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Simple Summary: Intramuscular fat (IMF) is a key factor affecting many meat quality traits of pigs,
such as pork tenderness, flavor, and many more. In this study, a systematic identification and
comparison of the expressed profiles of messenger RNA (mRNAs), long non-coding RNAs
(IncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) with associated co-expression
networks longissimus dorsi muscle (LDM) in Large White x Min pigs F2 resource population were
performed. The results contain high-throughput genomic data, which are helpful to clarify the
regulatory role of a variety of RNAs in regulating intramuscular fat formation and lipid metabolism
at the genomic level and provide new insights for studying the mechanism of fat formation and the
regulation of meat quality related genes at the molecular level.

Abstract: Intramuscular fat (IMF) content is a complex trait that affects meat quality and determines
pork quality. In order to explore the potential mechanisms that affect the intramuscular fat content
of pigs, a Large white x Min pigs F2 resource populations were constructed, then whole-
transcriptome profile analysis was carried out for five low-IMF and five high-IMF F2 individuals.
In total, 218 messenger RNA (mRNAs), 213 long non-coding RNAs (IncRNAs), 18 microRNAs
(miRNAs), and 59 circular RNAs (circRNAs) were found to be differentially expressed in the
longissimus dorsi muscle. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes
annotations revealed that these differentially expressed (DE) genes or potential target genes (PTGs)
of DE regulatory RNAs (IncRNAs, miRNAs, and circRNAs) are mainly involved in cell
differentiation, fatty acid synthesis, system development, muscle fiber development, and regulating
lipid metabolism. In total, 274 PTGs were found to be differentially expressed between low- and
high-IMF pigs, which indicated that some DE regulatory RNAs may contribute to the
deposition/metabolism of IMF by regulating their PTGs. In addition, we analyzed the quantitative
trait loci (QTLs) of DE RNAs co-located in high- and low-IMF groups. A total of 97 DE regulatory
RNAs could be found located in the QTLs related to IMF. Co-expression networks among different
types of RNA and competing endogenous RNA (ceRNA) regulatory networks were also
constructed, and some genes involved in type I diabetes mellitus were found to play an important
role in the complex molecular process of intramuscular fat deposition. This study identified and
analyzed some differential RNAs, regulatory RNAs, and PTGs related to IMF, and provided new
insights into the study of IMF formation at the level of the genome-wide landscape.
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1. Introduction

Pork is one of the main sources of human protein and fat, accounting for more than
40% of global human meat consumption [1]. Meat quality is an important economic trait
in pig production, and it can be evaluated by multiple indicators, such as intramuscular
fat content (IMF), muscle tenderness, meat color, and water-holding capacity [2,3]. IMF is
the key meat quality trait affecting the tenderness, flavor, and juiciness of pork.
Appropriate intramuscular fat content can improve meat quality [4]. Due to the different
genetic backgrounds and breeding objectives, there are considerable differences in
intramuscular fat content between native Chinese pigs and Western pigs. One famous
local pig breed in China, the Min pig, has excellent meat quality, delicious flavor and a
high intramuscular fat content (> 4%), which provides good research material for the
study of gene regulation related to intramuscular fat deposition in pigs.

In the past, many studies have used low-density microsatellite markers to identify
QTL associated with porcine IMF [5-7]. However, due to the low marker density, it is
difficult to accurately locate the target genes [8]. With the emergence of high-throughput
genotyping techniques, such as single nucleotide polymorphism (SNP) arrays, IMF-
related genetic variations and QTL of pigs can be found in a narrower gene region [9].
Combined with genome-wide association study (GWAS), potential genetic molecules
relating to intramuscular fat content can be identified. To date, 786 QTLs have been
identified for IMF (https://www.animalgenome.org/cgi-
bin/QTLdb/SS/traitsrch?tword=Intramuscular%20fat, release 44, accessed on 26 April
2021). At the same time, an increasing number of messenger RNA (mRNAs) and
regulatory RNAs such as long non-coding RNAs (IncRNAs), microRNAs (miRNAs) and
circular RNAs (circRNAs) have been identified through sequencing as candidate genes or
important regulators of fat deposition or lipid metabolism in pigs [9-11]. However,
combined analyses of all these types of RNA have rarely been reported [12], and an in-
depth functional analysis of regulatory RNAs for IMF development in pigs has not yet
been conducted.

In this study, we used whole-transcriptome sequencing to investigate the differences
in the expression of mRNAs, IncRNAs, miRNAs, and circRNAs between low- and high-
IMF in longissimus dorsi muscle (LDM) in a Large White x Min pigs F2 resource
population. Functional analysis of mRNAs, regulatory RNAs, and the potential target
genes (PTGs) of regulatory RNAs was performed to analyze the function of differential
expressed RNAs (DERs). The differential expressed (DE) regulatory RNAs were then
mapped onto the QTL database to predict their function. Finally, the co-expression
networks of regulatory RNAs were also explored to filter the candidate RNAs related to
IMF.

2. Materials and Methods
2.1. Ethics Statement

All animals used in this study were handled and kept according to the standard
guidelines for experimental animals established by Ministry of Science and Technology
(Beijing, China). All animal experiments were carried out with the ethical approval (No.
IAS2020-109) of the Animal Ethics Committee of the Institute of Animal Science, Chinese
Academy of Agricultural Sciences.

2.2. Animal and Sample Preparation

In this study, 10 individuals were selected from the F2 population of Large White x
Min pigs (at slaughter the average age was 240 + 7 days). These pigs were raised in the
same environment with the same feeding conditions. Pigs were weighed and slaughtered
in a commercial slaughterhouse. Tissue samples were collected from the same position
(10th to 11th ribs) of the longissimus dorsi muscle of pigs, and then frozen in liquid
nitrogen and stored in a refrigerator at -80 °C for further analysis. The IMF content was



Animals 2021, 11, 3212

3 of 21

measured using Soxhlet extractor method following the standard guidelines of the US
National Pork Producers Council (NPPC). Ten individuals (five individuals in each
group) from two groups were selected according to their content for transcriptome
analysis. Table 1 shows the carcass weight, IMF content and grouping of the research
samples. The average IMF content of F2 population was 2.85 + 1.83 and the average carcass
weight was 109.31 + 16.07 kg. The individuals in the study were from the F2 population,
the high-IMF group: 4.07 < IMF < 5.43, low-IMF group: 1.05 < IMF < 1.60, and had an
average carcass weight of 101.72 + 12.89 kg. There was significant differences of IMF
content between the two groups in this study (p <0.01).

Table 1. Description of IMF content between the two groups.

Sample Carcass Weight (kg) IMF (%) Group
H1 82.6 4.07 High IMF
H2 113 4.40 High IMF
H3 113 4.56 High IMF
H4 97.4 498 High IMF
H5 96.8 543 High IMF
L1 92 1.05 Low IMF
L2 113 1.18 Low IMF
L3 125.6 1.28 Low IMF
L4 89.4 1.57 Low IMF
L5 94.4 1.60 Low IMF

2.3. Construction and Sequencing of cDNA Libraries

Total RNA from the longissimus dorsi muscle tissue of each individual was extracted
using TRIzol reagent (Invitrogen, Waltham, MA, USA). Bioanalyzer 2100 (Agilent
Technologies, Inc., Santa Clara, CA, USA), Nano 6000 Assay Kit (Agilent Technologies,
Inc., Santa Clara, CA, USA) and 1% agarose gel electrophoresis were used to determine
the quality and integrity of the RNA. The OD 260/280 ratio of the samples was between
1.9 and 2.0, and the RNA integrity of all samples exceeded 7.4. The Ribo-Zero Gold kit
(Epicentre, Madison, WI, USA) was used to remove ribosomal RNA from each sample.
Two libraries were designed for whole-transcriptome sequencing, miRNAs analysis was
used to construct a small RNA library, and IncRNA/circRNA analysis was used to
construct a ribosome-removed library. The Agilent DNA 1000 kit on a Bioanalyzer 2100
(Agilent Technologies, Inc.,) was used to examine the size and purity of each cDNA
library. Finally, these libraries were sequenced on the Illumina HiSeq 4000 (Illumina, San
Diego, CA, USA) platform to obtain paired-end reads.

2.4. Data Mapping and Transcriptome Assembly

Content that contained poly-N or adapters and low-quality reads was deleted from
the sequenced row data, and the remaining reads were called clean data. The clean data
were mapped to the pig reference genome (Sus scrofa 11.1) using the default parameters
of HISAT (v2.0.4) software [13], and the mapped reads of each sample had at least one of
two replicates. The transcripts were assembled and annotated using the default
parameters in StringTie (v1.3.1) software [14]. Using Bowtie (v1.0.0) software [15],
sequence alignment was performed for the Silva database (http://www.arb-silva.de/,
version: 138.1, accessed on 2 June 2021), the GtRNAdb database
(http://lowelab.ucsc.edu/GtRNAdb/, version: SGSC Sscrofa9.2, accessed on 5 June 2021),
the Rfam database (http://rfam.xfam.org/, version: Rfam 14.6, accessed on 6 June 2021)
and the Repbase database (http://www.girinst.org/repbase/, version: RepBase26.10,
accessed on 6 June 2021). Non-codingRNAs (ncRNAs) and repeat sequences such as
ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), and small
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nucleolar RNA (snoRNA) were screened to construct the small RNA (sRNA) sequence
information.

2.5. Identification of IncRNAs, miRNAs, and circRNA

The basic screening conditions of transcript information were as follows: (1) we
selected the transcripts whose class code was ‘i, ‘x’, ‘u’, ‘0’, or ‘e’; (2) we selected the
transcripts whose length was > 200 bp with an exon number > 2; and (3) we selected the
transcripts with a Fragments per kilobase of exon model per million mapped fragments
(FPKM) > 0.1. CPC2 (CPC2-beta) [16], CNCI (v2) [17], and CPAT [18] software were used
to predict the coding potential from the basically screened transcripts. The IncRNA
retained in the four databases was defined as new IncRNAs, and the predicted IncRNAs
were classified. The reads of the reference genome were compared with the mature
sequences of known miRNAs in the miRBase database
(https://www.mirbase.org/search.shtml, version: Release 22.1, accessed on 22 July 2021)
and the range from 2 nt upstream to 5 nt downstream to identify known miRNAs. In
addition, the miRDeep2 (v2.0.5) software package [19] was used to predict new miRNAs
based on the distribution information of reads on the precursor sequences and the energy
information of the precursor structure. The Sam alignment was scanned twice by CIRI
(v2.05) [20] software based on the BWA-MEM algorithm to detect junction reads with
paired chiastic clipping signals. These comparisons were then scanned again using
dynamic programming algorithms to filter the false positive candidates caused by error
mapping reads. Finally, circRNA was identified by reading at least two connections.

2.6. Differentially Expressed RNA Analysis

The expression levels of the transcripts were calculated using StringTie and Ballgown
software, and standardized using FPKM (fragments per kilobase of transcript per million
fragments mapping) and RSEM (splicing reads per billion mapping). StringTie uses FPKM
as an indicator to measure the expression level of transcripts or genes (mRNA and
IncRNA). SRPBM (splicing reads per billion mapping) was used to estimate the expression
level of circRNA. MiRNA expression quantification was normalized by the TPM
algorithm. DEseq2 (v1.6.3) R package [21] was used to screen DERs with a fold change >
1.5 and a p-value <0.01 (mRNA, IncRNA, and circRNA), or a fold change > 1.5 and p-value
<0.05 (miRNA).

2.7. Prediction of the Potential Target Genes of DE IncRNAs, miRNAs, and circRNAs

In this study, two strategies were used to predict IncRNA target genes: (1) cis-target
gene prediction based on the position of the IncRNA and the target gene located upstream
or downstream (< 100 Kb) from the IncRNAs; (2) trans-target gene prediction based on the
correlation analysis of IncRNA and mRNA expression, with the genes identified as PTGs
of IncRNAs when these distant protein-coding genes were positively or negatively
correlated with the expression of IncRNAs. The absolute Pearson’s coefficient (r) between
each IncRNA and protein-coding gene pair was > 0.95, and the p-value was < 0.01 [22].
MiRNA target genes were predicted using miRanda (v3.3a) [23] and Targetscan [24]
software; the intersection of the two target prediction results was taken as the miRNA
target gene. The gene corresponding to the longest transcriptional fragment that
accurately matched both ends (5" end or 3" end) of the circRNA was used as the host gene
of the circRNA.

2.8. Gene Ontology Enrichment and KEGG Pathway Analyses

Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed for all DERs between the
two groups. GO (http://www.geneontology.org/, version: Release 2021-10-26, accessed on
28 July 2021) is the international standard classification of gene functions. It classifies gene
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functions according to three aspects: molecular function, biological processes and cell
composition. The KEGG (http://www.genome.jp/kegg, version: Release 99.1, accessed on
28 July 2021) database is the main public database for metabolic analysis and regulation
network research. In order to explore the main biological functions of differentially
expressed genes on the basis of hypergeometric distribution, clusterProfiler (v3.10.1) [25]
was used for GO and KEGG signal pathway enrichment analysis of mRNA. GO terms and
pathways with p < 0.05 were considered to be significantly enriched.

2.9. Co-Construction of Gene Expression Networks

According to the RNA expression data, Pearson’s correlation analysis was used to
construct a co-expression network of mRNA-IncRNA, mRNA-circRNA, circRNA-
IncRNA, and circRNA-miRNA pairs with thresholds Ir| > 0.8 and p < 0.05. In addition,
the competing endogenous RNA (ceRNA) regulatory network was constructed on the
basis of the pairwise expression results of the different RNAs. At the same time, a one-
step neighbor network of differential RNA was extracted from each differential
combination in the ceRNA relationship pair, and the differential ceRNA relationship pair
was obtained. Based on a random walk, the key nodes in the ceRNA network were sorted,
and the top 5% RNAs in the network were screened as key genes. Functional annotation,
pathway enrichment analysis, and network construction of the key genes were carried
out.

2.10. Association Analysis between QTL Sites and the Locations of Differentially Expressed
RNA

For the combined analysis of DERs and QTLs, the data containing the location of the
DERs were compared with the filtered pig QTL data. Bedtools (v2.27.1) [26] software was
used and the ‘intersection’ command was used: intersectBed-a-b-wa-wb.

2.11. Validation of the RNA Sequencing Results Using qRT-PCR

Three RNA samples each from the two groups were used for qRT-PCR to verify the
data of the RNA-seq sequencing results. The cDNA chain was synthesized using the
PrimeScript RT reagent Kit with the gDNA Eraser (Takara, Otsu, Japan), and the
concentration and quality were determined using a Nanodrop 2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Next, TB Green Premix Ex Taq (Takara)
was used for qRT-PCR, which was performed on an Applied Biosystems 7300 Real-Time
PCR System (Thermo Fisher Scientific). The thermal cycle parameters used were as
follows: Stage 1: 95 °C for 30 s; Stage 2: 95 °C for 5 s and 60 °C for 34 s for 40 cycles; and
Stage 3: 95 °C for 15 s, 60 °C for 1 min and 95 °C for 15 s. The glyceraldehyde-3-phosphate
dehydrogenase gene (GAPDH) was used as an endogenous control gene. The average ACt
of the low-IMF group individuals was used as sample controls. All qRT-PCR verifications
were performed using three biological replicates and with three replicates for each
sample. The relative abundance of transcripts was calculated by the 2-24¢t method. The
primers (Table S1) used for qRT-PCR were designed using Oligo7 software and
synthesized by Invitrogen Inc. (Shanghai, China).

2.12. Statistical Analyses

The software packages SPSS (v22.0) [27] and GraphPad Prism (v8.0) [28] were used
for data analysis and mapping. The results were expressed as means + standard deviation
(SD). One-way ANOVA was used to determine the statistical differences between any two
groups, followed by Tukey’s test for multiple comparisons. p < 0.05 was considered to
indicate a significant difference; p < 0.01 and p < 0.001 indicated extremely significant
differences



Animals 2021, 11, 3212

6 of 21

3. Results
3.1. Overview of RNA Sequencing

After quality control, 228.75 Gb of clean data were obtained from 10 samples; for each
sample, the clean data reached 18.24 Gb, and the Q30 base percentage was above 94.07%.
The clean reads of each sample were aligned with the pig reference genome (Sus scrofa
Sscrofall.1_102). The total percentage of mapped reads of mRNA and IncRNA in the
genome was between 96.28% and 97.21%, and the specific comparison results were
between 87.45% and 92.61%. In addition, the matching rate of miRNA was 68.51-76.29%,
and the matching rate of circRNA was more than 99%. This is basically consistent with
the data in other porcine muscle transcriptome studies. It indicates that the data
sequencing quality and comparison rate were high, the data utilization rate was normal,

and the data met the needs of subsequent analyses. Details are shown in Supplementary
Table S2.

3.2. Differential Expression Profiles ofmRNAs IncRNAs, miRNAs, and circRNAs

A global display of the differentially expressed RNAs on the chromosomes and the
quantitative statistics of the DERs are shown in Figure 1. Top DE genes and ncRNAs are
shown in Table 2. The top DE genes, such as secreted phosphoprotein 1 (SPP1), myosin
heavy chain 7B (MYH7B), calcium and integrin binding family member 2 (CIB2), and other
DE genes, such as secreted frizzled-related protein 4 (SFRP4), Glycerol-3-phosphate
ethyltransferase (GPAT), Acetyl-CoA Acyltransferase 2 (ACAA2), Acyl-CoA oxidase 2
(ACOX2), thrombospondin 4 (THBS4), C-C Motif Chemokine Ligand 4 (CCL4), C-C motif
chemokine ligand 10 (CCL10), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif
chemokine ligand 10 (CXCL16), and transforming growth factor beta 3 (TGFB3), have
known functions associated with muscle or fat traits.

= mMRNA =IncRNA = miRNA = circRNA

Figure 1. Statistics of differentially expressed RNAs in the high- and low- IMF groups. (A) The genome-wide distribution
and expression schema for differentially expressed RNAs. (B) Number of differentially expressed RNAs in the two groups
(p-value < 0.01 (mRNA, IncRNA, and circRNA), and p-value < 0.05 (miRNA)).
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Table 2. Summary of top up-regulated and down regulated DE circRNAs, miRNAs, IncRNAs, and
mRNAs between high- and low-IMF groups.

RNA Regulated log2FC p-Value Type
MSTRG.19330.20 up 6.573623 5.41 x 10-¢2
MSTRG.40179.2 up 3.10731 1.32 x 1010
MSTRG.44176.8 up 1.908359 2.75 x 105
MSTRG.39829.10 up 1.710734 4,15 %104
MSTRG.38601.10 u 1.476951 1.54 x 106
MSTRG.29140.1 dovrzfn 104114 237x105  NCRNAS
MSTRG.25219.1 down -1.99459 2.95 %10

MSTRG.9199.1 down -2.01282 4.72 x 10
MSTRG.5761.2 down -2.50226 3.96 x 108
MSTRG.44725.16 down -2.71452 1.45 x 10710
novel_miR_118 up 1.459799 1.07 x 102
ssc-miR-208b up 1.310524 7.14 x 103
novel_miR_398 up 1.297012 3.44 x 102
novel_miR_278 up 1.272563 3.34 x 102
ssc-miR-190b up 1.198435 1.12 x 102

ssc-miR-499-5p up 1.185263 1.01 x 102 miRNAs
novel_miR_185 down -1.54969 1.09 x 102
novel_miR_45 down -1.74161 3.76 x 103
novel_miR_476 down -1.78496 3.59 x 103
novel_miR_45 down -1.74161 3.76 x 103
novel_miR_476 down -1.78496 3.59 x 103
12:39408156 139428231 up 9.005799 1.98 x 106
14:71348983 171349948 up 6.965969 4.78 x 10+
3:44121881144122061 up 6.819521 3.29 x 10+
9:1257329181125735258 up 6.586107 1.03 x 103

13:71794794171797638 up 6.346968 1.25x 103 ircRNAS
1:1083852121108386218 down -5.96632 1.61 x 103
12:59320434159323398 down -6.16306 1.81 x 103
7:68514625168532510 down -6.37264 1.20 x 10-3
9:66405629166409132 down -6.57113 8.32 x 10+
4:50433434 150447885 down —6.83942 4.52 x 10+
RDH16 up 0.993121 1.20 x 10+
ENSSSCG00000045560 up 0.928328 2.29 x 10+
KCNRG up 0.856391 6.58 x 10+
ENSSSCG00000045892 up 0.844323 8.67 x 10+
RABL2B u 0.831953 1.16 x 10-3

SPP1 dovr\)m 09279 269x104  TRNAS
CIB2 down -0.93599 8.18 x 105
PTPMT1 down -0.96233 5.00 x 105
MYH7B down -0.99074 1.05 x 10-5
GPNMB down -1.15542 1.07 x 105

RDH16: retinol dehydrogenase 16; KCNRG: potassium channel regulator; RABL2B: RAB, member
of ras oncogene family similar to 2B; SPP1: Secreted Phosphoprotein 1; CIB2: calcium and integrin
binding family member 2; PTPMT1: protein tyrosine phosphatase mitochondrial 1; MYH7B:
myosin heavy chain 7B; and GPNMB: glycoprotein nmb.

Using a fold change > 1.5 and p < 0.01 as the standard for screening DE IncRNA
circRNA, and mRNA, 218 differentially expressed genes were found between the high-



Animals 2021, 11, 3212

8 of 21

cis-PTGs

and low-IMF groups, of which 100 were upregulated and 118 were downregulated.
Among the 213 differentially expressed IncRNAs, 148 were upregulated and 65 were
downregulated, and of the 59 circRNAs, 36 were upregulated and 23 were
downregulated. In addition, according to the criteria of fold change > 1.5 and p < 0.05, 18
DE miRNAs were identified between the two groups (Supplementary Table S3).

3.3. Prediction of the Potential Target Genes (PTGs) of DE IncRNAs, circRNAs, and miRNAs

In order to reveal the potential function of the screened DE IncRNAs in the IMF,
independent cis- and trans-algorithms were used to predict the target genes. We predicted
the cis-regulated PTGs and obtained 692 PTGs that corresponded to 213 DE IncRNAs; 17
of the 692 PTGs were differentially expressed between the two groups (Figure 2A). We
then predicted 6663 PTGs of 209 DE IncRNAs via the trans mode: 166 of the 6663 PTGs
corresponded to 40 IncRNAs which were differentially expressed between the two groups
(Figure 2B). In addition, 21 of the 40 DE IncRNAs upregulated most of their DE PTGs, and
19 DE IncRNAs downregulated the majority of their DE PTGs. For target gene prediction
of the DE miRNAs, 15 of 18 DE miRNAs obtained 8775 PTGs. The number of target genes
of known miRNAs was very different from the target genes of novel miRNAs. The known
miRNAs ssc-mir-190b and ssc-mir-194a-5p had two and four PTGs, respectively, but the
novel miRNA_100 had 1585 PTGs. Moreover, 90 of 8775 PTGs were differentially
expressed between the two groups. CircRNA has a unique closed-loop mode, and each
circRNA had its corresponding PTG. In total, 59 PTGs were obtained, of which only 52
were annotated. Only one of the 59 PTGs was DE between the two groups. Details are
shown in Supplementary Table 54.

B
DEGs trans-PTGs DEGs

Figure 2. (A) The cis-regulated PTGs of IncRNAs that were differentially expressed between the two groups; 17 co-
expressed genes from the DEGs and DE IncRNA target genes are shown. (B) The trans-regulated PTG differences between
the two groups; 166 co-expressed genes from the DEGs and DE IncRNA target genes are shown.

3.4. GO and KEGG Analysis of the DERs

GO analysis showed that the DE mRNAs, IncRNAs, miRNAs, and circRNAs were
mainly involved in the cell part of the cellular component category. In the biological
process category, cell process, single biological process, and biological regulation were the
most abundant. DE mRNA and miRNAs were significantly enriched in cell differentiation
system development and animal organ development, involving muscle cell
differentiation, system development, and tissue and organ development (Figure 3A,B).
The target genes of DE circRNAs were mainly in plasma membrane repair, cerebellar
Purkinje cell differentiation, N-glycan processing, skeletal muscle contraction, muscle
system processes, etc., in muscle development and cell differentiation, and biological
signal responses (Figure 3C).

For DE mRNA, the KEGG pathway analysis showed that these DE mRNAs were
mainly related to lipid metabolism, such as the cytokine-cytokine interaction receptor,
focal adhesion, and the Toll-like receptor signaling pathways. Genes in the cytokine—
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cytokine receptor interaction, chemotherapeutic factors (such as CCL4), transforming
growth factor (such as TGFB3), and chemokines (such as CXCL10 and CXCL16) pathways
were highly expressed in low-IMF individuals. CCL4, CCL10, and SPP1 were enriched in
the Toll-like receptor signaling pathway and were all expressed in low-IMF pigs. In
addition, primary bile acid biosynthesis included the fatty acid oxidation gene ACOX2,
which is involved in the lipid synthesis pathway. These genes had the opposite expression
trend in high-IMF individuals (Figure 3A).

For DE miRNAs, the KEGG pathway analysis showed that these DE miRNAs were
significantly enriched in aminoacyl-tRNA biosynthesis and axon guidance, and the
analysis also found pathways closely related to lipid metabolism, including the glucagon
signaling pathway and the mTOR signaling pathway, which were also significantly
enriched in lipid metabolism, such as glycerol metabolism. The MAPK signaling pathway,
the PI3K-Akt signaling pathway, and the insulin signaling pathway are closely related
(Figure 3B). In these two pathways, there were seven new miRNAs, of which
novel_miR_398, novel_ miR_118, and novel_miR_278 were upregulated, and
novel_miR_100, novel miR 476, and novel miR 7 were downregulated in both
pathways. Novel miR_434 and novel_miR 45 , play unique roles in these pathways
(Supplementary Table S5.).

For the circRNAs, the KEGG pathway analysis showed that these DE circRNAs were
highly enriched in inflammatory bowel disease (IBD), hypertrophic task (HCM), etc. In
addition, in the tight junction, the adherens junction was also significantly enriched.
Functional annotation found that these pathways were associated with lipid metabolism
(such as the MAPK signaling pathway, the TGF-beta signaling pathway and cytokine—
cytokine receptor interaction). These pathways play a key role in lipid metabolism and
synthesis (Figure 3C).
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Figure 3. Gene ontology and pathway analysis of the DEGs and the potential target genes (PTGs) of DE miRNAs and
circRNAs. (A) Gene ontology and pathway analysis of DEGs. (B) Gene ontology and pathway analysis of DE miRNA
target genes. (C) Gene ontology and pathway analysis of the DE circRNA target genes.

3.5. Functional Analysis of the DE PTGs

The dot-plot analysis showed the results of the top 20 GO analysis results with p-
values from smallest to largest, as well as the results of KEGG pathway analysis (Figure
4A,B). Most of the PTGs were related to cell density biological processes, but were also
significantly enriched in lipid metabolism processes including lipid transport (Figure 4A).
Most KEGG pathways which the PTGs were involved in were autoimmune diseases and
hormone signal regulation, among which the cGMP-PKG signaling pathway and the
estrogen signaling pathway were closely related to IMF content (Figure 4B).
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Figure 4. GO and KEGG pathway analysis of the PTGs of DE IncRNAs. (A) GO biological process analysis for all DE
IncRNAs. (B) KEGG pathway analysis for all DE IncRNAs. (C) Gene network of PTGs enriched in fatty acid metabolism

via cis-regulation.

GO results based on cis-regulation showed that the fatty acid metabolism process,
the regulation of lipid catabolic process, the muscle cell apoptosis process, myotube
differentiation involved in skeletal muscle regeneration, and regulation of skeletal muscle
fiber development were significantly enriched, and were mainly involved in fatty acid
metabolism, the lipid catabolic process, myotube differentiation, and muscle fiber
development regulation. In our study, several IncRNA target genes were involved in lipid
metabolism: MSTRG.1611.1, MSTRG.35593.1, MSTRG.77761.1, MSTRG.22650.3,
MSTRG.2132.1, and MSTRG.20935.1 were highlighted. MSTRG.1611.1 and its target gene,
acetyl-CoA acyltransferase 2 (ACAA2), were downregulated between the two groups,
indicating that MSTRG.1611.1 may regulate fatty acid metabolism by negatively affecting
ACAA2. The top five significantly enriched biological processes were the fatty acid
metabolic process, the allantoin metabolic process, the isoleucine metabolic process, the
valine metabolic process and the creatine metabolic process. These terms are linked to
genes involved in the network (Figure 4C and Supplementary Table S6).

KEGG analysis showed that the cis-regulated PTGs of IncRNAs were significantly
annotated in glycerophospholipid metabolism, the phospholipase D signaling pathway
and the cGMP-PKG signaling pathway; the latter was involved in lipid and carbohydrate
metabolism-related pathways, such as the MAPK signaling pathway and fatty acid
biosynthesis. The trans-regulated target genes of IncRNAs were enriched in 59 pathways,
some of which are associated with lipid metabolism, such as the cGMP-PKG signaling
pathway, the regulation of lipolysis in adipocytes and the PPAR signaling pathway, but
these were not the most significantly enriched (Supplementary Table S6).

3.6. Overlapping Analysis between QTL Sites and the Location of DE RNAs

In order to explore the function of DE RN As more accurately, we combined DE RNAs
with QTLs. The results showed that 208 DE IncRNAs were related to 13,302 QTLs, and
3275 QTLs related to fat deposition were found. These QTLs were distributed on porcine
autosomal and X chromosomes, among which chromosomes 1, 7, 2, and 6 were the most
distributed, mainly related to backfat, such as average backfat thickness, final rib backfat
and subcutaneous shoulder fat thickness. Moreover, 10.63% (348/3275) of the QTLs were
associated with intramuscular fat and distributed on chromosomes 2,3, 4, 6, 7, 8,9, 13, 15,
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17, and X, of which chromosome 3 had the most QTLs (223) and was associated with 72

IncRNAs (Figure 5A).
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Figure 5. Quantitative trait locus analysis of DE RNAs. (A) The number distribution of QTLs related to fat deposition, the
number of QTLs related to fat deposition, and the chromosome distribution of the QTLs related to fat deposition of the
DE IncRNAs. (B) The number distribution of QTLs related to fat deposition, the number of QTLs related to fat deposition,
and the chromosome distribution of the QTLs related to fat deposition of the DE miRNAs. (C) The number distribution of
QTLs related to fat deposition, the number of QTLs related to fat deposition, and the chromosome distribution of the QTLs
related to fat deposition of the DE circRNAs.

There were 17 DE miRNAs distributed in 1083 QTLs, of which 252 QTLs were related
to fat deposition and were mainly distributed on chromosomes 1, 2, 4, and 7. Most of these
QTLs were related to average backfat thickness, final rib backfat, and subcutaneous
shoulder fat thickness. At the same time, the newly predicted miRNA novel_miR_45 and
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the mature miRNA ssc-miR-190b on chromosome 4 and chromosome 17 were closely
related to the QTLs for intramuscular fat content (Figure 5B). For DE circRNAs, 58
circRNAs matched a total of 3970 QTLs, 1028 of which were QTLs related to fat deposition,
which were distributed on the autosome and X chromosome, except for chromosome 17.
About one-third of the fat deposition QTLs were distributed on chromosome 7 and were
mainly involved in the average backfat thickness, final rib backfat, tenth rib backfat, and
subcutaneous shoulder fat thickness, which was basically consistent with the previous
results. In addition, 8.3% (85/1028) QTLs were associated with intramuscular fat, and these
QTLs were mainly located on chromosome 3 and distributed on chromosomes 2, 4, 6, 7,
9, 15, and X (Figure 5C). The above results show that the QTLs corresponding to DERs
have abundant diversity at the chromosome level and the DERs are associated with
intramuscular fat (Supplementary Table S7).

3.7. Expression Regulation Analysis of DE IncRNAs, miRNAs, and circRNAs, and Their DE
PTGs

The results of gene co-expression showed that there are 23 DE IncRNAs and 18 DEGs
in the IncRNA-mRNA network between the two groups. There were 9 DEGs and 11 DE
miRNAs in the miRNA-mRNA network, and there was only one DEcircRNA and DEG
between the two groups. The circRNA-IncRNA, circRNA-miRNA, and circRNA-mRNA
networks are shown in Supplementary Table S8.

Based on the ceRNA hypothesis, we analyzed the total transcriptome data and
constructed the ceRNA regulatory network. The ceRNA network contained 4032
IncRNAs, 6785 mRNAs, and 815 circRNAs. By using a one-step neighbor network to
construct different ccRNA combinations, we found that nine known miRNAs (ssc-miR-
4334-3p, ssc-miR-339, ssc-miR-339-5p, ssc-miR-4331-3p, ssc-miR-671-5p, ssc-miR-874, ssc-
miR-671-5p, ssc-miR-7138-3p, and ssc-miR-370) were involved in more relationship pairs
in the mRNA-miRNA-IncRNA network, and may play a central role in the regulatory
network. Similarly, we found nine miRNAs (ssc-miR-1343, ssc-miR-671-5p, ssc-miR-4331-
3p, ssc-miR-328, ssc-miR-874, ssc-miR-9785-5p, ssc-miR-370, ssc-miR-1224, and ssc-miR-
330) in the mRNA-miRNA—circRNA network that may play a central role in the
regulatory network. There were 10 miRNAs in circRNA-miRNA-IncRNA network (ssc-
miR-339, ssc-miR-339-5p, ssc-miR-4334-3p, ssc-miR-4331-3p, ssc-miR-370, ssc-miR-874,
ssc-miR-574-5p, ssc-miR-1343,2320-5p, and ssc-miR-6782-3p). Thus, multiple miRNAs
participate in a common regulatory role in the ternary regulatory network. CircRNA plays
an important role in regulating gene expression by interacting with miRNA in mammals.
We compared the relationships between DEmRNA and miRNA to obtain the DE
circRNA-miRNA-DE mRNA interaction network (Figure 5A).

We compared the relationships between DE mRNA and miRNA to obtain the DE
circRNA-DE mRNA interaction network. Similarly, by using the DE IncRNA-miRNA
relationship network, we obtained the DE IncRNA-miRNA-DE mRNA and the DE
circRNA-miRNA-DE IncRNA interaction networks (Figure 6B,C). Nevertheless, the
miRNAs in the ceRNA networks we constructed were not differentially expressed
between the two groups.
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Figure 6. Co-expressed networks of differentially expressed (DE) mRNAs, IncRNAs, and circRNAs, and their targeted
miRNAs. (A) Co-expressed networks of DE mRNAs and DE IncRNAs with the targeted miRNAs. (B) Co-expressed
networks of DE mRNAs and DE circRNAs with the targeted miRNAs. (C) Co-expression networks of DE IncRNAs and
DE circRNAs with the targeted miRNAs. (D). The networks of genes in the top five pathways, and the integration analysis
of key gene pathways in different ceRNA networks.

Based on the integration analysis of key gene pathways in different ccRNA networks,
Gene network analysis showed mitogen-activated protein kinase 10 (MAPK10), Janus
kinase 1 (JAKI), signal transducer and activator of transcription 1 (STATI), and other
genes associated with fat deposition were enriched in the pathway; tyrosine kinase 2
(TYK?2), interferon regulatory factor 9 (IRF9), fas associated via death domain (FADD), and
other key genes are shown in Figure 6D.
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3.8. RNA Sequencing Results Validation Using gRT-PCR

To validate the accuracy of the RNA-Seq data, according to their expression levels,
five RNAs were screened from the DEmRNAs and DE IncRNAs in low- and high-IMF
groups. The genes Potassium Channel Regulator (KCNRG), HUS1 Checkpoint Clamp
Component (HUSI), and IncRNA MSTRG.5761.2 were highly expressed in the high IMF
group, while the genes ACAA2 and IncRNA MSTRG.40179 were lowly expressed. We
designed different primers and used cDNA as amplification template. QRT-PCR results
showed that the expression levels of these candidate RNAs did not change significantly
between low- and high-IMF group, which was consistent with our sequencing analysis,
indicating that our estimation of abundance was accurate (Figure 7).

B gRT-PCR
B RNA-seq

Figure 7. The RNA sequencing analysis data were verified by qRT-PCR. The relative expression levels of five differentially
expressed RNAs were analyzed between RNA sequencing and qRT-PCR.

4. Discussion

IMF content is one of the polygenic traits in animals and is an important determinant
of meat quality. Increasing the accumulation of intramuscular fat can promote the
formation of meat marble patterns and improve the taste, flavor, color, and other
characteristics of meat [2,3,29,30]. Therefore, in view of the importance of IMF to livestock
production economics, it is of great significance to clarify the molecular mechanisms of
IMF deposition [30,31]. Even in the same breed and under the same breeding conditions,
genetic factors leading to individual accumulation of IMF content are different. Moreover,
the association between genomic markers and IMF deposition is not always consistent, so
it is essential to explore the potential molecular mechanisms related to IMF [32]. Up to
now, some studies have identified candidate genes (protein-coding and noncoding genes)
related to meat quality traits and used them in practical production [33-35]. Intramuscular
fat is highly complex and metabolically active, which involves complex metabolic
processes and pathways, and also involves multiple genes. However, the regulatory
mechanism of fat deposition is poorly understood.

RNA-seq technology was used for transcriptome analysis of porcine LDM samples
with different IMF contents. In total, 218 DEGs were identified between the two groups,



Animals 2021, 11, 3212

16 of 21

many of which have known functions in lipid metabolism. For example, the adipogenic
gene SFRP4 can positively regulate the expression of adipogenic genes through the
Wnt/B-catenin signaling pathway, thereby promoting the formation of fat [36,37]. GPAT
is a rate-limiting enzyme involved in triglyceride synthesis [38]. GPAT3 is the main form
of GPAT expressed in adipocytes and plays a crucial role in fat formation [39]. ACAA?2 is
a key enzyme in the fatty acid oxidation pathway, which regulates cell apoptosis and
triglycerides, and plays an important role in fatty acid metabolism. At the same time,
ACAA2 can also promote the differentiation of preadipocytes into adipocytes through
PPAR, thereby regulating intramuscular fat content [40]. TGFB3 is a regulator of the
number of adipocytes, which can increase the number of adipocytes in white adipose
tissue (WAT) and reduce glucose tolerance [41]. ACOX2 can also involve in the regulation
of chicken IMF with different growth rates though PPAR pathway [42]. Significantly, we
found that SPP1 and THBS4 were enriched in the PI3K-Akt signaling pathway involved
in lipid metabolism [43,44]. CXCL16 can participate in lipid metabolism by triggering
downstream PI3K, Akt, and IKK signal transduction events. It can be seen that DEGs
participate in multiple pathways at the same time, forming a complex regulatory network
involved in fatty acid biosynthesis and metabolism. It is also noteworthy that among these
known genes, SFRP4, GPAT3, and ACAA2 were consistent with IMF content trends and
play a positive regulatory role in intramuscular fat deposition. However, ACOX2 showed
the opposite trend, and the inconsistent expression trend may be related to some other
potential gene regulation or gene tissue-specific expression. These are worthy of further
study for understanding the complex regulatory mechanisms of intramuscular fat.

In this study, the number of IncRNAs identified in our results was significantly
different from that in Duroc and Luchuan pigs (4868 IncRNAs) [45], Jinhua and Landrace
pigs (4910 IncRNAs) [46], and Songliao and Landrace pigs (1071 InRNAs) [47], which may
be due to the rich genetic diversity of F2 resource pigs. The identified IncRNAs showed
typical characteristics, such as a shorter transcript length, fewer exons, a longer exon
length, and a lower expression level compared with protein-coding transcripts, which is
consistent with previous studies [48]. In total, 274 PTGs were differentially expressed
between low- and high-IMF pigs, and this indicated that some DE regulatory RNAs may
contribute to the deposition and metabolism of IMF by regulating their PTGs. In addition,
although muscle is an important metabolic tissue in pigs and is involved in a variety of
muscle development events, such as muscle growth and lipid metabolism, we infer that
some DERs in the LDM are related to muscle to a certain extent, but our research focus
was on IMF-related RNA. The QTL analysis results of the DE IncRNAs showed that these
were mostly located in the QTLs for IMF content, which further proved our speculation
to some extent. This result is also consistent with a previous study [49]. Previous studies
have shown that IncRNA can regulate gene expression in some ways, including cis- and
trans-regulation [50-52]. In our study, we found that IncRNA and its adjacent genes
showed a strong correlation. Functional annotation and network analyses showed that
MSTRG.16111.1 and its target gene, ACAA2, were significantly downregulated. ACAA2
can participate in PPAR signaling, and that the primary bile acid biosynthesis pathway
was involved in lipid metabolism in muscle [53].

The DE miRNAs and DE circRNAs identified for IMF showed that they were
significantly enriched in the lipid-related pathways, such as the glucagon signaling
pathway, the mTOR signaling pathway and adherens junction. They were mainly
involved in the insulin signaling pathway, the MAPK signaling pathway, the PI3K-Akt
signaling pathway, and the TGF-f3 signaling pathway. Studies have shown that ssc-miR-
208b may be essential for IMF metabolism [54], and ssc-miR-499-5p is associated with type
I muscle fibers [55]. Ssc-miR-190b regulates lipid metabolism and insulin sensitivity by
targeting IGF-1 and ADAMTS9 [56].

Although recent studies have reported that miRNAs are involved in the development
of intramuscular preadipocytes [57,58], the molecular regulation mechanism of miRNAs
in porcine IMF development remains largely unknown. Studies have shown that
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inhibition of ssc-miR-499-5p expression in nonalcoholic fatty liver disease (NAFLD) cells
reduces lipid deposition and of triglyceride (TG) content [59]. However, in this study, ssc-
miR-499-5p was upregulated in high-IMF animals, which may be due to the high
conservation and tissue specificity of miRNA, which plays different roles in different
tissues.

We constructed a ceRNA regulatory network using co-expressed and targeted RNAs.
Although we constructed the DE circRNA-miRNA-DE mRNA, DE IncRNA-miRNA-DE
mRNA, and DE circRNA-miRNA-DE IncRNA networks based on the “sponge
adsorption” theory, the results showed that the genes were mainly involved in immune
regulation and anti-infection. According to previous research results, these signaling
pathways and key genes are also widely involved in lipid metabolism and fat deposition
[60-62]. These may play an important role in the complex molecular process of
intramuscular fat deposition. In this study, a key gene integration analysis of different
combinations of ceRNA pairs was carried out. According to previous research results,
these signaling pathways and key genes are also widely involved in lipid metabolism and
fat deposition, but the enriched genes, including the MAPK10 and JAK/STAT pathways,
were related to lipid metabolism including fat deposition and fatty acid 3 oxidation [63].
At the same time, studies have shown that decreased TYK2 and STATI promoted the
expression of PPARy and FAS in adipose tissue [64,65]. FADD was recently reported as a
key regulator of lipid metabolism, and FADD is a master regulator of glucose and fat
metabolism [66].

5. Conclusions

In our study, we identified and analyzed mRNAs, miRNA, lincRNAs, and circRNAs
between low- and high-IMF samples from the longissimus dorsi muscle (LDM) in a Large
White x Min F2 resource population of pigs. In total, 290 RNAs and 527 PTGs were found
to be differentially expressed between low- and high-IMF pigs. Function analysis
indicated that many regulatory RNAs, such as MSTRG.1611.1, MSTRG.35593.1,
MSTRG.77761.1, ssc-miR-208b, and ssc-miR-190b, may have contributed to the differences
in the IMF-related processes. However, the function and molecular regulatory
mechanisms between regulatory RNAs and their PTGs remain unclear and require further
exploration.
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Abbreviations

AACt delta delta cycle threshold

ACAA2 Acetyl-CoA Acyltransferase 2

ACOX2 Acyl-CoA oxidase 2

CCL4 C-C Motif Chemokine Ligand 4

CCL10 C-C Motif Chemokine Ligand 10

CIB2 calcium and integrin binding family member 2
ceRNA competing endogenous RNAs

circRNAs circular RNAs

CXCL10 C-X-C motif chemokine ligand 10

CXCL16 C-X-C motif chemokine ligand 16

DE Differential expression

DERs differentially expressed RNAs

FPKM Fragments per kilobase of exon model per million mapped fragments
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GO Gene ontology

GPAT Glycerol-3-phosphate ethyltransferase
GPNMB glycoprotein nmb.

GWAS genome-wide association study

HUS1 HUS1 Checkpoint Clamp Component

IMF Intramuscular fat

KEGG Kyoto Encyclopedia of Genes and Genomes
KCNRG Potassium Channel Regulator

IncRNAs long non-coding RNAs

LDM longissimus dorsi muscle

mRNAs message RNA

miRNAs microRNAs

miRNAs microRNAs

MYH7B myosin heavy chain 7B

Novel novel gene

NPPC National Pork Producers Council

PTGs potential target genes

PTPMT1 protein tyrosine phosphatase mitochondrial 1
qRT-PCR Reverse transcription quantitative polymerase chain reaction
QTLs quantitative trait loci

RABL2B RAB, member of ras oncogene family like 2b
RDH16 retinol dehydrogenase 16

rRNAs mitochondrial ribosomal RNAs

SFRP4 secreted frizzled-related protein 4

sRNA small RNA

snRNAs small nuclear RNAs

snoRNA small nucleolar RNA

SPP1 secreted phosphoprotein 1

TGFB3 transforming growth factor beta 3

THBS4 thrombospondin 4

tRNA transfer RNA

MAPK10 mitogen-activated protein kinase 10

JAK1 janus kinase 1

STAT1 signal transducer and activator of transcription 1
TYK2 tyrosine kinase 2

IRF9 interferon regulatory factor 9

FADD fas associated via death domain
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