice, fixed with 10% neutral buffered
formalin for 30 min and then stained with toluidine blue (Sigma Aldrich, Milan, Italy)
and counted. Colony forming efficiency (CFE) was calculated by dividing the number of
colonies counted by the number of cells seeded × 100. Data are expressed as CFE ± SEM.
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2.4. Proliferation Capacity

At day four from ASC isolation, cells were detached using Trypsin-EDTA 1% (GIBCO
Life Technology, Monza, Italy) and replated at a density of 10,000 cell/cm2 plated into six-well
culture (in triplicates). Cells were detached and counted with CytoSMART counter (Automated
Image Based Cell Counter, version 1.5.0.16380, CytoSMART technologies B.V, Eindhoven, The
Netherlands) after 24, 72, and 96 h. The population doubling time (pdt) was calculated using
the following equation: pdt = [t (h) × log2]/log (Nf/Ni) (as reported in Martinello T. et al.
2010) [42], where Ni and Nf are initial and final cell numbers, respectively.

2.5. Immunophenotyping

After isolation, cells were counted and 2 × 105 cells were placed in a tube for cytofluo-
rimetric analysis. The pellet was washed with 1 mL of 1% FBS in PBS and then labelled
with fluorescent-dyes conjugated antibodies in a final volume of 100 µL and incubated for
30 min in ice. This study examined specific antibodies: APC-conjugated CD90 (dilution
1:5), APC Alexa Fluo-conjugated CD73 (dilution 1:20), PE-conjugated CD34 (dilution 1:5),
BV650-conjugated CD45 (dilution 1:20), and APC-conjugated MHC II (dilution 1:5). The
antibodies were purchased from BD Biosciences, (Becton Dickinson Italy S.p.A., Milan,
Italy). After the incubation, the pellet was rinsed, resuspended in 300 µL of 1% FBS in
PBS, and transferred in flow cytometry tubes. The immunophenotyping was performed
through a FACS canto II (Becton Dickinson Italy S.p.A., Milan, Italy).

2.6. Qualitative Analysis of Multipotency

The potential of the ASCs, obtained after Rigenera® and ED, to differentiate into
multilinear cell lineage (adipocytes, chondrocytes, and osteocytes) was evaluated by adding
adipogenic, chondrogenic, and osteogenic media separately. ACSs were cultured until
passage n.3 in order to remove peripheral blood contaminants and other non-adherent
stromal cells, detached using Trypsin-EDTA 1% (GIBCO Life Technology, Monza, Italy),
and replated in triplicates in multiwell plate with the above-mentioned different media.

Adipocyte differentiation was achieved after 16 days of culture of MSCs with adi-
pogenic medium, containing 10−6 M dexamethasone, 10 µg/mL insulin, and 100 µg/mL
3-isobutyl-1-methylxanthine (Sigma Aldrich, Milan, Italy). Chondrocyte differentiation
was achieved after 14 days of culture with the StemPro chondrogenesis differentiation
kit (GIBCO Life Technology, Monza, Italy). Osteocyte differentiation was achieved after
21 days of culture with the StemPro osteogenesis differentiation kit (GIBCO Life Technol-
ogy, Monza, Italy). The non-induced cells of the control group were cultured with the
ASC complete medium (Dulbecco’s ModifiedEagle Medium (DMEM), 10% FBS, and 1%
penicillin/streptomycin).

Oil Red O, Alcian blue, and Alizarin Red Stain were employed to identify adipocytes,
chondrocytes, and osteocytes, respectively.

2.6.1. Adipogenic Differentiation

5.000/cells were seeded on the circular glasses inside the six-well plate with complete
media. After 24 h, the media was removed and adipogenic media was added and replaced
every 24 h. To confirm adipogenic differentiation, after 14 days, the cells were fixed with
4% paraformaldehyde (PFA) for 30 min and washed, followed by staining with a solution
of Oil Red O (Bioptica, Milan, Italy) for 30 min and hematoxylin (Bioptica, Milan, Italy) for
1 min. Cells were washed with buffer solution and fixed with aqueous mounting media.
Images were obtained using optical microscopy (Olympus BX-51 microscope, equipped
with a KY-F58 CCD camera, magnification 20×).

2.6.2. Chondrogenic Differentiation

In this experiment, 1 × 106 cells were seeded with 5 µL of complete media on the
glasses inside the 24-well plate, after 2 h the chondrogenic media was added to the cells.
To confirm chondrogenic differentiation, after 14 days, cells were fixed with 4% PFA for
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30 min. After fixation, Alcian Blue 8GX (SigmaAldrich, Milan, Italy) was filtered and added
to each culture well for 30 min, and the cells were washed with buffer solution followed
by hematoxylin stain for 1 min. Alcian blue was used to stain the extracellular matrix
glycosaminoglycan. The cells were then washed with normal water and fixed with aqueous
mounting media. Images were obtained using Olympus BX-51 microscope, equipped with
a KY-F58 CCD camera (Magnification 10×).

2.6.3. Osteogenic Differentiation

5000/cells were seeded on the round glasses inside the 12-well plate with complete
media. After 24 h, the media was replaced with an osteogenic medium followed by media
change every 48 h. To confirm osteogenic differentiation, after 21 days, cells were fixed
with 4% PFA for 30 min and incubated in 0.2% Alizarin Red S (SigmaAldrich, Milan, Italy)
for 15 min and hematoxylin for 1 min Then, they were washed with PBS (GIBCO Life
Technology, Monza, Italy), and fixed with aqueous mountant. Images were obtained using
optical microscopy (Olympus BX-51 microscope, equipped with a KY-F58 CCD camera,
magnification 4×).

2.7. Real-Time PCR (Genes Involved in Inflammation or Anti-Inflammation)

Total RNA was extracted form Rigenera and ED obtained cells using Total RNA
Purification Plus Kit (Norgen Biotek Corporation, Thorold, ON, Canada). The cDNA was
synthesized starting from 500 ng of total RNA with SensiFASTTM cDNA Synthesis kit
(Bioline GmbH, Luckenwalde, Germany) using LifePro Thermal Cycler (Bioer Technology,
Hangzhou, China). Real-time PCR of genes involved in inflammation or anti-inflammation
was performed. Canine primers were selected for each target gene with Prime 3 software.
Canine primers selected were as follows (Table 1).

Table 1. Selected canine primers.

Gene Sequence FOR (5′–3′) Sequence REV (5′–3′) Length (bp)

IL10 CCGTTGCGCAGGCAGTGTG TGTCTAACTTGTAGATCCTGACC 206
IL2 CATTGCCCACTCCTCTCTGAA GTTTCTTTCTCTTCCTCACTGACCA 167
IL6 GCCTTGGAAACGCAAACTCG GTCCCTGTATGTCCTCCCTTC 219
IL7 CCATCCTATTCTAGACCGTTGAGAG GCCACCATAAGAACATTTGCATCA 211
IL8 TCTCCTGCTCGCCTTCTTC CCTAAGTAATCGAGTTCCGTGCTG 147

Thermal cycling conditions: denaturation at 95 ◦C for 2 min; 40 cycles of denaturation
at 95 ◦C for 5 s; annealing at 60 ◦C for 10 s; and elongation at 72 ◦C for 20 s. Data
analysis was performed using the ∆∆Ct method using transferrin receptor (TFRC) as
internal reference. Results were reported as fold regulation of target genes in the test group
(product) compared with the control group (canine fibroblasts in monolayer culture).

2.8. Statistical Analysis

All data were analyzed using a one-way ANOVA test and showed a p-value < 0.05,
capable of confirming their statistical significance. Repeatability was represented as a
standard deviation to calculate differences between measurements using SPSS 16.0 software
(SPSS Inc., Chicago, IL, USA) for assessment.

3. Results
3.1. Cellular Yield, CFE and Proliferation Capacity

The cell yield of freshy isolated micrografts from Rigenera® device was 2.23 × 104 ±
6.94 × 103 cells/mL Fat 2.29 × 105 ± 4.54 × 104 cells/mL Fat (Figure 1a), for lumbar and
thigh, respectively. Compared to ED the cell yield of Rigenera® results were 23.9 ± 3.2%
and 41.6 ± 4.5% for lumbar and thigh, respectively. Moreover, the cell yield obtained from
the thigh region was 10 and 6 times higher than the lumbar region for Rigenera® and
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ED, respectively. To analyze the clonogenic potential of Rigenera® cells, CFU-F assay was
performed and CFE was evaluated (Figure 1b). The ED method allowed cell isolation with
2.58 ± 0.55% and 2.77 ± 0.47% of CFE, for lumbar and thigh, respectively, while Rigenera®

cells presented a clonogenic efficiency of 1.17± 0.44% for lumbar region and 1.2± 0.29% for
the thigh. The difference between lumbar and thigh region was not statistically significant.
Figure 1c represents a clone for CFU-F assay. To better characterize the cellular products,
the proliferation capacity and the time required by cells to duplicate in number were
estimated. As shown in Figure 1d, ED cells required less time to duplicate when compared
to Rigenera® cells. As reported in Figure 1, the population doubling time mean value was
50.17 ± 7.8 h and 47.02 ± 6.4 h for Rigenera® lumbar and thigh, respectively. ED cells
have a population doubling time 1.4 times higher compared to Rigenera® (34.46 ± 4.8 and
32.16 ± 2.58 h for ED lumbar and thigh, respectively). Statistically significant differences
between the lumbar and thigh were not detected.
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3.2. Immunophenotyping

The relative expression percentages of surface markers of Rigenera® micrografts
analyzed by flow cytometry are shown in Figure 2a. The presence of surface molecules was
analyzed using specific monoclonal antibodies against MHC II, CD45, CD34, CD73, and
CD90. In the cell population examined, MHC II was not expressed and CD45 was poorly
expressed, while the hematopoietic marker CD34 (endothelial cells, pericytes and potential
ASCs) was expressed, especially in cells extracted from thigh region (6.5 ± 1.1%). Cells
were positive for the mesenchymal stem cells marker CD 73 (23.2 ± 3.8% and 18.4 ± 7.1
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for lumbar and thigh, respectively) and CD 90 (24.9 ± 8.5% and 20.5 ± 5.3 for lumbar and
thigh, respectively) (Figure 2a). Comparing the surface marker expression profiles of cells
obtained after Rigenera® and ED, no significant statistical differences were found (Figure 2b).
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3.3. Qualitative Analysis of Multipotency

To evaluate the multi-potency of Rigenera® micrografts, ASCs were exposed to adi-
pogenic, osteogenic, and chondrogenic medium. As shown in Figure 3 all samples were
able to differentiate to mesodermal lineages. Oil Red O staining confirm the adipogenic
differentiation and red lipid droplets were clearly visible in the cytoplasm of cells; alizarin
red staining highlighted the extracellular matrix calcification typical of osteogenic differen-
tiation, while chondrogenesis was observed by deposing sulfated proteoglycan-rich matrix
stained with alcian blue. No significant differences were qualitatively observed between
Rigenera® and ED and between the lumbar and thigh region.
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respectively. Scale bar: AM, 5 µm; OM, 20 µm; CM, 50 µm; Control, 20 µm.

3.4. Real-Time PCR (Genes Involved in Inflammation or Anti-Inflammation)

The positive mechanisms of MSC to contrast the inflammation were evaluated through
gene expression of the anti-inflammatory (IL10) and inflammatory (IL2-6-7-8) cytokines at
the moment of substance injection. Results reported in Figure 4 show that both technologies
gave rise to products that revealed greater anti-inflammatory activity (IL10) compared
to the inflammatory IL (2, 6, 7, 8), confirming that MSCs act as an effective biological
stimulating their paracrine activity. In the same way, 11β-HSD1, PPARγ, and adiponectin
are very expressed, as they are known to be present in adipose tissue but also due to the
fact that they are related to modulate hMSC metabolism to enhance their immunomod-
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ulation and therapeutic efficacy. MCP1 activates macrophages therefore it is involved in
anti-inflammatory activity, in particular the expression of MCP1, associated with expres-
sion of anti-inflammatory chemokines such as Visfatin and Resistin, can modulate the
plasticity of macrophages that depend on various microenvironmental signals. Moreover,
IGF1 can modulate cartilage and subchondral bone during the regeneration processes of
cartilage defects, especially in the early stages of the disease, and its function is related
to its receptor IRS-1. The expression of ASPS, which is normally linked to primordial
bone differentiation, demonstrates that the cells extracted by the Rigenera method are of a
mesenchymal nature. In conclusion, the comparison between the two techniques demon-
strated that Rigenera Technology showed a higher expression of IL10 (anti-inflammatory)
compared to the ED generated and a lower expression of IL7, but also a higher expression
of immunomodulatory factors.
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Figure 4. Anti-inflammatory properties of Rigenera® and ED products. Representative results showed that both prod-
ucts generate more anti-inflammatory cytokines such al IL10 compared to the other anti-inflammatory ones (IL2-8-7-8).
Specifically, Rigenera -acquired micrografts yield a lower production of inflammatory marker IL7 and a higher quantity of
anti-inflammatory IL10. (Results are expressed as average ± SEM of n = 3 samples).

4. Discussion

Regenerative medicine involves a number of activities towards repair, regeneration,
or substitution of damaged tissue or organs with the use of ex-vivo manipulated cells [44].

Our study objective is to investigate a well-known commercial system (Rigenera®)
to obtain SVF by mechanical disruption of canine adipose tissue without substantial
manipulations comparing, in addition to the obtained micrografts to ASCs.

Before the procedure, blood and any cellular debris are removed to depurate the
adipose tissue which will then prevent inflammatory activity and maintain graft sustain-
ability via various enzymatic and mechanical techniques. Typically, collagenase enzymatic
digestion is the most common and effective method available. However, it is not with-
out limitations.

The enzymatic digestion via collagenase is able to eradicate the stem-cell niche compe-
tent in relating to the surrounding cell environment and enhancing cell viability, expansion,
and differentiation [45]. Furthermore, GMP guidelines of the European Parliament and
Council (EC Regulation no. 1934/2007) strictly indicate use of techniques with minimal cell
manipulation within a clinical context, thus excluding the adoption of enzymatic methods.
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Accordingly, numerous efforts have been made to develop medical devices able to
mechanically disaggregate a tissue. The Rigenera® (HBW, Turin, Italy) system presents
a disposable, motor-driven sterile device that deserves to be taken into account [46]. In-
jectable micrografts are instantly produced and consist of fragments of adipose tissue with
a dimension of 80 µm capable of stimulating the regeneration of damaged tissue [46].

This study thus focused on the in vitro characterization and comparison between the
proposed treatment and the gold standard enzymatic digestion in terms of cell yield, CFE,
proliferation capacity, immunophenotyping, multipotency and anti-inflammatory activity.
Additionally, adipose tissue samples were harvested from two different anatomical regions
(the lumbar and the thigh) to evaluate differences in the regenerative potential.

Our results showed that the cell yield, and thus the number of CFU, the proliferation
capacity, and the time required by cells to duplicate, were higher for ED cells compared to
Rigenera® cells, pointing out the main limitation of the treatment. Nevertheless, this restriction
was not due to the Rigenera® technology alone, but as reported in literature [22,23], all non-
enzymatic methods show lower cell recovery compared to enzymatic methods.

Some authors [23,47] clarified that the differences may be partly related to the SVF
cell site within adipose tissue in the perivascular niche. Similar cell release from the
perivascular niche is not commonly observed within the mechanical procedures of SVF
isolation, since the enzymatic method does not allow for complete disruption of the
extracellular matrix due to the use of proteolytic enzymes digesting the extracellular matrix
and withal consolidating the adipose tissue. In the light of these findings, the setting and
application of an appropriate protocol is imperative.

Besides, in terms of cell yield, a slight difference between cells obtained from the
lumbar and the thigh regions was detected from both ED and Rigenera® in favor of the
thigh part, most likely attributable to the thigh being a pristine reserve site regarding
extraction, and moreover to the uniformity of the adipose tissue and a thinner collagen
matrix, consequently yielding more accessible tissue [41].

Herein, we confirm how cells extracted via the Rigenera® device may easily differenti-
ate. Results showed the comparable ability of both ED and Rigenera® cells to differentiate
to mesodermal lineages, through staining with oil red o, alzatin red and alcian blue for
osteo-adipo and chondrogenic recognition, respectively. For this reason, multipotent cells
will efficiently regenerate and repair tissue.

Moreover, the immunophenotypic analysis attested that cells from Rigenera® were
highly positive for the mesenchymal stem cells markers CD73 and CD90, low positive for
hematopoietic CD45 and CD34, and negative for MHC class II antibodies, playing a role in
immune responses.

Finally, the main strength of the Rigenera® technology relies on a 35% higher ex-
pression of the IL10 gene, with anti-inflammatory activities compared to the ED protocol.
This evidence suggests a potential improved clinical therapy capable of modulating in-
flammation and immune responses. Interleukin-10, also associated with the expression
of ASPS, IGF1 and its receptor IRS-1, clearly has chondroprotection activity, stimulating
the expression of collagen type II and proteoglycan and regulating the maintenance of
tissue integrity [48]. Moreover, our results demonstrated that adipose tissue also hosts
chemokines such as 11β-HSD1, PPARγ, and adiponectin which have been shown to con-
tribute to immunoregulation through modulation of hMSC metabolism [49,50], but also
chemokines such as MCP1, Visfatin, and Resistin which have been shown to contribute
to immunoregulation through modulation of macrophages plasticity [51]. Beyond that,
adiponectin, ASPS, MCP1, Visfatin, and Resistin, when taken together, prove that they
can contribute to the diagnosis of OA, which is consistent with our results. Furthermore,
the levels of OA can also be directly related to the degree of OA [52], and therefore in the
future they can be used as biomarkers to assess the severity of OA.

Finally, except for the cell yield as mentioned above, the study did not show statisti-
cally significant differences between the lumbar and the tight regions from which samples
were collected.
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5. Conclusions

Autologous, adipose tissue derived micrografts, obtained with the Rigenera® tech-
nology, represent an innovative approach that introduces a completely novel concept in
regenerative medicine, showing the safety and potential benefits of minimal tissue manip-
ulation. The impressive in vitro outcomes demonstrated that this particular technology
may be used to restore functionality and relieve pain in dogs with severe OA. Additionally,
such a procedure is a straightforward, rapid, and sustainable one-step method (as well as
being a minimally invasive and secure option) compared to the enzymatic method which,
albeit consolidated as a method for 40 years, remains inoperable in clinical settings due to
the time-consuming applications, legal limitations, and scientific constraints. Our future
work will involve an in -vivo experimental study aimed at performing clinical, eco-graphic,
and sonographic evaluations in the dog model.
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