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Ewa Baranowska-Wójcik 3 , Zvenyslava Zasadna 2, Dmytro Yanovych 2 and Edyta Kowalczuk-Vasilev 1

����������
�������

Citation: Winiarska-Mieczan, A.;

Jachimowicz, K.; Kwiecień, M.;
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Simple Summary: Poultry meat is deemed a product with a dietary value. The chemical composition
of meat can be altered by modifying animals’ diets. Our objective was to show the impact of the
addition of glycine chelates of minerals (Zn, Cu, Fe) to broiler chickens’ feed on the fatty-acid profile
and dietary value of thigh meat. A positive effect was most frequently noted for Zn chelate, especially
in a larger dose. The lowest levels of saturated fatty acids and atherogenic and thrombogenic indices
but the highest content of polyunsaturated fatty acids n−3 and polyunsaturated fatty acids/saturated
fatty acid ratios and hypocholesterolemic/hypercholesterolemic indices were noticed. The use of Cu
and Fe glycine chelates was worse than Zn but did not meet the levels from the control group. These
types of treatments are important in order to ensure correct functions of the body and can mitigate or
even prevent the occurrence of many diseases.

Abstract: This study aimed to compare the effect of Zn, Cu and Fe glycine chelates on the proximate
composition, cholesterol levels, fatty-acid profile and dietary value of the thigh meat of broiler
chickens. The experiment involved three hundred and fifty Ross 308 chickens divided into seven
groups. The chickens were administered Zn, Cu and Fe glycine chelates in an amount corresponding
to 50% of the requirement or 25% of the requirement for 42 days. It was found that the use of Zn, Cu
and Fe glycine chelates did affect the fatty acid profile and dietary value of meat. A positive impact
was most frequently (p < 0.05) noted in chickens receiving Zn chelate in an amount covering 50% of
the requirement: the lowest levels of SFA and atherogenic and thrombogenic indices, the highest
content of PUFA n−3 and PUFA/SFA ratios and hypocholesterolemic/hypercholesterolemic indices.
Positive effects were more often recorded for chickens receiving Zn in an amount corresponding to
50% of the requirement. The results did not show that the use of Cu and Fe glycine chelates can
reduce the dietary value of thigh meat in broiler chickens since, generally, the outcomes were not
worse than those in the control group. It should be highlighted that due to ambiguous results, it is
impossible to determine a dose of Cu and Fe glycine chelate which would be more efficient for broiler
chickens. However, chickens receiving chelates in amounts corresponding to 25% of the requirement
showed far better results.

Keywords: broiler chickens; glycine chelate; Zn, Cu and Fe; thigh meat; fatty acid; dietetic value

1. Introduction

In connection with a good fatty-acid profile and low levels of cholesterol and fat,
poultry meat is deemed a product with a dietary value [1]. It contains considerable
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amounts of polyunsaturated fatty acids (PUFA), a regular supply of which is necessary
in order to ensure correct functions of the body, and significantly, it mitigates or can even
prevent the occurrence of many diseases, such as coronary artery disease, myocardial
infarction, autoimmune diseases and certain forms of cancer [2]. Studies have shown
that the chemical composition of meat, including the content of atherogenic substances,
can be altered by modifying animals’ diets. The content of PUFA and CLA (conjugated
linoleic acid) isomers in poultry meat can be increased by, for instance, adding them
to the feed material [3]. Another way is by adding red-ginseng expeller [4], rapeseed
oil [5,6] or blueberry extract [7]. Previous studies carried out by our team showed that
glycine chelates of minerals are also efficient. Additionally, it was observed that Zn
chelate improved atherogenic and thrombogenic indices of poultry meat [8–10]. This is
particularly important as cardiovascular diseases are the most common cause of mortality
in Poland, accounting for about 44% of all deaths [11], and the key factor leading to such
diseases, apart from unhealthy lifestyle, is excessive consumption of saturated fatty acids
(SFA) and cholesterol [12], although some authors suggest that not all SFAs have an effect
promoting cardiovascular diseases [13]. Exogenous fatty acids are versatile since their
main characteristic is that they are incorporated in the cellular membrane, modifying its
liquidity and physiological functions [13]. It is important that these changes may alter
the bioavailability of eicosanoids and other lipid mediators directing cellular responses
to external stimuli such as inflammations and chronic stress. Nevertheless, it is believed
that the main dietary practices preventing cardiovascular diseases are the consumption of
foods containing unsaturated fatty acids (UFA) and a limited consumption of SFA.

Fatty acid metabolism is regulated by Zn, Cu and Fe, among others. Zinc is not
metabolised in the body but shows electrostatic interaction with anions and negatively
charged groups of molecules, e.g., proteins [14]. The inclusion of zinc in a diet reduces
the activity of ∆6 desaturases metabolising linoleic acid to arachidonic acid [15]. This is
the essential impact of Zn on the fatty acid profile. Zinc participates in the regulation of
intestinal-lipid transport and prostaglandin metabolism and in maintaining the structural
and functional integrity of cellular membranes [16]. Through its insulin-mimetic and
phosphodiesterase-inducing effect, Zn can regulate the release of free fatty acids from
adipose tissue [17]. In contrast, an increased level of free fatty acids in blood plasma
disturbs the binding of Zn2+ ions by albumin through an allosteric mechanism since
plasma albumin binds and transports both free fatty acids and Zn2+ ions [18]. Copper has
an influence on the systemic metabolism of lipids [19]. In the case of copper deficiency,
changes are observed in the ratio of saturated to unsaturated fatty acids. The influence of
Cu on the metabolism of lipid compounds in the body is manifested in the control of the
expression of genes involved in the synthesis of fatty acids and cholesterol metabolism,
e.g., SREBP-1 and SREBP-2 genes encoding sterol-regulatory element-binding protein
1 and 2, or CYP7A1 gene-encoding cholesterol 7-alpha hydroxylase in the liver [20,21].
SREBP-1 is involved primarily in regulating the synthesis of fatty acids, while SREBP-2
plays an important role in modulating cholesterol biosynthesis [22]. The SREBP-1c isoform
is the main transcription factor used by insulin to activate the gene expression of lipogenic
enzymes [23]. Studies involving rats showed an increase in the level of cholesterol in the
body resulting from a deficiency of Cu [24], and the use of Cu-methionine chelate in broiler
chickens led to a significant decrease in the level of cholesterol in blood serum [25], while
Cu-glycine chelate decreased the level of cholesterol in meat [26]. It was demonstrated
that in response to a change in the level of Fe in the body, the pathways of Fe and lipids,
including cholesterol, change [27]. A theory was proposed according to which ferritin,
a protein that stores iron, contains binding sites modulating Fe intake and release [28].
Isothermal microcalorimetry performed by Bu et al. [28] demonstrated that arachidonic
acid C:20 binds specifically with ferritin, which enhances Fe mineralisation and decreases
the release of iron, thus preventing oxidation of this acid. This leads to a limiting of lipid
peroxidation, oxidative damage and pro-inflammatory processes during cellular stress.
A relationship between n−3 fatty acids and Fe metabolism was also confirmed, but the
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mechanisms remain unknown [29]. Studies involving rats receiving high doses of Fe
showed a reduction in the activity of ∆5 and ∆6 desaturases, the key enzymes in the
synthesis of long-chain n−6 and n−3 fatty acids [30]. In the cited study, the effect was a
reduction in the level of PUFA in the liver. An overload of Fe can have an adverse effect
on meat quality because Fe is a catalyst of the fat oxidation process in both raw meat and
meat subject to thermal processing [31]. Moreover, Fe interacts with other minerals and
especially with copper, a catalyst in oxidation reactions. This is particularly important for
thigh muscles, as they contain more fat than breast muscles.

In Poland, as a standard, poultry feed is enriched with inorganic minerals, namely
sulphates. However, it has been demonstrated that inorganic minerals are poorly assimi-
lated, which leads to considerable loss of minerals with droppings and to environmental
contamination [32]. Organic forms of mineral chelates with amino acids are much better
assimilated [32]. In our study, Ross 308 chickens received different amounts of Zn, Cu or
Fe glycine chelates. Productivity, carcass composition, bone structure and mineralisation
showed positive results, and the antioxidant, dietary and organoleptic properties of the
meat were corroborated [8–10,33–35]. Based on the previous studies, a decision was made
to check which mineral (Cu, Zn or Fe) administered as a glycine chelate had the most
efficient impact on the proximate composition, cholesterol levels, fatty acid profile and
dietary value of broiler chicken thigh meat.

2. Materials and Methods

All the experimental procedures complied with the authorisation of the Local Ethics
Committee for Animal Testing at the University of Natural Sciences in Lublin, Poland
(Resolution No. 37/2011 of 17 May 2011).

2.1. Experimental Factor

Our previous studies showed that the coverage of the Cu, Zn, and Fe requirement
of Ross 308 chickens at 50% or 25% was sufficient to obtain the desired characteristics of
meat but only provided that the minerals were administered as chelates [8,9]. Therefore, in
the course of the presented experiment, chickens received Cu, Zn or Fe glycine chelates
in an amount corresponding to 50% or 25% of the requirement. Accurate experimental
assumptions are presented in the paper by Winiarska-Mieczan et al. [35]. The productivity
parameters and the antioxidant profile of thigh meat in this experiment are presented
elsewhere [35]. The cited studies did not find any negative impact of Cu, Zn and Fe
chelates on the production performance of chickens. However, in groups receiving Zn or
Cu chelates, the meat and blood serum of birds showed a statistically higher activity of
endogenous antioxidant enzymes in comparison to the group receiving chelated Fe. The
use of chelated Fe led to a decrease in the antioxidant stability of meat due to increased
levels of malondialdehyde (MDA). In order to increase the antioxidative stability of thigh
meat, it is sufficient that broiler chickens receive Zn or Cu in the form of glycine chelate
in an amount covering 25% of their requirement. However, additional tests should be
performed to corroborate the advisability of using prooxidative chelated Fe in the feed of
broiler chickens.

2.2. Birds and Experimental Design

The experiment lasted 42 days. On the first day, three hundred and fifty (350) one-
day-old Ross 308 chicks were divided into seven equipotent experimental groups. In six
experimental groups, the chickens received Cu, Zn or Fe glycine chelate in an amount
corresponding to 50% of the requirement (experimental factor I—Table 1) or 25% of the
requirement (experimental factor II—Table 2), and in the control group, Cu, Zn and Fe were
added to the feed as sulphates in an amount corresponding to 100% of the requirement
for each mineral. The birds were placed in cages containing 10 chicks each. The room
temperature was initially 32 ◦C, and during the experiment, it was reduced by 2 ◦C every
week until it reached 24 ◦C [35]. The birds received feed and drinking water ad libitum
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throughout the experiment. The requirement for Zn was determined on the basis of
recommendations of producers of Ross 308 broiler chickens [36], and feed rations during
the three rearing periods (starter, 1–21 days of life; grower, 22–35 days of life; finisher,
36–42 days of life) were optimised according to NRC standards [37]. The fatty-acid profile
of base-feed rations is presented in Table 3.

Table 1. Experimental design—treatment I (50% of the mineral in the form of chelate).

Feeding Groups

Control Zn-Gly-50 Cu-Gly-50 Fe-Gly-50

Starter (1–21 days) Standard mixture a,b

(contained 99.71 mg Zn,
22.10 mg Cu and
42.31 mg Fe per kg at
the form of sulphates) *

Standard mixture
(contained 63.07 mg Zn
per kg at the form of
glycine chelate) **

Standard mixture
(contained 11.78 mg Cu
per kg at the form of
glycine chelate) **

Standard mixture
(contained 22.03 mg Fe
per kg at the form of
glycine chelate) **

Grower (22–35 days) Standard mixture
(contained 98.50 mg Zn,
22.21 mg Cu and
39.82 mg Fe per kg at
the form of sulphates) *

Standard mixture
(contained 56.92 mg Zn
per kg at the form of
glycine chelate) **

Standard mixture
(contained 13.15 mg Cu
per kg at the form of
glycine chelate) **

Standard mixture
(contained 25.30 mg Fe
per kg at the form of
glycine chelate) **

Finisher (36–42 days) Standard mixture
(contained 98.52 mg Zn,
21.95 mg Cu and
38.61 mg Fe per kg at
the form of sulphates) *

Standard mixture
(contained 56.09 mg Zn
per kg at the form of
glycine chelate) **

Standard mixture
(contained 12.02 mg Fe
per kg at the form of
glycine chelate) **

Standard mixture
(contained 20.46 mg Fe
per kg at the form of
glycine chelate) **

Access to feed and
water

Free Free Free Free

Number of chickens
in the experiments

50 50 50 50

Number of chickens
for dissection

10 10 10 10

a Composition of the standard mixtures: maize, wheat, soybean meal 46%, soybean oil, monocalcium phosphate, limestone, sodium
bicarbonate, NaCl, vitamin—mineral premix, fat-protein concentrate, DL-methionine 99%, L-lysine HCl, L-threonine 99%; * at 100%
recommended levels for Ross broiler chicks [36]; b nutrient composition of basal diet: starter (1–21 days)—energy 12.7 MJ kg−1, crude protein
20.2%, crude fibre 3.06%, crude fat 4.66%, lysine 1.29%, methionone + cysteine 0.93%, grower (22–35 days)—energy 13.1 MJ kg−1, crude
protein 18.2%, crude fibre 2.99%, crude fat 6.08%, lysine 1.13%, methionone + cysteine 0.83, finisher (36–42 days)—energy 13.2 MJ kg−1,
crude protein 18.1%, crude fibre 2.99%, crude fat 6.43%, lysine 1.09%, methionone + cysteine 0.81; ** at 50% recommendation levels for Ross
broiler chicks [36].

Table 2. Experimental design—treatment II (25% of the mineral in the form of chelate).

Feeding Groups

Control Zn-Gly-25 Cu-Gly-25 Fe-Gly-25

Starter (1–21 days) Standard mixture a,b

(contained 99.71 mg Zn,
22.10 mg Cu and
42.31 mg Fe per kg at
the form of sulphates) *

Standard mixture
(contained 27.03 mg Zn
per kg at the form of
glycine chelate) **

Standard mixture
(contained 6.12 mg Cu
per kg at the form of
glycine chelate) **

Standard mixture
(contained 13.01 mg Fe
per kg at the form of
glycine chelate) **

Grower (22–35 days) Standard mixture
(contained 98.50 mg Zn,
22.21 mg Cu and
39.82 mg Fe per kg at
the form of sulphates) *

Standard mixture
(contained 34.23 mg Zn
per kg at the form of
glycine chelate) **

Standard mixture
(contained 6.97 mg Cu
per kg at the form of
glycine chelate) **

Standard mixture
(contained 11.83 mg Fe
per kg at the form of
glycine chelate) **
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Table 2. Cont.

Feeding Groups

Control Zn-Gly-25 Cu-Gly-25 Fe-Gly-25

Finisher (36–42 days) Standard mixture
(contained 98.52 mg Zn,
21.95 mg Cu and
38.61 mg Fe per kg at
the form of sulphates) *

Standard mixture
(contained 30.05 mg Zn
per kg at the form of
glycine chelate) **

Standard mixture
(contained 6.70 mg Fe
per kg at the form of
glycine chelate) **

Standard mixture
(contained 12.40 mg Fe
per kg at the form of
glycine chelate) **

Access to feed and
water

Free Free Free Free

Number of chickens
in the experiments

50 50 50 50

Number of chickens
for dissection

10 10 10 10

a Composition of the standard mixtures: maize, wheat, soybean meal 46%, soybean oil, monocalcium phosphate, limestone, sodium
bicarbonate, NaCl, vitamin—mineral premix, fat-protein concentrate, DL-methionine 99%, L-lysine HCl, L-threonine 99%; * at 100 % recom-
mendation levels for Ross broiler chicks [36]; b nutrient composition of basal diet: starter (1–21 days)—energy 12.7 MJ kg−1, crude protein
20.2%, crude fibre 3.06%, crude fat 4.66%, lysine 1.29%, methionone + cysteine 0.93%, grower (22–35 days)—energy 13.1 MJ kg−1, crude
protein 18.2%, crude fibre 2.99%, crude fat 6.08%, lysine 1.13%, methionone + cysteine 0.83, finisher (36–42 days)—energy 13.2 MJ kg−1,
crude protein 18.1%, crude fibre 2.99%, crude fat 6.43%, lysine 1.09%, methionone + cysteine 0.81; ** at 25% recommendation levels for Ross
broiler chicks [36].

Table 3. Main fatty-acid profile of the basal mixtures, g/100 g.

Starter
1–21 Days

Grower
22–35 Days

Finisher
36–42 Days

Myristic (14:0) 0.02 0.08 0.07
Palmitic (16:0) 1.39 1.19 1.10
Stearic (18:0) 0.31 0.29 0.35
Oleic (18:1n−9) 2.24 2.20 2.16
Linoleic (18:2n−6) 4.69 4.97 4.92
Linolenic (18:3n−3) 1.16 0.87 0.91

2.3. Muscle Samples

On the 42nd day of the experiment, the chickens were slaughtered. After 24 h of
cooling at a temperature of 4 ◦C, whole thigh muscles were dissected from the carcasses,
skinned and placed in plastic bags [10]. The samples were stored in a freezer at −20 ◦C
until chemical analyses.

2.4. Chemical Analyses

Prior to chemical analyses, the meat was thawed at room temperature. The proxi-
mate composition of muscles and feed was determined by means of AOAC [38]: crude
protein—using Kjeldahl’s method, crude ash—by Soxhlet extraction in a Velp SER 148 appa-
ratus (Velp, Usmate, Italy), and crude ash—in a muffle furnace (550 ◦C, oxidant—hydrogen
peroxide). Meat moisture was determined by drying the sample at 65 ◦C for 24 h. The
fatty-acid profile was determined by gas chromatography in a Varian 3800 GC apparatus
(Varian, Harfsen, the Netherlands) with an FID detector and molten silica CP-Wax 52CB-
WCOT using a 60 m long capillary column with internal diameter of 0.25 mm. Supelco
37 FAME Mix 47885-U (Sigma, Poznań, Poland) standard was used for analyses. The
content of cholesterol was determined in an EPOLL 20 colorimeter using C3045 standard
(Sigma, Bellefonte, PA, USA). The methods of determining the above-mentioned compo-
nents are described in detail elsewhere [8,39]. All chemical analyses were performed in
three replications.
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2.5. Determination of pH in Meat

The pH of meat was measured 15 and 45 minutes after slaughter using a method de-
signed by Santé and Fernandez [40] in a Testo 205 pH-meter (Testo AG, Lenzkirch, Germany).
The apparatus was calibrated using certified buffer solutions with pH amounting to 4.01
and 7.0. The mean pH was calculated from three measurements of the same muscle sample.

2.6. Calculations and Statistical Analysis

The dietary value of meat was evaluated based on the fatty-acid profile. The fol-
lowing parameters were calculated: atherogenic index (AI), thrombogenic index (TI) and
hypocholesterolemic to hypercholesterolemic fatty acid ratio (h/H). The parameters were
calculated from the formulas [41]:

AI = (C12:0 + 4 × C14:0 + C16:0)/[∑MUFA +∑(n−6) + ∑(n−3)]; MUFA are monoun-
saturated fatty acids

TI = (C14:0 + C16:0 + C18:0)/[(0.5 × ∑MUFA + 0.5 × ∑(n−6) + 3 × ∑(n−3)) +
(∑(n−3)/∑(n−6))]

h/H = (C18:1 n−9 + C18:2 n−6 + C20:4 n−6 + C18:3 n−3 + C20:5 n−3 + C22:5 n−3+
C22:6 n−3)/(C14:0 + C16:0).

The content of fatty acids was also used for calculating Σ SFA (saturated fatty acids),
Σ MUFA, Σ PUFA, Σ UFA, Σ PUFA n−3, Σ PUFA n–6, Σ PUFA/SFA, Σ SFA/UFA and
n−6/n−3 ratio.

A statistical analysis of results was carried out using Statistica 6.0 software. One-way
analysis of variance (ANOVA), by means of the t-Student-Newman-Keuls test and post hoc
Tukey test, was used for calculating statistically significant differences (p < 0.05) between
mean values for respective experimental groups, considering experimental factor I (50%
of the mineral in the form of chelate) and II (25% of the mineral in the form of chelate)
separately. The results were compared with those obtained in the control group shared by
both experimental factors.

3. Results
3.1. Basic Chemical Composition and pH of Meat

No statistically significant impact of different levels of Zn-Gly, Cu-Gly and Fe-Gly on
the content of water, crude ash, crude protein and crude fat or on the pH of broiler-chicken
thigh meat was observed (Table 4).

Table 4. The meat pH and chemical composition of thigh-meat samples.

Treatment I—50% of the Mineral in the Form of Chelate

Control Zn-Gly-50 Cu-Gly-50 Fe-Gly-50 SEM p Value

pH15 6.15 ± 0.05 6.21 ± 0.03 6.20 ± 0.05 6.17 ± 0.01 1.33 0.14
pH45 5.32 ± 0.03 5.35 ± 0.04 5.24 ± 0.05 5.31 ± 0.06 1.20 0.33
Moisture, % 73.0 ± 0.83 72.6 ± 0.61 73.9 ± 0.99 73.7 ± 1.15 5.88 0.29
Crude ash, % 1.20 ± 0.02 1.16 ± 0.01 1.13 ± 0.01 1.09 ± 0.07 2.85 0.08
Crude protein, % 18.9 ± 0.74 19.1 ± 0.88 19.6 ± 1.02 19.6 ± 0.61 10.3 0.10
Crude fat, % 6.77 ± 1.38 6.55 ± 1.03 6.62 ± 0.95 6.56 ± 1.19 5.56 0.25
Cholesterol, mg/100 g 89.7 ± 5.33 b 88.3 ± 6.41 b 79.2 ± 5.09 a 81.0 ± 4.77 a 1.35 0.03

Treatment II—25% of the Mineral in the Form of Chelate

Control Zn-Gly-25 Cu-Gly-25 Fe-Gly-25 SEM p Value

pH15 6.22 ± 0.07 6.17 ± 0.03 6.24 ± 0.07 6.20 ± 0.04 1.23 0.09
pH45 5.51 ± 0.04 5.55 ± 0.02 5.43 ± 0.05 5.47 ± 0.02 1.54 0.10
Moisture, % 73.3 ± 1.11 73.2 ± 1.37 73.5 ± 1.42 73.6 ± 1.23 12.1 0.08
Crude ash, % 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 2.33 0.22
Crude protein, % 18.9 ± 0.30 19.2 ± 0.20 19.2 ± 0.27 18.8 ± 0.18 7.24 0.06
Crude fat, % 6.60 ± 0.66 6.67 ± 0.59 6.69 ± 0.14 6.72 ± 0.30 3.38 0.06
Cholesterol, mg/100 g 91.3 ± 4.55 b 88.2 ± 6.32 b 80.3 ± 3.98 a 82.5 ± 3.76 a 2.76 0.04

a, b—means with different superscripts in lines differ at p < 0.05; SEM—standard error of the means; pH—potential of hydrogen.
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3.2. Cholesterol Levels in Meat

A statistically significant impact of chelates on the total cholesterol level in meat was
recorded. The meat of birds from Cu-Gly-50 and Fe-Gly-50 groups contained less (p < 0.05)
total cholesterol than the meat of those from the control group (Table 4).

Meat from Cu-Gly-25 and Fe-Gly-25 groups contained less (p = 0.04) total cholesterol
than meat from the control and Zn-Gly-25 groups (Table 4).

3.3. Fatty Acid Profile of Meat

The use of chelates led to a significant (p < 0.05) alteration of the fatty-acid profile
of thigh meat, but the changes were not directional (Table 5). Statistically significant
differences were noted in the total fatty acids. In the Fe-Gly-50 group, more SFAs (p = 0.01)
were found than in the Zn-Gly-50 group. A higher content (p = 0.01) of n−3 PUFAs was
measured in the meat of chickens from the Zn-Gly-50 group compared to the Fe-Gly-50
group. In the n−3 fatty-acids family, statistically significant differences were found for
α-linolenic acid (C18:3): Zn-Gly-50 > Cu-Gly-50 = Fe-Gly-50 > control and eicosatrienoic
acid (C20:3): control = Zn-Gly-50 > Cu-Gly-50 = Fe-Gly-50. The level of n−6 Σ PUFAs was
lower in the Fe-Gly-50 group in comparison to the control group (p = 0.01). The following
relationships were noted in the n−6 fatty acid family: C18:2 acid—control > Cu-Gly-50
> Zn-Gly-50 > Fe-Gly-50; C20:2 acid—control > Zn-Gly-50 = Cu-Gly-50 > Fe-Gly-50; and
C20:4 acid—Cu-Gly-50 = Fe-Gly-50 > Zn-Gly-50 = control. The highest (p = 0.02) n−6/n−3
ratio was observed in the control and Cu-Gly-50 groups, Σ PUFA/SFA ratio (p = 0.04) in the
Zn-Gly-50 group, Cu-Gly-50 and control groups, and Σ SFA/UFA ratio in the Cu-Gly-50
and Fe-Gly-50 groups.

Table 5. Fatty acid profile (g/100 g of total fatty acids) and dietetic values of thigh meat samples—treatment I (50% of the
mineral in the form of chelate).

Control Zn-Gly-50 Cu-Gly-50 Fe-Gly-50 SEM p Value

6:0 0.012 ± 0.01 b 0.010 ± 0.01 a,b 0.011 ± 0.01 a,b 0.009 ± 0.01 a 0.33 <0.01
8:0 0.012 ± 0.01 a 0.015 ± 0.01 b 0.018 ± 0.02 c 0.022 ± 0.01 d 0.17 <0.01
10:0 0.014 ± 0.01 b 0.010 ± 0.01 a 0.011 ± 0.01 a 0.016 ± 0.01 c 0.54 0.01
12:0 0.254 ± 0.02 b 0.231 ± 0.03 a 0.249 ± 0.02 b 0.233 ± 0.02 a 1.74 0.04
14:0 0.434 ± 0.16 a 0.516 ± 0.04 d 0.470 ± 0.07 b 0.498 ± 0.09 c 1.45 0.02
15:0 0.103 ± 0.03 a 0.111 ± 0.02 b 0.099 ± 0.01 a 0.103 ± 0.01 a 0.87 0.03
16:0 22.16 ± 2.39 a 22.13 ± 2.25 a 23.10 ± 2.43 b 23.82 ± 2.58 c 5.33 0.05
17:0 0.149 ± 0.02 c 0.133 ± 0.02 a 0.130 ± 0.02 a 0.141 ± 0.02 b 0.47 0.01
18:0 6.501 ± 0.69 a 6.486 ± 0.57 a 6.974 ± 1.31 b 6.394 ± 1.12 b 0.88 0.03
20:0 0.121 ± 0.03 b 0.115 ± 0.02 a 0.135 ± 0.02 c 0.131 ± 0.01 c 0.12 0.03
16:1 2.671 ± 0.53 b 2.429 ± 0.79 a 3.134 ± 0.62 c 3.340 ± 0.33 d 0.55 <0.01
17:1 0.049 ± 0.03 c 0.055 ± 0.02 c 0.030 ± 0.02 b 0.025 ± 0.01 a 0.04 <0.01
18:1 n−9 34.48 ± 1.57 c 35.16 ± 1.45 d 32.87 ± 1.67 a 33.20 ± 1.31 b 9.31 0.03
18:1 n−11 2.453 ± 0.16 c 2.264 ± 0.42 b 2.110 ± 0.28 a 2.511 ± 0.21 d 0.48 0.03
20:1 n−7 0.068 ± 0.02 b 0.061 ± 0.01 a 0.070 ± 0.01 b 0.063 ± 0.01 a 0.02 0.04
20:1 n−9 0.015 ± 0.01 a,b 0.020 ± 0.01 b 0.013 ± 0.01 a 0.018 ± 0.01 b 0.10 0.02
20:1 n−11 0.300 ± 0.05 b 0.295 ± 0.06 b 0.254 ± 0.09 a 0.305 ± 0.06 b 0.11 <0.01
18:2 n−6 25.53 ± 1.47 d 24.70 ± 1.68 b 25.16 ± 1.12 c 24.11 ± 2.63 a 4.55 0.03
20:2 n−6 0.319 ± 0.05 c 0.293 ± 0.07 b 0.284 ± 0.03 b 0.220 ± 0.08 a 0.34 0.02
18:3 n−3 2.298 ± 0.17 a 2.650 ± 0.35 c 2.499 ± 0.18 b 2.474 ± 0.24 b 0.56 0.02
20:3 n−3 0.174 ± 0.04 b 0.174 ± 0.01 b 0.148 ± 0.02 a 0.140 ± 0.02 a 0.15 0.01
20:4 n−6 0.101 ± 0.01 a 0.100 ± 0.01 a 0.115 ± 0.02 b 0.116 ± 0.02 b 0.07 0.01

Σ SFA 30.23 ± 3.11 a,b 29.77 ± 2.30 a 30.71 ± 2.07 a,b 31.94 ± 3.56 b 6.22 0.01
Σ MUFA 39.99 ± 1.64 40.23 ± 1.51 38.45 ± 1.92 39.43 ± 1.48 8.74 0.07
Σ PUFA 28.42 ± 1.55 27.92 ± 1.65 28.21 ± 1.12 27.06 ± 2.67 3.09 0.06
Σ UFA 68.41 ± 2.49 68.15 ± 2.12 66.65 ± 2.28 66.49 ± 3.36 12.8 0.05
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Table 5. Cont.

Control Zn-Gly-50 Cu-Gly-50 Fe-Gly-50 SEM p Value

Σ PUFA n−3 2.471 ± 0.20 a,b 2.824 ± 0.35 b 2.646 ± 0.19 a,b 2.614 ± 0.24 a 0.98 0.01
Σ PUFA n−6 25.95 ± 1.47 b 25.09 ± 1.66 a,b 25.56 ± 1.11 a,b 24.44 ± 2.65 a 3.22 0.01
Σ PUFA/SFA 0.952 ± 0.14 b 0.945 ± 0.12 b 0.922 ± 0.07 a,b 0.864 ± 0.18 a 0.27 0.04
Σ SFA/UFA 0.434 ± 0.06 a 0.429 ± 0.05 a 0.452 ± 0.05 b 0.474 ± 0.08 b 0.65 0.03
n−6/n−3 10.54 ± 0.87 b 9.011 ± 1.30 a 9.705 ± 0.86 a,b 9.415 ± 1.29 a 4.09 0.02

a, b, c, d—means with different superscripts in lines differ at p < 0.05; SEM—standard error of the means; SFA—saturated fatty acids;
MUFA—monounsaturated fatty acids; PUFA—polyunsaturated fatty acids; UFA—unsaturated fatty acids.

A statistically significant impact of using chelates in the Gly-25 groups on the fatty-acid
profile of thigh meat was observed; however, the changes were not directional (Table 6).
No statistically significant differences were noted in the total content of SFAs, MUFAs,
PUFAs and UFAs. Statistically significant differences were found in the total content of n−3
PUFAs. The highest content of n−3 PUFAs was determined in the meat of chickens from
the Zn-Gly-25 group, and the lowest in the control and Cu-Gly-25 groups (p = 0.03). For
n−3 fatty acids, differences were found in the content of α-linolenic acid (C18:3): Zn-Gly-25
= Fe-Gly-25 > Cu-Gly-25 > control and of eicosatrienoic acid (C20:3): control > Cu-Gly-25
> Zn-Gly-25 = Fe-Gly-25. The highest content (p = 0.04) of n−6 PUFAs was found in the
control, Cu-Gly-25 and Fe-Gly-25 groups. The meat of chickens from the Zn-Gly-25 group
contained less (p = 0.04) n−6 PUFAs than in the control group. The family of n−6 fatty
acids showed the following relationships: for C20:2 fatty acid—control > Zn-Gly-25 =
Cu-Gly-25 > Fe-Gly-25; for C20:4 fatty acid—Cu-Gly-25 = Fe-Gly-25 > Zn-Gly-25 > control.
The value of the PUFA/SFA ratio was significantly higher for Cu-Gly-25 group than for the
Fe-Gly-25 group. The differences between the other groups were not significant.

Table 6. Fatty acid profile (g/100 g of total fatty acids) and dietetic values of thigh meat samples—treatment II (25% of the
mineral in the form of chelate).

Control Zn-Gly-25 Cu-Gly-25 Fe-Gly-25 SEM p Value

6:0 0.012 ± 0.01 a 0.026 ± 0.01 b 0.028 ± 0.03 b,c 0.034 ± 0.02 c 0.02 <0.01
8:0 0.012 ± 0.01 a,b 0.011 ± 0.01 a 0.014 ± 0.01 b 0.021 ± 0.01 c 0.03 <0.01
10:0 0.014 ± 0.01 a 0.014 ± 0.01 a 0.018 ± 0.01 b 0.021 ± 0.01 c 0.03 <0.01
12:0 0.254 ± 0.02 c 0.216 ± 0.02 a,b 0.204 ± 0.07 a 0.224 ± 0.06 b 0.11 0.03
14:0 0.434 ± 0.16 c 0.393 ± 0.15 a 0.395 ± 0.10 a 0.414 ± 0.09 b 0.10 0.03
15:0 0.103 ± 0.03 a 0.102 ± 0.02 a 0.108 ± 0.02 a 0.118 ± 0.01 b 0.03 0.01
16:0 22.16 ± 2.39 22.97 ± 1.86 22.40 ± 1.63 22.70 ± 0.85 3.98 0.02
17:0 0.149 ± 0.02 a 0.154 ± 0.01 a 0.154 ± 0.01 a 1.168 ± 0.04 b 0.95 0.01
18:0 6.501 ± 0.69 b 6.379 ± 1.27 a 6.469 ± 0.60 c 6.475 ± 0.63 d 1.34 0.02
20:0 0.121 ± 0.03 a 0.130 ± 0.02 b 0.151 ± 0.07 c 0.160 ± 0.02 c 0.33 0.04
16:1 2.671 ± 0.53 a 3.293 ± 0.33 c 3.103 ± 0.17 b 3.195 ± 0.46 b,c 0.79 <0.01
17:1 0.049 ± 0.03 c 0.033 ± 0.02 b 0.024 ± 0.01 a 0.022 ± 0.01 a 0.05 <0.01
18:1 n−9 34.48 ± 1.57 34.43 ± 1.73 35.40 ± 0.66 34.65 ± 1.12 6.34 0.06
18:1 n−11 2.453 ± 0.16 b 2.274 ± 0.19 a 2.232 ± 0.23 a 2.235 ± 0.14 a 1.08 0.01
20:1 n−7 0.068 ± 0.02 c 0.050 ± 0.02 b 0.040 ± 0.01 a 0.041 ± 0.01 a 0.11 0.01
20:1 n−9 0.015 ± 0.01 a 0.023 ± 0.01 b 0.020 ± 0.01 b 0.019 ± 0.01 b 0.13 0.02
20:1 n−11 0.300 ± 0.05 b 0.257 ± 0.05 a 0.246 ± 0.05 a 0.252 ± 0.06 a 0.54 0.01
18:2 n−6 25.53 ± 1.47 24.61 ± 1.26 25.16 ± 1.00 24.73 ± 0.78 4.45 0.05
20:2 n−6 0.319 ± 0.05 c 0.196 ± 0.04 b 0.210 ± 0.11 b 0.159 ± 0.09 a 0.33 0.01
18:3 n−3 2.298 ± 0.17 a 2.419 ± 0.29 c 2.355 ± 0.18 b 2.408 ± 0.13 c 1.68 0.01
20:3 n−3 0.174 ± 0.04 c 0.147 ± 0.03 a 0.161 ± 0.02 b 0.148 ± 0.02 a 0.22 0.02
20:4 n−6 0.101 ± 0.01 a 0.113 ± 0.03 b 0.166 ± 0.03 c 0.158 ± 0.02 c 0.40 <0.01

Σ SFA 30.23 ± 3.11 30.54 ± 1.58 29.19 ± 2.61 31.32 ± 0.97 5.07 0.06
Σ MUFA 39.99 ± 1.64 40.32 ± 1.60 41.04 ± 0.75 40.39 ± 0.89 10.8 0.05
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Table 6. Cont.

Control Zn-Gly-25 Cu-Gly-25 Fe-Gly-25 SEM p Value

Σ PUFA 28.42 ± 1.55 27.48 ± 1.45 28.05 ± 0.98 27.60 ± 0.79 7.12 0.07
Σ UFA 68.41 ± 2.49 67.81 ± 2.38 69.09 ± 1.11 68.00 ± 0.85 9.84 0.05
Σ PUFA n−3 2.471 ± 0.20 a 2.566 ± 0.29 c 2.516 ± 0.17 a,b 2.555 ± 0.14 b 0.32 0.03
Σ PUFA n−6 25.95 ± 1.47 b 24.92 ± 1.29 a 25.53 ± 1.11 a,b 25.05 ± 0.77 a,b 7.01 0.04
Σ PUFA/SFA 0.952 ± 0.14 a,b 0.903 ± 0.08 a,b 0.970 ± 0.12 b 0.888 ± 0.04 a 0.32 0.03
Σ SFA/UFA 0.434 ± 0.06 0.441 ± 0.03 0.413 ± 0.04 0.435 ± 0.02 0.21 0.07
n−6/n−3 10.54 ± 0.87 9.797 ± 0.96 10.21 ± 1.07 9.827 ± 0.59 1.09 0.08

a, b, c, d—means with different superscripts in lines differ at p < 0.05; SEM—standard error of the means; SFA—saturated fatty acids;
MUFA—monounsaturated fatty acids; PUFA—polyunsaturated fatty acids; UFA—unsaturated fatty acids.

3.4. Dietary Value of Meat

In the meat of chickens from Gly-50 groups, the value of AI was as follows: Fe-Gly-50
> Cu-Gly-50 > Zn-Gly-50 = control (Table 7). It was similar for TI: Fe-Gly-50 > Cu-Gly-50 >
control > Zn-Gly-50. In comparison to the control group, the h/H ratio was not significantly
different (p = 0.01) in the Zn-Gly-50 group, while in the Cu-Gly-50 and Fe-Gly-50 groups,
this value was statistically lower.

Table 7. Dietetic values of thigh-meat samples.

Treatment I—50% of the Mineral in the Form of Chelate

Control Zn-Gly-50 Cu-Gly-50 Fe-Gly-50 SEM p Value

AI 0.354 a 0.360 a 0.380 b 0.394 c 1.09 0.04
TI 0.733 b 0.709 a 0.752 c 0.790 d 0.36 0.03
h/H 2.798 c 2.795 c 2.599 b 2.498 a 0.55 0.01

Treatment II—25% of the Mineral in the Form of Chelate

Control Zn-Gly-25 Cu-Gly-25 Fe-Gly-25 SEM p Value

AI 0.354 a,b 0.363 b 0.348 a 0.359 a,b 2.34 0.03
TI 0.733 b 0.741 c 0.697 a 0.731 b 0.70 0.03
h/H 2.798 d 2.657 a 2.782 c 2.684 b 1.05 0.02

a, b, c, d—means with different superscripts in lines differ at p < 0.05; SEM—standard error of the means;
AI—atherogenic indices; TI—thrombogenic indices; h/H—hypocholesterolemic/hypercholesterolemic ratio.

In the Cu-Gly-25 group, the value of AI was significantly (p = 0.03) lower than in
the Zn-Gly-25 group and insignificantly lower than in the Fe-Gly-25 and control groups
(Table 7). The value of TI was as follows: Zn-Gly-25 > Fe-Gly-25 = control > Cu-Gly-25. On
the other hand, the h/H ratio can be represented as: control > Cu-Gly-25 > Fe-Gly-25 >
Zn-Gly-25.

4. Discussion

The diet of slaughter animals can modify the chemical composition of meat; for
instance, it can increase the content of protein and reduce the level of fat, as demonstrated
in studies involving pigs, poultry, rabbits and ruminants [42–45]. The presented study did
not note any impact of chelates on the proximate composition (crude protein, total fat).
This means that even in their highly assimilable form, Zn, Cu and Fe, despite their high
biological significance, do not essentially regulate the synthesis of protein and fat in the
body; that is, they do not increase the mass of muscles and fat. This is corroborated by
results published elsewhere [35] of the carcass-composition analysis of chickens from the
experiment presented there, which did not show statistically significant differences either
in weight gain or in PSTM (percentage share of thigh muscles in the carcass). Additionally,
the studies of Selim et al. [46] found no impact of using a Zn-methionine chelate on the
percentage share of thigh and breast meat in the carcass. Furthermore, Zakaria et al. [47]
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and Eskandani et al. [48] did not note any impact of supplementing poultry feed with
a chelate containing a complex of amino acids and Zn on the percentage share of thigh
and breast meat in the carcass. Lei et al. [49] recorded inhibited accumulation of fat in
the carcasses of rabbits due to the stimulating effect of Cu on lipolysis and oxidation of
fatty acids, similar to studies by Skřivan et al. [50]. Our previous studies did not reveal
any impact of using Cu-Gly [8] and Zn-Gly [10] on the content of fat and protein in the
meat of Ross 308 broiler chickens, while the replacement of Fe sulphate with Fe glycine
chelate reduced the content of fat in thigh meat; however, the protein content remained
unaffected [9].

The chemical components of meat determine its quality, including sensory traits. Meat
palatability is determined by its smell and taste. Smell is considered a more important
characteristic because it is more easily perceived than taste. The smell of meat is, to the
highest extent, determined by the SFA and UFA ratios and the content of aldehydes,
ketones and alcohols [9]. The content of PUFA is particularly important as these acids are
extremely sensitive to peroxidation, and volatile and non-volatile compounds produced
by peroxidation are responsible for the unpleasant smell and taste of meat [51]. The ratio
of Σ PUFA and Σ SFA in meat should exceed 0.45, as fat present in meat has a positive
influence on the human body and, most importantly, prevents cardiovascular and chronic
diseases [52]. Values below 0.45 have a hypercholesterolemic effect on humans. In the
presented study, the Σ PUFA/SFA ratio was above 0.86 in all groups, which means that the
analysed meat had a high anticholesterolemic value. The content of n−6 and n−3 PUFAs
and their mutual ratio determine the hypocholesterolemic index: n−3 acids are the main
regulators of the thrombogenic index, while n−6 acids are predominant in regulating the
atherogenic index [53]. Meat that is healthy for humans should have low AI and TI and
a high h/H index. Preferably, AI should be below 1.0, and TI should be below 0.5 [53].
In the presented studies, AI did not exceed 0.4, while TI in experimental groups ranged
from 0.70 (Cu-Gly-25) to 0.79 (Fe-Gly-50), which was 40% higher than recommended.
However, considering all the analysed dietary parameters, one parameter deviating from
the recommendations should not affect the overall evaluation of the dietary value of thigh
meat of chickens receiving glycine chelates. TI in the Control group was also higher than
0.7. The h/H ratio illustrates the effect of fatty acids on cholesterol metabolism, so the
measured values should be as high as possible [53]. In the presented studies, h/H in
experimental groups ranged from ca. 2.5 (Fe-Gly-50) to ca. 2.8 (Zn-Gly-50).

Poultry meat is a good source of UFA, including PUFA, the best of all terrestrial
slaughter animals [10,54]. At the same time, many studies, including those carried out by
our team, showed that birds’ diet can modify the fatty-acid profile and cholesterol level in
poultry meat, thus affecting its dietary value [8–10,54]. The presented studies also found
that the use of Zn, Cu and Fe glycine chelates did have an impact on the fatty-acid profile of
thigh meat. Zinc (Zn), copper (Cu) and iron (Fe) have an influence on the lipid metabolism
in the body through a number of mechanisms, including (1) stimulation of lipolysis, e.g.,
by activating lipogenic-enzyme gene expression; (2) stimulation of fatty-acid oxidation;
(3) controlling expression of genes involved in the synthesis of fatty acids; (4) inhibition of
lipogenesis in adipocytes; and (5) regulation of lipid transport.

The supplementation of zinc and methionine in the form of chelates (25, 50 or
100 mg/kg feed material) led to an increase in the content of SFA and decreased the
level of UFA in the breast meat of broiler chickens, whereas the difference was greater for
higher dosages of chelate [55]. The replacement of Zn sulphate with Zn glycine chelates
(25, 50 or 100 mg/kg of feed material) altered the fatty-acid profile of breast meat, but the
changes were not directional [10]. Nevertheless, the cited studies noted a clear increase in
the level of n−3 and n−6 PUFAs in chickens receiving Zn chelate in comparison to those
receiving Zn sulphate, but no impact of the chelate on the total content of SFA, PUFA and
UFA was observed. Other studies carried out by our team showed a significant impact of
Zn glycinate chelate fed to broiler chickens (25, 50 or 100 mg/kg of feed material) on the
dietary value of breast meat: AI, TI and h/H. The best values were measured for Zn chelate



Animals 2021, 11, 3115 11 of 15

supplemented at 50 and 25 mg/kg of feed material [10]. In the presented studies, the values
of AI and TI in the meat of chickens receiving Zn chelate in an amount corresponding
to 50% of the requirement were lower than in other experimental groups, and chickens
from the Zn-Gly-25 group showed higher AI and TI than other experimental groups. For
h/H, values higher than in other experimental groups were observed only in the meat of
chickens receiving chelate covering 50% of the requirement.

Exogenous Cu can have an influence on signalling pathways associated with lipid
metabolism through improved absorption, transport and utilisation of fatty acids, as
shown by studies involving pigs and ruminants [56–58]. Additionally, it was found that
the activity of some genes involved in post-absorptive lipid metabolism increased [49,56].
Copper also activates PPAR-α (peroxisome proliferator-activated receptor) and AMPK
(5′AMP-activated protein kinase), which fosters a reduction in intracellular fat by stim-
ulating lipid metabolism and inhibiting lipogenesis in adipocytes [49]. Copper plays a
significant role in adipocyte metabolism, also through Cu-dependent SSAO (semicarbazide-
sensitive amine oxidase), a regulator of energy processes in adipocytes. A deficiency of
Cu leads to inactivation of SSAO and redirection of the metabolism to lipid-dependent
pathways, which contributes to excessive growth of adipocytes and accumulation of fat [59].
Makarski et al. [60], examining turkeys fed with Cu-lysine chelate, observed a change in
the fatty-acid profile: increased content of C18:1 and reduction in 14:0, 16:0 and 22:0 satu-
rated fatty acids. In turn, the use of Cu-glycine chelates in broiler chickens had no impact
on the content of SFA but did increase the levels of PUFA and n−6 PUFA in meat in com-
parison to chickens receiving Cu in the form of sulphate [26]. Studies by Skřivan et al. [50]
showed a lower level of SFA and an increased PUFA/SFA ratio in the abdominal fat of
broiler chickens receiving 200 mg Cu/kg of feed material, which could be a result of the
decreased activity of 7-alpha-hydroxylase. In turn, in other studies where Cu sulphate was
replaced by different amounts of Cu glycine chelate (4, 8, 16 mg/kg of feed material), no
significant changes in the fatty-acid profile of breast meat were observed [8]. Similarly,
in the presented study, no statistically significant effect of replacing Cu sulphate with Cu
glycine chelate on the content of PUFAs, including n−3 and n−6 fatty acids, was found for
any dosage of Cu (25 or 50 mg/kg of feed material). For AI and TI, in the presented studies,
the results were better in chickens receiving Cu chelate in an amount corresponding to 25%
of the requirement, compared to other experimental groups, than in those receiving chelate
in an amount corresponding to 50% of the requirement of Cu. In contrast, the results for
the h/H ratio were better in the Cu-Gly-50 group.

Previous studies carried out by our team did not show any significant impact of
Fe-Gly (10, 20 or 40 mg/kg of feed material) on SFA, MUFA and PUFA totals or the n−6
to n−3 fatty acid ratio, despite differences in the content of certain fatty acids found
between the groups [9]. In the presented study, the meat of chickens receiving 50 mg
of chelate contained significantly less n−3 and n−6 Σ PUFAs, while its n−6/n−3 ratio
was lower and the Σ SFA/UFA ratio was higher in comparison to the group receiving Fe
sulphate. In contrast, in the group receiving 25 mg of chelate, only the content of n−3
Σ PUFA was higher than in the control group. In turn, AI and TI were better (compared
to other experimental groups) in the meat of chickens receiving Fe chelate in an amount
covering 25% instead of 50% of the requirement. However, h/H in the Fe-Gly-50 group
was adversely lower than in other experimental groups.

For several years, our team has been investigating the impact of feed ingredients
on the quality of poultry and swine meat. We have also been analysing the effect of
supplementation with chelated minerals on the quality of animal meat. However, each of
the chelates has always been examined separately, so their effectiveness has never been
compared. We were only aware that each of them had a specific effect on the tested
parameters in comparison to sulphates but that these effects differed. For instance, it was
noted in earlier studies that both Cu chelate [8] and Fe chelate [9] induced a statistically
significant decrease in the cholesterol content in meat, but the present study indicated
that their effects were equally strong (no statistically significant differences were found at
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p < 0.05) in contrast to Zn. In the case of the fatty-acid profile in the meat, it was found that
the results in the Zn-chelate groups were generally more favourable than in the Fe-chelate
groups, especially in the Gly-50 groups. The available literature reports describe the use of
chelates of one mineral component only. We believe that the effectiveness of chelates in the
nutrition of different animal species with different production purposes (meat, eggs, milk)
should be compared; otherwise, it is impossible to indicate a product with the best effect.
In the case of our study, the comparison of the effectiveness of chelates of various minerals
(Cu, Zn, and Fe) will enable livestock farmers to choose the most beneficial chelate that can
be used in poultry feeding without incurring unnecessary costs. Mineral chelates intended
for poultry nutrition are 2–3 times more expensive than sulphates in Poland, but chelates
are more easily digestible. Meat offered to consumers must meet certain standards. The
most important are its dietary value (determined by the fatty-acid profile) and organoleptic
quality. Since chelates are likely to be massively introduced into feed mixtures for broiler
chickens in the near future, a potential reduction of the nutritional value and quality of
poultry meat caused by these additives should be assessed. Food safety should be the
primary goal of food producers.

5. Conclusions

To sum up, the presented studies found that the use of Zn, Cu and Fe glycine chelates
did have an impact on the dietary value of meat. Analysing the results, a positive effect was
most frequently (p < 0.05) noted for Zn chelate in an amount covering 50 % of the require-
ment: the lowest level of SFA, AI and TI, and the highest of n−3 PUFA and PUFA/SFA and
h/H. This means that to ensure a high dietary value of meat, Zn glycine chelate should be
administered to broiler chickens in an amount covering 50% of the requirement, which,
at the same time, ensures high antioxidant stability of meat, as described elsewhere [35].
However, the results did not show that the use of Cu and Fe glycine chelates reduce the
dietary value of thigh meat in broiler chickens, since generally, the outcomes were not
worse than those in the control group. It should be highlighted that, due to ambiguous
results, it is impossible to determine a dose of Cu and Fe glycine chelate which would
be more efficient for broiler chickens. However, chickens receiving chelates in amounts
corresponding to 25% of the requirement showed far better results.
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9. Winiarska-Mieczan, A.; Kwiecień, M.; Grela, E.R.; Tomaszewska, E.; Klebaniuk, R. The chemical composition and sensory
properties of raw, cooked and grilled thigh meat of broiler chickens fed with Fe-Gly chelate. J. Food Sci. Technol. 2016, 53,
3825–3833. [CrossRef] [PubMed]
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32. Kwiecień, M.; Winiarska-Mieczan, A.; Milczarek, A.; Klebaniuk, R. Biological response of broiler chickens to decreasing dietary
inclusion levels of zinc glycine chelate. Biol. Trace Elem. Res. 2017, 175, 204–213. [CrossRef]
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35. Winiarska-Mieczan, A.; Kwiecień, M.; Mieczan, T.; Kwiatkowska, K.; Jachimowicz, K. The effect of Cu, Zn and Fe chelates on the
antioxidative status of thigh meat of broiler chickens. Animal 2021, 15, 100367. [CrossRef]

36. Aviagen. Ross 308 Parent Stock: Nutrition Specifications. 2016. Available online: www.aviagen.com (accessed on 20 October 2019).
37. NRC, National Research Council. Nutrient Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994.
38. AOAC. Official Methods of Analysis. International 17th edn; AOAC International: Gaithersburg, MA, USA, 2000.
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