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Simple Summary: Canine leishmaniosis (CanL), the most severe, visceralizing form of disease
caused by Leishmania infantum transmitted by phlebotomine sand flies. CanL is frequently diagnosed
in the Mediterranean basin and South America, although it is also found in other regions, including
the United States (U.S.). Dogs in these regions are at risk for co-infections, prominently tick-borne
diseases. Our review examines epidemiologic, clinical, and immunologic mechanisms found during
the most common eight CanL co-infections reported in published literature. Co-infections alter
immunologic processes and disease progression impacting CanL diagnosis, therapeutic responses,
and prognosis.

Abstract: Canine leishmaniosis (CanL) is a vector-borne, parasitic disease. CanL is endemic in
the Mediterranean basin and South America but also found in Northern Africa, Asia, and the
U.S. Regions with both competent sand fly vectors and L. infantum parasites are also endemic for
additional infectious diseases that could cause co-infections in dogs. Growing evidence indicates
that co-infections can impact immunologic responses and thus the clinical course of both CanL
and the comorbid disease(s). The aim for this review is to summarize epidemiologic, clinical, and
immunologic factors contributing to eight primary co-infections reported with CanL: Ehrlichia spp.,
Anaplasma spp., Borrelia spp., Babesia spp., Trypanosoma cruzi, Toxoplasma gondii, Dirofilaria immitis,
Paracoccidioides braziliensis. Co-infection causes mechanistic differences in immunity which can alter
diagnostics, therapeutic management, and prognosis of dogs with CanL. More research is needed to
further explore immunomodulation during CanL co-infection(s) and their clinical impact.

Keywords: co-infections; canine leishmaniosis; risk factors; pathogenesis; immunity; epidemiology

1. Introduction

Canine leishmaniosis (CanL) is a parasitic disease caused by Leishmania infantum, trans-
mitted during phlebotomine sand fly feeding. CanL is endemic across the Mediterranean
basin, South America, and parts of Asia and Africa [1–3]. Risk of L. infantum transmission
is associated with changes in competent sand fly distribution, uncontrolled importation
of infected dogs to non-endemic areas, and vertical transmission to offspring [4–7]. CanL
presentation can range from subclinical disease, lymphadenopathy, and dermatologic
lesions to advanced chronic renal disease [8]. The timeline of CanL progression varies
between dogs, and factors contributing to CanL progression are poorly understood. Other
vector-borne diseases are primarily found within the regional distribution of L. infantum
(Table 1). Many reports indicated increased odds of co-infection with other vector-borne
and infectious diseases when a dog was diagnosed with CanL [9–12]. Co-infection with
other vector-borne diseases can hasten CanL progression.

In this review, we use the term co-infection to indicate presence of the pathogen’s nu-
cleic material or direct evaluation of both L. infantum and another pathogenic microbe. Co-
exposure within this review indicates detection of antibodies against one or both pathogenic
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microbes. We recognize the significance of both co-exposures and co-infections, as con-
firmed co-infection can be diagnostically challenging. The effects of these co-infections
upon the epidemiology, immunologic responses, clinical presentation, and CanL manage-
ment are important for both clinical and molecular understanding. This review provides
an overview of CanL and highlights primary co-infections found in dogs.

Table 1. Main pathogens involved in co-infection with canine leishmaniosis.

Pathogen Type of
Pathogen Main Vector(s) Region(s)

Primarily Found Reference(s)

Leishmania infantum Protozoa
Phlebotomus spp.

Mediterranean basin
Southern Europe
Northern Africa

[1,2]

Lutzomyia longipalpis South America [2,3]

None North America
(enzootic) [6,7]

Ehrlichia canis Bacteria Rhipicephalus sanguineus
North America
South America

Mediterranean basin
[13–16]

Ehrlichia ewingii Bacteria Amblyomma americanum North America [13–15,17]
Ehrlichia chaffeensis Bacteria Amblyomma americanum North America [13–15]

Anaplasma phagocytophilum Bacteria
Ixodes scapularis North America [18]
Ixodes pacificus Western U.S. [18]
Ixodes ricinus Europe [18,19]

Anaplasma platys Bacteria Rhipicephalus sanguineus Brazil
Europe [9,16,20]

Borrelia burgdorferi Bacteria
Ixodes scapularis North America [21–23]
Ixodes pacificus Western U.S. [21]

Borrelia garinii Bacteria Ixodes ricinus Europe [19,22,24]
Borrelia afzelii Bacteria Ixodes ricinus Europe [22,24]

Babesia canis Protozoa
Dermacentor reticulatus Europe [25–27]

Rhipicephalus sanguineus Brazil [25,28]
Babesia vogeli Protozoa Rhipicephalus sanguineus Brazil [28]

Babesia gibsoni Protozoa
Haemaphysalis bispinosa Asia [29]

Haemaphysalis longicornis Asia [27]

Trypanosoma cruzi Protozoa
Triatoma gerstaeckeri, T. sanguisuga North America [30–36]

T. dimidiata Central America [33,37]
T. infestans South America [33,38,39]

Toxoplasma gondii Protozoa None

South America
North America

Europe
Asia

[40,41]

Dirofilaria immitis Helminth Aedes, Anopheles, Culex North America, South
America, Europe [42–47]

Paracoccidiodes
brasiliensis Fungi None South America

Central America [48]

2. Overview of CanL

The predominance of L. infantum-infected dogs develops subclinical infection. How-
ever, 5–10% of the infected dogs eventually progress to chronic visceral disease within
months to years after infection [49]. The factors contributing to progression from subclini-
cal to clinical disease are under active investigation. However, it has been reported that
due to genetic mutations encoding protective responses of macrophages, Ibizan hounds
are protected against Leishmania infection, and boxers are susceptible to Leishmania infec-
tion [50–52].

Clinical CanL can develop at any time within a dog’s life and may progress years after
initial infection. Signs can range from weight loss, mild lymphadenomegaly, papular to
nodular lesions or ulcerative dermatitis, epistaxis, thrombocytopenia, and nonregenerative
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anemia to advanced renal disease and splenomegaly and hepatomegaly [8,53]. In Pereira
et al. (2020), the average age of presentation with CanL was 4–8 years old, 59.6% were
male, 67.4% of dogs evaluated had dermatologic signs, 60.4% had anemia, 52.8% had
hyperproteinemia, and 43.2% had uremia [54]. In Europe, the LeishVet clinical staging
guidelines are used to monitor progression of CanL and guide appropriate disease manage-
ment [8]. By LeishVet stage 2, there is usually evidence of hypergammaglobulinemia and
hypoalbuminemia, consistent with non-specific B cell activation seen with many infectious
diseases [8]. Signs of renal disease characterize LeishVet stages 3 and 4 [8]. The most
advanced stage, stage 4, is distinguished by International Renal Interest Society (IRIS)
stages 3–4, manifested by proteinuria, uremia, and nonregenerative anemia [8]. Chronic
kidney disease is a major cause of death for dogs with CanL [8].

Polymerase chain reaction (PCR) methods and quantitative serological methods in-
cluding enzyme-linked immunosorbent assay (ELISA) and immunofluorescent antibody
test (IFAT) were more commonly used for diagnosis of CanL than direct evaluation of
parasites from culture or cytology/histopathology [8,55]. Blood or sera samples are often
used due to ease of collection, although lymph node or splenic aspirates may be more
sensitive [8]. Depending on the dog’s clinical status, routine monitoring every 3–6 months
is warranted in order to provide appropriate therapy [55]. After reviewing common co-
infections and associated immune responses, we provide comments on treatment and
prevention of CanL and co-infections.

3. Immune Responses during CanL

The clinical outcome of CanL is determined by a multitude of factors including host
and parasite genetics, husbandry and host immune responses [8]. Immune-mediated mech-
anisms either allow the L. infantum parasites to replicate within host cells or resist parasite
replication via innate and adaptive anti-parasitic immune responses (Figure 1) [56,57].

Leishmania spp. are obligate intracellular protozoan parasites; therefore, replication
and survival are accomplished by infecting host cells. After initial transmission into a
canine host, L. infantum promastigotes are rapidly taken up by phagocytic cells, primar-
ily neutrophils, monocytes, macrophages, and dendritic cells [58]. Leishmania parasites
preferentially reside within macrophages, where they differentiate from promastigote
to amastigote forms, replicate, and establish a long-lasting intracellular infection [59,60].
Macrophages are highly specialized immune cells for neutralizing and eliminating intracel-
lular pathogens [61] (Figure 1A). During phagocytosis, phagosomes containing Leishmania
promastigotes usually merge with lysosomes containing hydrolytic enzymes and an acidic
environment that kill promastigotes [59,62]. Macrophages also produce reactive oxygen
species (ROS) in order to kill intracellular parasites and limit their replication [63–65].
Although those innate immune responses typically pose a challenge for invading para-
sites, Leishmania has developed numerous evasion mechanisms to facilitate their long-term
survival inside macrophages [66–69]. Inside the phagolysosome, L. infantum amastigotes
resist the hostile environment by delaying phagolysosome fusion [70,71] and producing
antioxidants to counteract the reactive free radicals [72–74]. Ultimately, to prevent L. infan-
tum parasite replication and consequent disease progression, macrophages must rely on
Leishmania-specific adaptive immune responses to effectively overcome Leishmania defenses
and elicit their killing functions [56,57,75].
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Figure 1. Types of immunological interference with anti-Leishmania responses. (A) A controlling Type 1 immune response
occurs when Leishmania antigen presenting cells (APCs) express interleukin-12 (IL-12) to polarize Leishmania-specific CD4+ T
cells to T helper type 1 (Th1) cells. Th1 cells express interferon-gamma (IFN-γ) after encountering a parasitized macrophage,
which activates anti-microbicidal pathways including predominantly reactive oxygen species (ROS), and compared to
murine models, in dogs less inducible nitric oxide synthase (iNOS)-driven reactive nitrogen species (RNS) production by
macrophages and killing of intracellular parasites. (B,C) Co-infections may utilize these mechanisms that interfere with a
controlling Type 1 immune response described in panel (A); (B) Intracellular pathogens inhibit macrophage microbicidal
activity at multiple levels. Inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assembly on the
phagosomal membrane prevents oxidant generation while production of antioxidants within the phagosome can quench the
pathogen damaging effects of ROS. Inhibition of phagolysosomal fusion prevents acidification of the phagosome and release
of hydrolytic enzymes contained within the lysosome meant to destroy engulfed pathogens; (C) Co-infecting pathogens
can trigger inflammatory cytokine production by APCs via Toll-like receptors (TLRs), Nod-like receptors (NLRs), and
C-type lectin receptors (CLRs). Inflammation can trigger induction of regulatory pathways, such as expression of inhibitory
receptors including programmed cell death protein 1 (PD-1) and CTLA-4 on Th1 cells and inhibitory ligands on myeloid
cells. Inflammation triggers regulatory cytokine production (IL-10 or transforming growth factor beta (TGF-β)) by innate
and adaptive cells. Regulatory signals cause Th1 cells to differentiate into Type 1 regulatory cells (Tr1) co-expressing
IFN-γ and IL-10. IL-10 antagonizes the activating effects of IFN-γ on macrophages thus negating microbicidal activation
and parasite outgrowth. If chronic inflammation persists in combination with prolonged T cell receptor (TCR) signaling,
Leishmania-specific Th1 cells further upregulate inhibitory receptors and can become exhausted. Exhausted Th1 cells no
longer produce IFN-γ in response to Leishmania antigen, thus macrophages receive no exogenous activation signals, and
parasite replication occurs unchecked.

Protective immunity against Leishmania infection in dogs, as in humans, requires the
development of a predominant T helper type 1 (Th1) immunity, characterized by induction
of interferon gamma (IFN-γ)-producing CD4+ T cells [56,75,76]. Early after initial infec-
tion, parasite-host interactions lead to transcription and secretion of pro-inflammatory
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cytokines [77–79]. Interleukin-12 (IL-12) promotes naïve CD4+ T cell differentiation into
effector Th1 cells, which proliferate and produce IFN-γ, tumor necrosis factor alpha (TNF-
α), and IL-2 [80–82]. Among these, IFN-γ is crucial for controlling Leishmania infection,
by activating macrophages through inflammatory cytokine and chemokine production,
upregulating antigen presentation machinery within the macrophage, and sustaining mi-
crobicidal responses [75,83,84]. Subclinical infection is mainly characterized by the absence
of detectable L. infantum DNA in peripheral blood via quantitative PCR (qPCR) due to acti-
vated macrophages controlling parasite replication and keeping parasite burden low [49].
Subclinical dogs CD4+ T cells are able to proliferate and produce IFN-γ after in vitro Leish-
mania antigen stimulation [78,85,86]. IL-10 is a regulatory, anti-inflammatory cytokine that
antagonizes IFN-γ-mediated responses, preventing excessive inflammation and dampen-
ing microbicidal responses important for parasite clearance [49,87]. Low amounts of IL-10
produced during subclinical infection may serve as negative feedback to limit Th1-induced
inflammation without compromising host cell parasite killing abilities [75,87]. A balance
between inflammatory and regulatory T cell responses is required for controlling parasite
replication over time while minimizing exacerbated inflammation that may cause damage
to the host [49]. As Leishmania infection is seldom sterilely cured, a constant ongoing Th1
immune response is needed to maintain a subclinical state [49,75].

After months to years without resolving infection, prolonged cellular immune re-
sponse activation and production of pro-inflammatory cytokines eventually promote
increased generation of IFN-γ/IL-10 co-producing Type 1 Regulatory T (Tr1) cells [49,75]
(Figure 1C). At high enough levels, IL-10 renders macrophages unresponsive to IFN-
γ, thereby inhibiting the enhanced microbicidal responses and contributing to parasite
survival [49,75]. As L. infantum parasites continue to propagate, long-term exposure to
Leishmania antigen can lead to T cell exhaustion—defined by progressive T cell hypo-
responsiveness and significant increased expression of inhibitory receptors on CD4+ T
cells such as programmed cell death protein 1 (PD-1), LAG3, and CTL-4 [76,88,89]. During
disease progression, Leishmania parasites benefit from the immunosuppressive properties
of IL-10 and dysfunctional CD4+ T cells. Thus, clinical CanL is characterized by decreased
Leishmania-specific CD4+ T cell proliferation and production of IFN-γ, increased IL-10
production and parasite loads in different tissues, and high antibody levels detected by
ELISA [49].

It has been recognized that Leishmania parasites occur concomitantly with other
pathogens in infected dogs [12]. Altered or defective immune responses promoted by
subsequent co-infections may facilitate CanL progression. During their lifetime, L. in-
fantum-infected dogs may be independently exposed to various bacterial, parasitic, fun-
gal, and viral infections. These co-infections can result in synergistic interactions that
may consequently impact L. infantum infection diagnosis, disease severity, and treat-
ment [10,49]. Therefore, understanding the interactions between Leishmania parasites
and other relevant pathogens could help the development of better prevention, diagnosis,
and treatment strategies.

4. Bacterial Co-Infections
4.1. Ehrlichia spp.
4.1.1. Microbe and Epidemiology

Ehrlichia spp. are obligate intracellular Gram-negative bacteria from the family Anaplas-
mataceae, order Rickettsiales. These tick-borne bacteria are commonly found in the Southern
U.S., Brazil, and Mediterranean basin—where L. infantum is endemic among dogs [10,18,90].
Dogs are most frequently infected by E. canis, the etiologic agent of canine monocytic ehrli-
chiosis [91–93].However, it has been reported that E. ewingii and E. chaffeensis also naturally
infect canids [13]. E. canis is primarily transmitted by Rhipicephalus sanguineus ticks, and
E. ewingii and E. chaffeensis are most frequently transmitted by Amblyomma americanum
ticks [13–15].
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Recent epidemiological studies have found a strong association between Ehrlichia
spp. co-infections and CanL progression [9,10]. L. infantum and E. canis co-occurrence is
one of the most common co-infections of dogs [10,12,90,94]. In Brazil, 31.75% of 200 dogs
with CanL, as diagnosed by Dual-Path Platform (DPP)® Canine Visceral Leishmaniosis
serological test and ELISA, were co-exposed with Ehrlichia [95]. Furthermore, Toepp et al.
(2019) found 41.67% of dogs in Northeastern Brazil with clinical leishmaniosis were co-
exposed to Ehrlichia spp. [10]. In Spain, 56% (34/61) of dogs with clinical CanL were
co-infected with Ehrlichia [12]. Ehrlichia co-infections have been reported in Nepal and
co-exposures in Germany at lower incidences than Brazil and Spain [96,97]. Dogs with
CanL were more likely to be E. canis-seropositive than clinically healthy dogs from the
same endemic area [9,10]. For instance, dogs infected with E. canis had 12.4 times the odds
of clinical CanL than control dogs (p = 0.022) in Cyprus [9].

4.1.2. Clinical Disease and Biochemical Findings

Although dogs may be subclinical during Ehrlichia infection, it can cause a wide
range of clinical signs. Signs can be non-specific and include fever, lethargy, cachexia,
pale mucous membranes, petechiae, ecchymoses, epistaxis and gross lesions such as
lymphadenomegaly, splenomegaly, and hepatomegaly [92,98]. These signs overlap with
those presented during CanL. If untreated, canine monocytic ehrlichiosis can be fatal [92].
Ehrlichia infection is usually diagnosed by screening for Ehrlichia-specific antibodies via
ELISA or IFAT [92]. Ehrlichia infection can also be identified through microscopic evaluation
of blood smears, where inclusion bodies are visible; however, direct evaluation of morulae
has low sensitivity [92]. Cardinot et al. (2016) evaluated brain tissue of dogs with known
CanL and found 58.3% (of 24 dogs) were co-infected with L. infantum and E. canis, and
83.3% were infected with E. canis overall [99].

Noteworthy, both infections may promote similar biochemical and hematological
abnormalities [11,100], which supports a synergistic effect between these two pathogens in
promoting disease severity. In Brazil, Andrade et al. (2014) reported chronic inflammatory
reactions in lymphoid tissues, increased total plasma protein and globulin concentrations,
thrombocytopenia, and normocytic normochromic anemia in dogs solely infected with L. in-
fantum and those co-infected with E. canis [101]. However, co-infected dogs presented with
twice as many dermal amastigotes compared to dogs infected with L. infantum alone [101].
These dogs also had significantly decreased albumin concentrations, and more evident ane-
mia, characterized by lower erythrocyte count, hemoglobulin levels, and hematocrit [101].
Similar findings were found by Baxarias et al. (2018) in Spain, where E. canis-seropositive
dogs presented with increased total protein and gamma globulin levels, and decreased al-
bumin concentrations, decreased red blood cells, hemoglobulin levels, and hematocrit [12].
Regarding hemostatic parameters, co-infection of L. infantum and E. canis decreased platelet
aggregation responses and increased activated partial thromboplastin time (aPTT) [50,102].

4.1.3. Immunological Effects

Ehrlichia spp. may contribute to CanL progression through diverse immunological
mechanisms. Similar to Leishmania parasites, monocytes and macrophages are natural
host cells for Ehrlichia spp. [103]. Ehrlichia can infect macrophages within tissues already
affected by L. infantum infection, such as lymph nodes, spleen, liver, and bone marrow.
Inside the host cell, Ehrlichia spp. replicate within dense membrane-bound vacuoles in the
cytoplasm [104].

To avoid destruction by host cells, Ehrlichia spp. have developed several immune eva-
sion mechanisms to ensure survival and replication. Unlike most Gram-negative bacteria,
Ehrlichia spp. do not synthesize lipopolysaccharide (LPS) or peptidoglycan (PG) [105,106],
structural components of the bacterial cell wall. Both LPS and PG are pathogen-associated
molecular patterns (PAMPs) able to induce innate immune signaling pathways by binding
to pattern recognition receptors (PRRs) expressed by host cells [107–109]. Furthermore, like
Leishmania parasites, Ehrlichia spp. can inhibit lysosomal fusion to their vacuoles and pre-
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vent destruction by host proteases, esterases, and acidification (Figure 1B) [110,111]. E. canis
impaired antigen-presentation by DH82 cells (a canine macrophage cell line) by downregu-
lating surface expression of major histocompatibility complex (MHC) II [112]. Therefore,
Ehrlichia spp. internalization may inhibit strong innate immune responses—favoring L.
infantum survival within co-infected host cells.

Different pathways for Ehrlichia infection and survival in the host may present ben-
eficial molecular environments for co-infection with Leishmania. E. chaffeensis-infected
monocytes become less responsive to external stimuli (such as Escherichia coli-derived
LPS), which decreased activation of p38 mitogen-activated protein kinase (MAPK) and
extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in host cells [113]. This
resulted in decreased signaling downstream of Toll-like receptors 2 and 4 (TLR2/4) and
CD14 [113]. Agallou et al. (2014) demonstrated that L. infantum internalization by peri-
toneal macrophages impairs activation of p38 MAPK and ERK1, which downregulated
expression of transcription factors and their target genes required for promoting microbici-
dal responses and cytokine production [114]. Through microarray analyses, Zhang et al.
(2004) reported that E. chaffeensis infection in THP-1 cells (a human monocyte cell line) sup-
pressed transcription of pro-inflammatory cytokines involved in stimulating Th1-mediated
immunity, such as IL-12/18 [115]. Therefore, Ehrlichia spp. and L. infantum may synergis-
tically inhibit MAPK signaling pathways and the induction of Th1-mediated responses,
thus impairing macrophage effector functions. In a mouse model of fatal ehrlichiosis,
Ehrlichia induced strong pro-inflammatory responses via activation of inflammasomes,
which promoted production of IL-1β and Type I IFNs [116]. Some mouse model studies
demonstrated that production of Type I IFNs, IFN-α and IFN-β, led to impaired Th1 cell
responses during visceral leishmaniasis [117,118]. Type I IFN production by Ehrlichia
co-infected macrophages may impact immune responses against L. infantum in infected
dogs and then prompt disease progression.

Ehrlichia spp. lack most enzymatic ROS-scavenging mechanisms required for ROS
detoxification [119]. Ehrlichia inhibit or block superoxide generation by human macrophages
via degradation of nicotinamide adenine dinucleotide phosphate (NADPH) subunit p22phox,
preventing NADPH assembly on the phagosomal membrane (Figure 1B) [120]. In addition,
Ehrlichia induces host mitochondrial upregulation of manganese SOD (MnSOD) in THP-1
cells, preventing ROS-induced apoptosis and contributing to its intracellular survival [121].
Noteworthy, E. ewingii was also shown to delay apoptosis in infected canine neutrophils
in vivo via stabilization of mitochondrial membrane permeability [122]. Liu et al. (2011)
reported that E. chaffeensis can inhibit mitochondrial metabolism in infected DH82 cells,
preventing host cell apoptosis, but the underlying mechanism was not known [123]. By
blocking superoxide generation and preventing apoptosis, Ehrlichia spp. could facilitate L.
infantum infection and prolong the life of co-infected cells.

Similar to immune responses against Leishmania parasites, production of IFN-γ by
CD4+ Th1 cells is crucial for conferring protection against Ehrlichia infection [124]. Ehrlichia
infection in human monocytes readily resolve infection in vitro if pre-treated with exoge-
nous IFN-γ, but no resolving effect was observed if treatment was made after the estab-
lishment of infection [125]. This implies that intracellular Ehrlichia renders macrophages
less responsive to IFN-γ. Lee et al. (1998) reported that E. chaffeensis impaired JAK-STAT
signaling in peripheral blood mononuclear cell (PBMC)-derived monocytes and THP-1 cells
early after IFN-γ treatment, which was thought to be partially mediated by upregulation
of protein kinase A (PKA) activity [126]. JAK-STAT signaling mediates several biologi-
cal processes, including induction of microbicidal responses in infected cells. Leishmania
parasites also inhibit IFN-γ-induced JAK-STAT signaling in macrophages [127]. In this
context, Ehrlichia spp. and Leishmania parasites may synergistically act to inhibit JAK-STAT
signaling in co-infected canine host cells, contributing to Leishmania survival within those
cells by interfering with IFN-γ pathway elements (Figure 1C).
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4.2. Anaplasma spp.
4.2.1. Microbe and Epidemiology

Anaplasma spp. are obligate intracellular Gram-negative bacteria from the Rickettsiales
order. A. phagocytophilum are transmitted by bites of Ixodes scapularis and Ixodes pacificus
ticks in North America and Ixodes ricinus in Europe [18,19]. A. platys is believed to be
vectored by Rhipicephalus sanguineus ticks in Brazil and Europe [9,16,20]. A. phagocytophilum
and A. platys infect dogs [18]. Surveillance in dogs is usually performed via serology, which
does not always differentiate A. phagocytophilum and A. platys exposure [18]. A. platys is the
predominant species infecting dogs in Brazil [16] and can be zoonotic. However, due to
its increased ability to cause human disease, there is more literature available regarding
pathogenesis of A. phagocytophilum.

Anaplasma spp. are endemic in L. infantum-endemic regions including Europe, South
America, and the United States [128]. Toepp et al. (2019), found that approximately 33%
of dogs were exposed to Anaplasma in Natal, Brazil [10]. In Spain, dogs with clinical leish-
maniosis were significantly more likely to be exposed to A. phagocytophilum than presumed
healthy dogs (OR = 14.3, p = 0.002) [12]. A. phagocytophilum exposure was associated with
increased serum total protein, gamma globulin, and decreased serum albumin in dogs with
CanL [12]. In another study from Spain, co-infection with Anaplasma spp. significantly
increased the risk of leishmaniasis by 79% [90]. Additionally, 3.8% of 507 dogs with signs
for a vector-borne disease were seropositive for Anaplasma spp. compared to 2.1% of
556 dogs without signs in a study by Miró et al. (2013) [129]. Among dogs with clinical
CanL in Cyprus, 4% had DNA sequences for A. platys, compared to 3% of dogs without
CanL, and 10% of dogs were serologically positive for A. phagocytophilum/platys compared
to 2% of dogs without CanL, although not statistically significant [9,20]. From a Brazilian
study, 18% of 66 dogs with CanL were co-exposed with Anaplasma spp. [130].

4.2.2. Clinical Disease and Hematologic Findings

Dogs infected with Anaplasma spp. can have signs like ehrlichiosis, and in turn, like
CanL. Hematologic changes can include increased gamma globulin levels and decreased
albumin, anemia, and thrombocytopenia [12].

4.2.3. Immunological Effects

A. phagocytophilum infects granulocytes, while A. platys infects thrombocytes and
monocytes systemically, resulting in anaplasmosis [128]. This can lead to acute febrile
illness with anemia, although subclinical infection occurs frequently [131]. If not identi-
fied and treated, infection can persist for several months post-infection [132]. Due to its
propensity to infect myeloid cells, the bone marrow is a major site of infection and in-
creased inflammatory cytokines were measured in bone marrow cells from experimentally
infected mice [133]. Immune responses to CanL may be affected by cytopenias caused by
anaplasmosis including lymphocytopenia, neutropenia, and thrombocytopenia [134]. Like
leishmaniosis, nonregenerative anemia is a hallmark of anaplasmosis and thought to be
a consequence of bone marrow infection and alterations of precursor populations [133].
Anaplasma infection may synergistically induce anemia in dogs with CanL [134].

As observed with Leishmania, Anaplasma have evolved several immune evasion strate-
gies to replicate intracellularly in myeloid host cells. Anaplasma bacteria have also lost
the major PAMPs PG and LPS, which allow a more silent entry into immune cells [131].
Indeed, neither NFκB nor p38 MAPK activation are observed following in vitro infection
of monocytes with A. phagocytophilum [135]. Anaplasma infection has been shown to reduce
key neutrophil functions associated with killing intracellular pathogens such as decreased
expression of proteins critical to formation of the NAPDH oxidase leading to decreased
oxidative burst (Figure 1B) [131,136]. In addition, A. phagocytophilum prevents lysosome
fusion with the phagosome in infected neutrophils [137].

After an inflammatory initial acute phase, a refractory period emerges with decreased
immune function in some cases of anaplasmosis [137–139]. Anaplasma may impact the anti-
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Leishmania immune response by exacerbating immunosuppression. Neutropenia, combined
with neutrophil dysfunction, can leave the host susceptible to pyogenic opportunistic
infections such as Staphylococcus aureus and Listeria monocytogenes [18] and certainly also
Leishmania. This proclivity to intracellular pathogen infection after anaplasmosis indicates
broad suppression of intracellular pathogen control mechanisms which may be shared by
cells attempting to control intracellular Leishmania replication.

Lymphocytopenia experienced during CanL may be compounded with further lym-
phocytopenia caused by Anaplasma [134]. Decreased peripheral CD4+ T cells are observed,
and Th1 responses are crucial for controlling L. infantum burden in infected dogs. In sheep
infected with A. phagocytophilum, the frequency of IL-2Rα expressing CD4+ T cells was
transiently significantly decreased in circulation [138]. The decreased ability to sense IL-2
may be related to the transient decrease in lymphocyte proliferation to tetanus toxoid and
mitogen and decreased IFN-γ production by whole blood cells in response to mycobacterial
antigen also observed [138]. Further, IFN-γ signaling is disrupted in Anaplasma infected
cells by decreased expression of IFNGR1 and altered STAT1 activation (Figure 1C) [131].
Serum IL-10 was measured in animals with anaplasmosis which may promote off-target reg-
ulatory responses in Leishmania-infected cells or Leishmania-specific effector cells [131,140].
CD4+ T cell ability to proliferate and express IFN-γ are associated with control of leishman-
iosis. Immune changes from Anaplasma infection promote detrimental effects on CD4+ T
cells and may lead to Leishmania proliferation and enhanced leishmaniosis.

4.3. Borrelia spp.
4.3.1. Microbe and Epidemiology

Borrelia burgdorferi, causative agent of Lyme disease, is a bacterial spirochete transmit-
ted by Ixodes scapularis and Ixodes pacificus in North America [21–23]. Dogs are incidental
hosts for Bo. burgdorferi and not part of the transmission cycle [141]. In North America,
canine Lyme disease has been significantly associated with Bo. burgdorferi sensu stricto (ss)
strains, whereas in Europe, most cases are associated with sensu lato (sl) species (Bo. garinii
and Bo. afzelii) [22,23].

Bo. burgdorferi and L. infantum co-infections among dogs living in endemic areas have
been reported in recent epidemiological studies [10]. In a study with dogs from the U.S.,
33.33% of the dogs with clinical CanL had exposure to Bo. burgdorferi [10]. Little et al.
reported that Bo. burgdorferi infection in dogs remains widespread in the U.S., where specific
antibodies were detected in 5.9% of the dogs tested via in-clinic ELISA (SNAP® 4Dx® Plus
Test) [142]. The prevalence rate was higher in the Northeastern U.S. (12.1%), where L.
infantum is also enzootic among dogs [142]. Although the U.S., particularly the Eastern
U.S., has relatively high seropositivity for canine borreliosis [143], there is currently limited
published data on co-infection with CanL. In Europe, canine Borrelia spp. infections have
been reported to be low, with no dogs being seropositive in a Cyprus study [20] and only
0.4% (of 1100 dogs) of dogs being seropositive in a Spanish study [129]. Dogs in Europe
have been infected with Bo. garinii or Bo. afzelii, transmitted by Ixodes ricinus [19,22,24].
As dogs in Europe are at risk of exposure to Borrelia spp. and Leishmania, it is possible to
have co-infections in that region; however, we were not able to find any reports specifically
documenting this co-infection.

4.3.2. Clinical Disease

Dogs seropositive for Bo. burgdorferi are largely subclinical (up to 95%) [144]. When
clinical signs do occur, arthritis, lameness, lymphadenopathy, anorexia, weight loss, and
fever are most commonly observed [144]. In advanced clinical cases, Lyme nephritis is
possible, and signs and laboratory findings consistent with acute or chronic kidney disease
can be exhibited [144]. Diagnosis of canine borreliosis may require a combination of
tests, depending on presentation of clinical signs, and can include rapid serological tests,
quantitative C6 protein ELISA, and immunofluorescent assays (IFAs) [145].
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4.3.3. Immunological Effects

Bo. burgdorferi does not produce LPS [146]; however, lipoproteins found in its outer
membrane can activate pathogen recognition receptors and initiate pro-inflammatory
signaling. Bo. burgdorferi ligands can be recognized by TLR1/2, TLR7/8, and TLR9 and
activate production of inflammatory cytokines, such as TNF-α, IL-6, IL-12 and pro-IL-
1β [147,148]. These cytokines induce polarization of a mixed Th1 and Th17 cell response,
leading to production of IFN-γ and IL-17, which is highly inflammatory [149]. The Nod-
like receptor (NLR) NOD2, interacting with RIP2, was also shown to recognize borrelial
compounds in mice leading to IL-1β, IL-6, TNF-α, IL-8 and IL-10 production [150]. NOD2 is
an intracellular PG sensor [150]. Jutras et al. (2019) demonstrated that Bo. burgdorferi release
muropeptides (PG fragments) into the extracellular environment instead of recycling them
for remodeling their PG cell wall [151]. Both PG and antibodies against Bo. burgdorferi PG
were shown to be detectable in synovial fluids from Lyme arthritis human patients before
and after treatment, suggesting that muropeptides may persist long after Bo. burgdorferi
active infection [151]. Indeed, these molecules elicit persistent inflammatory responses in
stimulated human PBMCs and cause severe inflammation in mouse joints [151].

TLRs and NLRs engagement by Bo. burgdorferi can also induce production of Type I
IFNs in isolated human monocytes and mouse in vivo models [152–155]. The role of Type I
IFN on host defense to non-viral pathogens is complex and can lead to different outcomes.
However, Type I IFN signaling is likely to be modulated during visceral leishmaniasis. In an
infection model, L. infantum induced Type I IFN expression in conventional dendritic cells
in vivo, which lead to an impaired Th1 cell response [118]. Recently, Kumar et al. found
high levels of IFN-α, IFN-β, and their receptors in PBMCs from visceral leishmaniasis pa-
tients before drug treatment relative to post-treated VL patients and endemic controls [117].
In vitro studies with human PBMCs and in vivo mouse models demonstrated that Type
I IFN signaling can suppress Leishmania-specific IFN-γ production by effector CD4+ Th1
cells [117], which was found to contribute to disease progression. It has been demonstrated
in mice that chronic viral infections with Type 1 IFN signaling can alter the immune cell
composition within the spleen and lead to immunosuppressive states [156–158]. Dogs
with CanL also undergo progressive breakdown of splenic architecture, which may be
compounded by Type I IFNs induced by Borrelia [159].

Bo. afzelii and Bo. garinii infections seem to be less aggressive than Bo. burgdorferi
infection [160,161]. After stimulating monocyte-derived macrophages from healthy human
donors with different Bo. burgdorferi isolates, Strle et al. (2009) found that U.S. Bo. burgdorferi
isolates induced significantly higher IL-6, IL-8, CCL3, CCL4, and TNF-α secretion compared
with European Bo. afzelii or Bo. garinii isolates [162]. Consistently, production of IL-6, CCL3,
CCL4, and TNF-α were found to be significantly higher in serum of Bo. burgdorferi-infected
patients than in Bo. afzelii- or Bo. garinii-infected patients or healthy controls [162]. One
study demonstrated that Bo. afzelii spirochetes induce significantly more IL-17A production
by Lyme disease patients’ PBMCs compared to that induced by Bo. burgdorferi sensu stricto
spirochetes [163]. However, Lyme disease patients’ PBMC-derived IL-17A, IL-17F, and
IL-22 proteins were induced by all three Borrelia species compared to unstimulated PBMCs,
which highlights that Borrelia spp. induce this inflammatory pathway [163].

Conflicting reports have suggested that Th17-mediated immune responses might have
protective and/or pathological roles during visceral leishmaniasis. In an experimental
model of CanL, Hosein et al. (2015) found progressive downregulation of Th17-related
cytokine gene expression in lymph nodes and spleen, which was associated with a silent,
asymptomatic establishment of L. infantum infection [164]. However, exogenous IL-17A
synergizes with IFN-γ in a dose-dependent manner to increase nitrite levels and reduce
intracellular parasite burden in murine macrophages [165]. Other studies have shown that
IL-17 production can lead to recruitment of high numbers of neutrophils and macrophages
to inflammatory sites, which may lead to tissue destruction observed during cutaneous
leishmaniasis [166,167]. L. infantum co-infections with Bo. burgdorferi sl species inducing
Th17 immune responses in dogs may contribute to immunopathology.
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While an inflammatory response is thought to contribute to Bo. burgdorferi infection
control, sustained inflammation in the presence of chronic T cell receptor engagement
can result in upregulation of inhibitory receptors such as PD-1, TIM-3 and CTLA-4 on T
cells [168]. Prolonged upregulation of multiple inhibitory receptors has been shown to
lead to exhaustion [168]. Therefore, during Bo. burgdorferi and L. infantum co-infection in
dogs, chronic inflammation might contribute to T cell exhaustion, leading to Leishmania
uncontrolled replication and CanL progression (Figure 1C).

5. Protozoal Co-Infections
5.1. Babesia spp.
5.1.1. Microbe and Epidemiology

Babesia are tick-borne protozoan Piroplasmida parasites. The sporozoite life stage
inoculated by the tick invades host erythrocytes, where they differentiate and replicate until
the erythrocyte ruptures, and merozoites invade new erythrocytes spreading the parasite
throughout the bloodstream [25]. Diagnosis is made based on visualization of parasite
forms on blood smear or IFA, while PCR or reverse line blot is required for speciation [169].
Several species of Babesia are known to infect dogs, including Ba. canis (transmitted by
Dermacentor reticulatus ticks), Ba. vogeli (transmitted by Rhipicephalus sanguineus ticks),
Ba. gibsoni (transmitted by Haemophysalis spp. ticks), and Ba. microti-like isolates in
Europe [25,26,28,29,86].

Due to its high seroprevalence among dogs in South America, Europe, and the U.S.,
several studies have documented co-infection with Babesia spp. in L. infantum infected dogs.
In the U.S., Babesia exposure was approximately 32% among a cohort of dogs living with L.
infantum [10]. In Northern Portugal, L. infantum was the most prevalent co-infecting agent
among a cohort of dogs with babesiosis using PCR to detect L. infantum [170]. Cardoso
et al. (2010) note that studies not using PCR to detect L. infantum underestimated rates
of co-infections [170]. This study found that the L. infantum and Ba. canis co-infected
dogs did not experience lower hematocrit values compared to Ba. canis singly infected
dogs; however, a complete clinicopathological evaluation was not performed, and a higher
proportion of the co-infected dogs (22%) succumbed to disease compared to singly infected
dogs (6%) [170]. In Brazil, Babesia-seropositive dogs can be found in every state, with some
areas reporting as high as 67% canine seropositivity [28]. The true rate of co-infection
between L. infantum and Babesia species is also complicated by the low sensitivity of Babesia
PCR from peripheral blood in non-clinical dogs. In a study from Brazil, 81.6% of a canine
cohort was seropositive for Babesia exposure, with 25% co-exposed with L. infantum, but
only 3.3% were PCR-positive for Babesia [171]. Whether the large seroprevalence of Babesia
in dogs from endemic areas are currently subclinically infected or have resolved infection
is not clear.

5.1.2. Clinical Disease and Biochemical Findings

Different Babesia species are known to elicit different clinical manifestations and
pathogenesis in canine hosts. Ba. vogeli is generally the least severe, and Ba. canis is
intermediately pathogenic in dogs [172]. Most common acute phase signs include fever,
lethargy, thrombocytopenia, and varying degrees of hallmark hemolytic anemia, followed
by chronic infection if untreated, which may be subclinical [173]. Severity of anemia is not
necessarily mirrored by level of parasitemia and thus suggests that host factors play a role
in inducing anemia in addition to direct erythrolysis caused by Babesia [172,173].

5.1.3. Hematologic and Immunological Effects

The presence of a Babesia co-infection in dogs with CanL may complicate treatment
decisions, as anemia can be seen during both infections. However, the types of anemia
induced by each parasite can be distinct. To differentiate, a Coombs’ or agglutination
test can be performed, which is sometimes positive in dogs with hemolytic anemia due
to babesiosis but should be negative if nonregenerative anemia due to L. infantum is
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present [174,175]. Perhaps due to the different mechanisms driving anemia, synergistic
anemia during co-infection has not been described but may be more apparent in young
dogs or acutely after infection, as adult dogs seem to be predominately subclinical in the
chronic phase of babesiosis.

Despite both parasites being protozoa, these two families are quite divergent, and
there is no cross-reactivity between serological tests for canine Babesia or Leishmania
exposure [176,177].

5.2. Trypanosoma cruzi
5.2.1. Microbe and Epidemiology

Trypanosoma cruzi are obligate intracellular protozoan kinetoplastid parasites transmit-
ted either through feces of infected triatomine bugs or transmitted congenitally between
mammalian hosts [30]. T. cruzi is the etiologic agent for American trypanosomiasis, or
Chagas’ disease [30]. T. cruzi is endemic in the Americas, from the Southern U.S. through-
out Central and South America, and commonly transmitted by Triatoma gerstaeckeri, T.
sanguisuga, T. dimidiata and T. infestans [30–39].

5.2.2. Diagnostic Challenges and Immunologic Effects

Leishmania species and T. cruzi are phylogenetically similar, and there is a significant
degree of cross-reactivity between the genera on microscopic examination and serological
tests [178–180]. Dependent on the antigen(s) used, IFAT may have lower cross-reactivity
compared to ELISA [179]. Cross-reactivity complicates the ability to identify if a dog is
actively experiencing a Leishmania co-infection with T. cruzi, previous exposure to either
pathogen, or cross-reaction on a diagnostic test.

Using PCR, enhanced specificity has been shown [181,182]. However, if the parasite
load of either organism is low in a relevant diagnostic sample such as whole blood, PCR
may not be sensitive enough for detection depending on the target sequence used [181,183].
In the Mediterranean, it is possible for L. infantum and Trypanosoma spp. to be found in phle-
botomine sand flies and in canine hosts, which could present diagnostic challenges [184].
Studies utilizing PCR to identify co-infections between Leishmania and T. cruzi are limited.
In 2003, Bastrenta et al. (2003) screened human blood or cutaneous ulcer biopsies from
Bolivia and found 21 of 29 patients (72%) amplified both Leishmania spp. and T. cruzi
DNA [185]. Only one of these instances was identified by isoenzyme profile as L. infan-
tum—all other instances were cutaneous leishmaniasis species [185]. In 2007, Mendes
et al. (2007) screened 1100 cases of human blood from Amazonians, and 11 cases (1%)
had amplified both Leishmania braziliensis and T. cruzi DNA, and seven cases (0.6%) had
amplified L. infantum and T. cruzi DNA [186]. One study used PCR to screen dog blood
samples from Venezuela and found 18/283 (6.4%) samples amplified Leishmania and T.
cruzi DNA [187]. Canine co-infection with Leishmania and T. cruzi is possible. All three
studies used gel-based, non-quantitative methods of PCR to determine amplification, and
only Mendes et al. (2007) demonstrated that primer sets did not cross-amplify purified
control parasite DNA [186]. Co-infection may be more common with cutaneous Leishmania
species than L. infantum, which causes CanL.

Radioimmunoprecipitation assay (RIPA) distinguishes presence of T. cruzi antibodies
from L. infantum, as it does not produce false positives for L. infantum [188]. Duprey et al.
(2006) used RIPA to determine T. cruzi presence among samples with titers greater than
128 via indirect immunofluorescent assay (IIF) [188]. Of these RIPA-tested samples, 86/413
(21%) were positive for T. cruzi [188]. Meyers et al. (2021) used rapid tests on 100 canine
samples to distinguish T. cruzi or L. infantum infections from cross-reactions on indirect
fluorescent antibody (IFA) tests [189]. After accounting for three cross-reactive samples,
the authors concluded a 2% seroprevalence for L. infantum [189]. In all, a combination of
serological tests or PCR methods may be needed to determine co-infection of T. cruzi and L.
infantum or a single infection.
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There may be an immunological basis as to why co-infections between Leishmania and
T. cruzi are not more commonly observed despite their overlapping endemicity. After an
initial acute phase of T. cruzi infection, like L. infantum, a prolonged systemic subclinical
infection with low to absent parasitemia can occur in dogs. This indeterminate stage
can occur for the lifetime of the dog if untreated [31]. The immune mechanisms that
lead to control of T. cruzi infection are very similar to those offering protection from
L. infantum infection.

Replication of both intracellular parasites is controlled by a Th1 immune response [190].
IFN-γ and IL-2 production by Th1 cells in response to T. cruzi infection increases para-
site uptake by macrophages, induces humoral responses, and activates CD8+ T cells all
contributing to parasite control [191]. As previously discussed, Th1 immunity limits L. in-
fantum replication and survival [56,57]. Considering humoral immunity, antibodies specific
for T. cruzi surface glycoproteins interact with extracellular parasites and complement to
induce parasite lysis [192]. Anti-Galα1,3-Galβ1,4-GlcNAc (α-Gal) antibodies are induced
to high levels by both Leishmania and T. cruzi, and both parasites express this glycoprotein;
therefore, cross-reactive antibodies produced by one parasitic infection may limit nascent
infection by the other species before it is able to establish [193].

Together, we hypothesize that the overlap in protective adaptive immune mechanisms
shared against Leishmania and T. cruzi infections is sufficient to limit concurrent infection
by both species in the same animal. Still, a few cases of dogs PCR-positive for both
pathogens have been reported [185–187]. Both parasitic infections are capable of inducing
T cell exhaustion during the chronic phase (Figure 1C); therefore, immunosuppression
due to either advanced CanL or Chagas disease may allow a co-infection to occur in some
cases [191,194]. More surveillance using molecular PCR methods and parasite cultivation
would be needed to solidify the degree of natural co-infection occurring in dogs between
these two related pathogens.

5.3. Toxoplasma gondii
5.3.1. Microbe and Epidemiology

Toxoplasma gondii are obligate intracellular apicomplexan parasites. T. gondii is globally
distributed, and there is a high burden of infection in mammals worldwide, thus dogs
in Leishmania-endemic areas are exposed [40,41]. A Brazilian study of 66 L. infantum-
seropositive dogs found 59% were co-seropositive for T. gondii [130]. In another study
from Brazil, 8 out of 14 L. infantum-infected dogs were co-seropositive for T. gondii [195].
No association between the titer of anti-Leishmania or anti-Toxoplasma antibodies was
observed [41]. In another study, there was significant skew of T. gondii seropositivity in
dogs that were also seropositive for L. infantum by Chi-squared test, which suggests that
there is a T. gondii predisposition in L. infantum-exposed dogs [196]. In an L. infantum-
endemic area of Spain, 58.7% of 46 dogs were seropositive for T. gondii exposure; however,
no significant association was found [197]. Due to large species differences between
apicoplastids and kinetoplastids, anti-Toxoplasma antibodies are not thought to cross react
with anti-Leishmania antibodies [178].

5.3.2. Immunological Effects

Dogs are intermediate T. gondii hosts infected by ingesting oocysts shed by the defini-
tive host, cats, or through predation of infected hosts [198]. T. gondii parasites then invade
the intestinal epithelium and disseminate [198]. After the dissemination phase, tachyzoites
convert into bradyzoites and form cysts to evade immune responses that can remain latent
for years [198]. Cell-mediated immunity maintains bradyzoites in latent form and the infec-
tion is usually associated with a low degree of morbidity and mortality in dogs [190,198].
However, in rare cases, cutaneous or systemic toxoplasmosis has been documented in
dogs receiving immunosuppressive treatments for other conditions [78,199,200]. Several
of these cases were fatal, highlighting the potential severity of toxoplasmosis in dogs if
reactivated. CanL induces CD4+ T cell exhaustion in severe chronic stages, associated with
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systemic expression of T cell inhibitory receptors, ligands, and regulatory cytokines [76].
These pathways can result in off-target suppression of bystander T cells [76]. This raises
the possibility of T. gondii reactivation during late-stage CanL. Cutaneous lesions are a
well-documented clinical sign of CanL, and cutaneous lesions due to T. gondii arising in
immune-exhausted dogs may be attributed to CanL, and reactivation may go unrecog-
nized if immunohistochemical staining is not performed. Due to the lethality observed
in immunosuppressed dogs undergoing reactivation, it is likely that reactivation of T.
gondii in a dog with CanL would also result in death. However, while a productive Th1
immune response is maintained in dogs with CanL, latent T. gondii infection seems to cause
negligible exacerbation [201].

6. Helminthic Co-Infections
6.1. Helminthes

A variety of intestinal helminths infect dogs in L. infantum-endemic areas [202,203]. In
a cohort of 93 dogs from Brazil, Ancylostoma caninum, Toxocara canis, Ancylostoma braziliense,
Trichuris vulpis and Dipylidium caninum were investigated in relation to L. infantum serol-
ogy [204]. No significant differences in amount of adult worm recovery were observed
between L. infantum-seropositive or seronegative dogs, but the presence of the gastrointesti-
nal cestode Dipylidium caninum was significantly correlated with L. infantum seroreactiv-
ity [204]. Guardone et al. (2013) found no statistical association between helminth infection
and L. infantum serology among 265 dogs in Italy [205]. However, Dipylidium caninum was
not assessed. In humans with visceral leishmaniasis due to L. donovani, no link was found
between intestinal helminths and VL disease severity [206].

6.2. Dirofilaria immitis
6.2.1. Epidemiology and Clinical Disease

D. immitis is a microfilarial worm that causes heartworm disease in dogs. It is spread
by mosquito vectors worldwide and is endemic in areas with CanL, such as the Mediter-
ranean basin, Brazil, and the U.S. [42,44–47,85,207,208]. D. immitis infects cardiopulmonary
tissue, eliciting tissue damage including cardiomegaly, pulmonary artery enlargement,
and congestive heart failure [209]. Dogs can be subclinical, but as microfilaria burden
rises, weight loss, fatigue, exercise intolerance, and persistent cough can be seen in com-
bination with progressive, regenerative anemia and hemoglobinuria due to intravascular
hemolysis [209].

A study of 118 dogs from Spain showed 29 microfilaria-infected dogs had significantly
increased severity of clinical signs when co-infected with L. infantum [42]; however, dogs
infected with L. infantum did not have more severe signs of CanL if they were also positive
for microfilaria. This study also observed a lower prevalence of Wolbachia in microfilaremic
dogs co-infected with L. infantum [42]. In southern Portugal, 8.3% of 230 dogs were co-
infected with L. infantum and D. immitis [43]. Additional studies found no association
between D. immitis and clinical CanL in dogs [20,130].

6.2.2. Immunological Effects

Heartworm infection in dogs is associated with a mixed Th1/Th2 response and periph-
eral eosinophilia [44,210]. As discussed above, eosinophils may contribute to protection
against Leishmania infection [211]. D. immitis infection in dogs is complicated by the pres-
ence of endosymbiotic Wolbachia bacteria within worms [210]. D. immitis is thought to
induce a Th2 response, while Wolbachia is thought to be targeted by Type 1 immunity [210].
IL-4 and IL-10 mRNA are significantly higher in whole blood from microfilaremic versus
amicrofilaremic dogs [47].

Due to the lack of studies finding a statistical association between D. immitis and L.
infantum exposure or clinical synergy, we hypothesize that subclinical D. immitis in dogs
has little effect on CanL immune responses. Supporting this rationale, use of macrocyclic
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lactones to prevent microfilariae had no significant effect on the likelihood of L. infantum
seropositivity in dogs from Portugal [43].

7. Fungal Co-Infection
7.1. Paracoccidioides brasiliensis
7.1.1. Epidemiology and Clinical Disease

Paracoccidioides brasiliensis is a fungus that causes the systemic infection paracoccid-
ioidomycosis. P. brasiliensis is endemic in Central and South America with the majority of
human and canine cases occurring South America [212]. Dogs in Brazil are highly exposed
with seroprevalence as high as 89.5% in rural areas [213]. Despite a large burden of disease
in humans, dogs infected with P. brasiliensis are largely resistant to disease [214]. Case
reports of disease in dogs describe marked lymphadenomegaly, apathy, loss of appetite,
poor condition, emaciation, hepatosplenomegaly, and dermatitis [48,215,216]. Lymph
node biopsies showed granulomatous lymphadenitis with numerous fungal yeast forms
and clinicopathology showed neutrophilia, nonregenerative anemia, and thrombocytope-
nia [48,215,216].

In a cohort of 200 dogs from Brazil, P. brasiliensis seropositivity was significantly
associated with also being seropositive for Leishmania (OR = 25.73) [217]. This group also
observed a higher percentage (67.8%) of P. brasiliensis-seropositive dogs among Leishmania-
seropositive dogs in a different region of Brazil [218]. The authors do not believe antibody
cross-reactivity was occurring because there was not a significant association between the
raw absorbance values against Leishmania antigen and P. brasiliensis gp63 antigen [217].
Therefore, dogs with CanL may have increased susceptibility to P. brasiliensis.

7.1.2. Immunological Effects

Monocytes and macrophages are the main cell types responsible for killing of P. brasilien-
sis [219]. Soares et al. hypothesize that prostaglandins reduce the ability of monocytes to
kill P. brasiliensis because treatment with a cyclo-oxygenase inhibitor significantly increased
monocyte fungicidal activity [220]. L. infantum-derived lipophosphoglycan extract has been
shown to induce COX2 expression and prostaglandin E2 production by macrophages [221].

Macrophage P. brasiliensis fungicidal activity is enhanced by IFN-γ and TNF-α, and a
Th1 response is associated with protection [222]. The immunoregulatory cytokine IL-10 an-
tagonizes IFN-γ activity and is associated with susceptibility to P. brasiliensis [222]. Patients
were significantly more likely (OR = 5.8) to have a single nucleotide polymorphism in the
IL-10 gene, resulting in enhanced IL-10 expression [223]. Increased secretion of IL-10 and
transforming growth factor beta (TGF-β) was measured from patient monocytes compared
to healthy control monocytes [224]. P. brasiliensis-susceptible mice show increased dendritic
cell IL-10 and increased CTLA4 protein expression by T regulatory cells in humans with ac-
tive disease [225,226]. CTLA4 is an inhibitory receptor expressed by T cells that contributes
to T cell exhaustion [227]. As CanL advances, IL-10 is produced systemically [76,228]. Thus,
regulatory pathways induced by P. brasiliensis and L. infantum infection could synergisti-
cally act to deregulate Th1 cell function, expediting immune exhaustion and leading to
fungal and parasite outgrowth in dogs with visceral leishmaniasis.

8. Effects on Diagnosis and Consideration of Cross-Reactions

In general, the pathogens discussed in this review can be detected by PCR methods
or the associated antibodies detected by a serological method, and often a combination of
diagnostic tests are utilized to understand the patient’s infection status. As an example for
Leishmania, a study by da Costa Oliveira et al. (2021) found 89.4% of 66 Brazilian dogs iden-
tified by serology had a positive result for Leishmania spp. by either immunohistochemistry
or culture [130]. Different specimens may also be used for diagnostic testing, such as lymph
node or spleen aspirates, although the majority of testing uses blood or sera samples due
to ease of blood collection compared to more invasive techniques [85]. One study detected
L. infantum DNA in brain and spinal cord samples by qPCR despite lack of neurological
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signs in the dogs before euthanasia [195]. Evaluation of the dog’s clinical presentation and
history in accordance with the diagnostic results is appropriate for forming a diagnosis
and subsequent treatment options.

There are different sensitivity rates between serological tests and PCR tests. For
example, de Sousa et al. (2013) found higher frequencies of canine samples being seroposi-
tive by ELISA and/or IFAT than PCR-positive for Leishmania, Ehrlichia spp., and Babesia
spp. [171]. Furthermore, there can be transient PCR positivity [229,230]. PCR is often
more difficult to detect the specific pathogen’s nucleic material, even during an active
infection [8]. Consequently, the serological test may detect antibodies at a larger frequency,
but the timing of exposure and/or infection cannot be confirmed solely with serological
testing [8]. According to Otranto et al. (2009), diagnostic tests may not be sensitive enough
to distinguish between healthy or subclinical dogs and chronically ill dogs [229].

A diagnostic challenge for Leishmania and some of these pathogens is the possibility
of diagnostic cross-reaction, especially on serological tests. The most documented cross-
reaction with Leishmania is T. cruzi, another kinetoplastid [179]. The detected species of each
genus may vary between tests. A case study documented a dog in Brazil having a cross-
reaction on Leishmania IFAT and T. cruzi IFAT, although PCR and sequencing confirmed
the dog to be co-infected with L. infantum (chagasi) and T. evansi [231]. Additionally,
it can be difficult to determine whether a seropositive result is from true presence of
specific antibodies to two species or a cross-reaction. For example, da Silva Krawczak
et al. (2015) found different seropositivity frequencies between IFAT, ELISA, DPP, and
rK39 RDT (Kalazar Detect Canine Rapid Test) for Leishmania, Ehrlichia, and Babesia testing
among urban pet dogs in Minas Gerais, Brazil; however, there were no cross-reactions
between Leishmania and Babesia or Ehrlichia [176]. Similarly, de Sousa Oliveira et al. (2008)
determined that there was no cross-reactivity between Leishmania, Babesia, and Ehrlichia by
IFAT [177]. In another study, six dogs were seropositive for Leishmania and Trypanosoma but
negative for these pathogens on PCR, and only 0.74% of PCR tests had positivity for both
Leishmania and Trypanosoma [232]. No cross reactions were detected among 160 total canine
sera samples used for mixed indirect IFAT for Leishmania and Ehrlichia, and the authors
determined that mixed IFAT is specific for CanL and Ehrlichia [233].

In contrast, other studies have reported presence of cross-reactions. Zanette et al.
(2014) demonstrated presence of cross-reactivity between T. cruzi and Leishmania on ELISA
and IFAT [178]. Troncarelli et al. (2009) found cross-reactions between Leishmania spp. and
T. cruzi on IFAT, as 16.5% of the 200 samples were positive for both antibodies, and the
authors suggested that both PCR and direct parasitological examination is needed for CanL
diagnosis [179]. Similarly, Attipa et al. (2019) suggest that dogs with clinical CanL be tested
for E. canis co-infection by both PCR and serology [20].

9. Treatment Implications and Complexities

Although more research during natural infections is needed to assess therapeutic
management strategies and prognosis of co-infections, there is evidence that co-infections
affect the dog’s immunity against L. infantum and subsequent progression of disease. Dogs
with CanL and co-infections (9 of 99 tested dogs in Portugal) with either E. canis, B. canis,
and Rickettsia conorii had shorter survival time (p = 0.0142) [54]. Additionally, Toepp et al.
(2019) found that dogs with multiple tick-borne co-infections had statistically significant
increased risk for progressed CanL and increased risk for mortality [10].

The severity of clinical signs in a co-infected or co-exposed patient may be subjective
and not have consistent record of scale (such as lack of tissue measurements or degree of
skin lesions). As a result, there may be inadequate or underreporting of particular signs for
various co-infections. According to da Costa Oliveira et al. (2021), clinical signs were not
made worse by co-infections with T. gondii, Ehrlichia spp., or Anaplasma spp., although 91%
of the 66 dogs had clinical CanL with the most common clinical signs being splenomegaly,
onychogryphosis, and furfuraceous desquamation of skin [130]. Additionally, contribution
of clinical signs to a specific pathogen is nearly impossible for a dog with these co-infections,
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especially since these infections often have similar physical exam findings and similar
hematologic and serum chemistry findings.

Treatment for CanL is often a combination of allopurinol and an antimonial or miltefo-
sine [234]. The bacterial diseases discussed in this review are largely treated with a course
of doxycycline. Among five dogs co-infected with L. infantum and E. canis, treatments
included meglumine antimoniate, allopurinol, and doxycycline [100]. De Tommasi et al.
(2013) recommend treating co-infections simultaneously [100].

Barriers to successful chemotherapy include relapses, long courses of drug admin-
istration, toxicities, antimicrobial resistance, and cost [229]. Dogs with CanL are often
infected for life, and progression of clinical signs may occur earlier in life if co-infections
are also present [10,234]. Recrudescence is common among dogs with CanL [234]. Pro-
longed and/or lifelong therapy for dogs with CanL can be taxing on owners, and frequent
veterinary visits are necessary for continued assessment. Bacterial or parasitic co-infections
may also be chronic, with re-infections possible, thus adding complexity to the monitoring
and therapeutic plan for a patient.

10. Prevention Strategies

Prevention for these infections is based on the respective vector and/or environmental
setting. As Leishmania is transmitted by phlebotomine sand flies, endemic areas can employ
strategies to ward off sand fly bites. Insecticides include deltamethrin-impregnated dog
collars, topical permethrin-based products, and spray repellants [235]. For environmental
control, mesh screens can be applied to windows or open areas where dogs are housed,
breeding sites for sand flies can be eliminated, and dogs can be kept inside from dusk to
dawn when sand flies are most active [235]. In non-endemic areas, testing of dogs and
bitches before breeding can prevent vertical transmission, especially among dog breeds
at most risk, and preventing dog fights with known Leishmania-infected dogs can limit
horizontal transmission [235].

For control of the three main bacterial co-infections and Babesia spp., tick vectors
can be targeted and prevented. A variety of tick preventive medications are commer-
cially available, and may vary by country, and the effective spectrum of the preventive
should correspond to the area’s tick species prevalence. Likewise, a heartworm preven-
tive medication should be administered year-round in endemic areas. The concomitant
use of broad-spectrum preventive products could protect dogs against vectored para-
sites. For example, Abbate et al. (2018) found that concomitant administration of topical
fipronil/permethrin and oral afoxolaner/milbemycin oxime in dogs during a six-month
period was efficacious in preventing main tick-borne bacterial infections, seroconversion of
any L. infantum infection, and certain endoparasitic infections [236]. Environmental control
can include mosquito abatement and removing ticks when observed on dogs.

For CanL management in China, treatment of L. infantum-infected dogs and control of
vectors are instituted [237]. In Shanghai, China, dog owners have been given a sulfa drug
by governmental authorities for T. gondii control since 2002 [237]. In Brazil, prevention
methods for CanL include ectoparasiticides, vaccines, and dog culling, which has ethical
controversy [229,238]. In general, surveillance for animal and human vector-borne diseases
can improve public health [229]. Other strategies for prevention can include reducing
free-roaming dogs and improved kennel management [229].

In all, the most effective prevention measures for these diseases are controlling expo-
sure to the respective vector. While there are vaccines available in certain countries for
Leishmania, Borrelia, and Babesia, the feasibility and effectiveness of these vaccines in pre-
venting transmission have been limited [145,235]. Therefore, a combination, or multimodal
approach, of prevention strategies is needed to decrease risk of these infections.

11. Concluding Remarks

Experimental models of visceral leishmaniasis have elucidated the pathogenesis of
L. infantum. However, these oversimplified models cannot replicate the clinical picture
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occurring in outbred, naturally acquired CanL. Dogs throughout the world are regularly
exposed to infectious organisms which may or may not cause disease. Therefore, rarely
do dogs encounter L. infantum in a vacuum, and instead, dogs remain without clinical
disease or develop CanL amidst an array of infectious exposures, which may modify the
immunopathogenesis of CanL and offer a more accurate picture of the disease.

Herein, we have described eight common co-infections incurred by dogs in L. infantum-
endemic areas and explored how these co-infections may synergize to impact CanL immune
responses or clinical progression. This work is not comprehensive, as the full breadth of
relevant CanL co-infections is not known, and we expect each co-infecting species will
have a unique interplay with Leishmania immunity and CanL disease. We found pathogens
capable of interfering with arms of the Leishmania immune response, such as macrophage
microbicidal activity or Type 1 T cell polarization, were most likely to impact CanL disease
progression. This implies the role of immune dysregulation is greater than pathology due
to the co-infecting pathogen itself.

Evident in the literature was a theme of tick-borne pathogens being particularly
common co-infections during CanL and generally inducing negative consequences in
co-infected dogs. This is not overall surprising, as dogs are highly exposed to ticks, which
can carry multiple types of pathogens. This highlights the need for use of tick and sand fly
preventives for dogs in Leishmania-endemic areas, which are available and highly effective.
Further research is needed on modulation of immunity in co-infected dogs during CanL
in order to improve diagnostics, treatment decisions, and limit the spread of L. infantum
among dogs. Importantly, as a One Health model, similar immune mechanisms may occur
in VL patients encountering co-infections with human pathogens like lymphatic filariasis
or HIV.
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