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Simple Summary: Alpaca breeding takes place in the most entrenched areas of the Andes, where
the conditions to implement genetic improvement programs are very difficult. Likewise, taking
phenotypic records is limited in its ability to predict genetic merit accurately. For this reason, genomic
information is shown as an alternative that helps to predict the genetic values of fiber traits more
precisely. This study showed how genomic information increased precision by 2.623% for the fiber
diameter, 6.442% for the standard deviation of the fiber diameter, and 1.471% for the percentage of
medullation compared to traditional methods for predicting genetic merit, suggesting that adding
genomic data in prediction models could be beneficial for alpaca breeding programs in the future.

Abstract: Improving textile characteristics is the main objective of alpaca breeding. A recently
developed SNP chip for alpacas could potentially be used to implement genomic selection and
accelerate genetic progress. Therefore, this study aimed to compare the increase in prediction
accuracy of three important fiber traits: fiber diameter (FD), standard deviation of fiber diameter
(SD), and percentage of medullation (PM) in Huacaya alpacas. The data contains a total pedigree
of 12,431 animals, 24,169 records for FD and SD, and 8386 records for PM and 60,624 SNP markers
for each of the 431 genotyped animals of the Pacomarca Genetic Center. Prediction accuracy of
breeding values was compared between a classical BLUP and a single-step Genomic BLUP (ssGBLUP).
Deregressed phenotypes were predicted. The accuracies of the genetic and genomic values were
calculated using the correlation between the predicted breeding values and the deregressed values of
100 randomly selected animals from the genotyped ones. Fifty replicates were carried out. Accuracies
with ssGBLUP improved by 2.623%, 6.442%, and 1.471% on average for FD, SD, and PM, respectively,
compared to the BLUP method. The increase in accuracy was relevant, suggesting that adding
genomic data could benefit alpaca breeding programs.

Keywords: alpaca; genomic selection; SNP markers

1. Introduction

The purpose of alpaca breeding is to improve the textile properties of the fiber [1]. The
textile industry seeks quality fibers [2], measured by the fineness and the low variability
of its diameter [3]. Furthermore, it is known that reducing or eliminating the so-called
itching factor would enhance its economic value, which could be achieved by decreasing
the percentage of medullation [2]. Therefore, improving the fiber’s textile characteristics
consists of producing a finer fiber with low variability and a lower itching factor.
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Currently, in alpaca breeding, most advanced improvement programs rely on quanti-
tative genetics using Best Linear Unbiased Prediction (BLUP) methods with a multi-trait
animal model with repeated measurements [2]. Fiber traits such as fiber diameter (FD),
standard deviation of fiber diameter (SD), and percentage of medullation (PM) can be
measured multiple times in the animal, usually at shearing time. However, it has been
shown that non-genetic factors highly influence fiber characteristics. Fiber diameter tends
to increase with the animal’s age [3] but is also affected by the stage of pregnancy and
lactation [4].

Genomic selection implementation has recently evolved rapidly in many species.
Meuwissen et al. [5] proposed combining statistical models with genomic data to help
increase the accuracy of breeding value estimates. Legarra et al. [6] and Christensen and
Lund [7] reported how to integrate the information of the additive relationship matrix (A)
and the genomic relationships matrix (G) in a combined matrix (H) and to develop a single-
step Genomic BLUP (ssGBLUP) method. Matrix H can be understood as a modification of
the regular pedigree relationships by including genomic relationships [8]. The ssGBLUP
integrates all the phenotypic, pedigree, and genomic information available simultaneously
to predict genomic merit values for genotyped and non-genotyped individuals through
the combined matrix H [9-11]. This allows the use of all the available information in a
genetic improvement program; many species rely on this new way of predicting breeding
values [11-13]. Possible advantages of genomic information are to increase the accuracy
of genetic merit, reduce the generational interval, and evaluate traits that are difficult
to measure [11,14,15]. Hence, alpaca breeding programs could access these advantages
with the use of genomic selection. However, this has not been possible because there was
no specific genomic beadchip for alpacas until recently. This genomic beadchip has just
been built and with it, it has been possible to establish a map of 76,508 Single Nucleotide
Polymorphism (SNP) markers [16]. Therefore, the objective of this work was to compare,
for the first time, the prediction accuracy of three important fiber traits: fiber diameter (FD),
standard deviation of fiber diameter (SD), and percentage of medullation (PM) using BLUP
and ssGBLUP methods in Huacaya alpacas.

2. Materials and Methods

The data were obtained from the PacoPro v5.10 software from the Pacomarca Ge-
netic Center, which contains pedigree information from 1992 to 2020 and phenotypic
data collected from 2001 to 2019. The fiber traits were the FD and SD as described by
Gutiérrez et al. [1], and PM as described by Cruz et al. [2].

Table 1 summarizes the information available for the analysis. The number of records
was 24,169 for FD and SD and 8386 for PM from a total pedigree of 12,431 animals, of
which 6889 had their own performance records. The number of genotyped animals was
431, which had 2774 records for FD and SD, and 1767 for PM. The number of animals with
offspring was 1943, and the number of animals with offspring and phenotypic information
was 1867. The number of animals with unknown sires was 1554, the number of animals
with unknown dams was 1278, and the number of animals with both unknown parents was
1254. The total number of sires was 246, the number of sires with progeny in the data was
246, and the number of sires with records and progeny in the data was 212. The number of
dams was 1697, the number of dams with progeny in the data was 1692, and the number of
dams with their own records and progeny in the data was 1655. The average of the records
for FD was 22.82 um, 5.38 um for SD, and 47.75% for PM.
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Table 1. Number of records of the fiber diameter (FD), standard deviation (SD) and percentage of
medullation (PM) and pedigree records in the database.

Total Records

Animals (n)

FD SD PM

Full pedigree 12,431
Animal with records 6889 24,169 24,169 8386
Genotyped animals 431 2774 2774 1767

A recently developed DNA microarray consisting of 76,508 SNPs from 37 pairs of
chromosomes, 36 autosomal chromosomes, and one sex chromosome [16], was used to
genotype 431 alpacas. For quality control, all SNPs with a call rate < 95% and minor allelic
frequency (MAF) < 0.05 were removed, leaving 60,624 SNP markers.

Genetic parameters were, firstly, estimated for the three traits, and then the precision
of the breeding values was analyzed comparing two methodologies. Two methods were
used: A traditional BLUP method with phenotypic data and pedigree-based relationship
matrix (A) and an ssGBLUP method based on a combined matrix (H) constructed from
a matrix A and a genomic relationship matrix (G). Variance components were estimated
using restricted maximum likelihood (REML) [17,18].

FD, SD, and PM traits were independently analyzed. For each of them, deregressed
phenotypes were called d'. They were assumed to be the true breeding values for prediction,
averaging the regressed values of an individual when there were repeated measurements
of the phenotype. These were obtained by fitting the fixed effect solutions estimated with
the equation y = Xb + e in which contemporary groups defined by year of sampling
(19 levels in FD and SD, 4 levels in PM), color (9 levels) [19], age in days as a linear and
quadratic covariate, and sex by physiological status were defined as the fixed effects in b,
and X was the corresponding incidence matrix. The sex by physiological effect was defined
as one level for males and two for females (empty or lactating). The vector y was FD, SD,
or PM phenotypes.

BLUP and ssGBLUP performance were compared by cross-validation as predictors
of the de-regressed phenotypes d’ using the model equation y = Xb + Zu + Wp + e, with
(co)variance matrices:

u 0 [ Mo2 0 0
c |~N[O,|] 0 L& o0
e 0 0 0 I.o?

M was equal to A¢? in BLUP and Ho? in ssGBLUP, ¢? is the additive genetic variance,
02 is the permanent environmental variance, o? is the residual variance, and the heritability

(h?) is h? = m I. is the identity matrix of order equal to the number of permanent
environmental subclasses, I is the identity matrix of order equal to the number of records,
A is the numerator relationship matrix according to the pedigree information, and H
is a similar matrix to A that includes both pedigree-based relationships and differences
between pedigree-based and genomic-based relationships [20]. The ssGBLUP method is
a modification of BLUP in which the numerator relationship matrix A~! matrix must be

replaced by H! [12], such as:

~1 -1 0 0

HE=A"410 g1-ay

where Aj; is a numerator relationship matrix for genotyped animals, and G is a genomic

relationship matrix [14]. G ! was obtained as the inverse of a combination of the G matrix

and the corresponding A matrix, weighting them by 0.95 and 0.05, respectively [14].
Records from a random sample of 100 animals out of the 431 genotyped ones were

initially removed to be used later as the testing set, keeping the rest as a training set. BLUP
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and ssGBLUP were compared by computing the correlation between the true breeding
values d’ defined above and the predicted breeding values obtained both by BLUP (PBV)
and by ssGBLUP (GPBV). This procedure was carried out in fifty replicates.

An additional analysis to check the use of genomic selection in non-genotyped animals
was carried out. Phenotypes of 390 animals of the last year of recording were initially
removed. Later the corresponding deregresed phenotypes were predicted from both BLUP
and ssGBLUP methodologies and their accuracies were compared.

In the next step, PBVs and GPVBs of genotyped animals were compared using a
Pearson correlation. Given that selected animals can vary when selected by truncation
using different criteria, the ranking of all animals using the two methods was compared by
calculating a Spearman’s rank correlation between them. To better illustrate this, selection
by truncation was simulated both with the PBV and GPBV, where genotyped animals were
ranked by their genetic value for each trait, and the top 25% were selected (108 animals).
Thus, the percentage of the same animals that would be selected in both methods was
calculated for each trait.

The SNP markers” quality control was carried out using the R language [21]. The
Im, cor, cor.test and t.test functions of the R language [21] were used. The RENUMF90,
REMLF90, and BLUPF90 programs [22] were used for the variance component estimation
and the genetic evaluations.

3. Results

The mean heritabilities estimated across replicates by BLUP and ssGBLUP methods
were not significantly different for FD, SD, and PM traits, as shown in Table 2. The
heritabilities for FD were moderate at 0.334 & 0.001 for BLUP and 0.336 4 0.001 for ssGBLUT.
The heritabilities for SD were moderate at 0.381 4+ 0.001 for BLUP and 0.382 =+ 0.001 for
ssGBLUP, and moderate to low for PM at 0.158 + 0.001 for BLUP and 0.160 & 0.001
for ssGBLUP.

Table 2. Mean of variance components, heritabilities (h?) + standard error of 50 replicates estimated by BLUP and ssGBLUP

methods, and significance of the differences in h2 between methods for fiber diameter (FD), standard deviation (SD) and

percentage of medullation (PM) in Huacaya alpacas.

Methodology Traits o2 o2 o? h2
FD 2.824 " +0.002 1.289 ™ + 0.002 433218 +0.001 0.334 1 4+ 0.001
BLUP SD 0.354 M + 0.001 0.144 ™ + 0.001 0.431 7 + 0.001 0.381 ™ + 0.001
PM 27.416 " + 0.089 39.509 ™ £0.079 106.316 ™ + 0.128 0.158 ™ + 0.001
FD 2.842 ™ 4 0.002 1.280 ™ + 0.002 4.331™ +0.001 0.336 ™ + 0.001
ssGBLUP SD 0.355 1 + 0.001 0.143 ™ + 0.001 0.431 1 + 0.001 0.382 1 + 0.001
PM 27.717 ™ £ 0.089 38.965 ™ +0.077  106.352™ 4 (0.128 0.160 ™ + 0.001

BLUP= Best Linear Unbiased Prediction methodology, ssGBLUP = single-step Genomic BLUP methodology, c2= additive genetic variance,
0? = permanent environmental variance, 07 = residual variance, ("*) = non-significant, (***) = p < 0.001.

The mean prediction accuracy for FD, SD, and PM traits under BLUP and ssGBLUP
methodologies is shown in Table 3. The BLUP mean (+standard error) accuracies were
0.505 (£0.015), 0.445 (£0.019) and 0.308 (£0.017) for FD, SD, and PM, respectively. The
ssGBLUP mean (+standard error) accuracies were 0.517 (£0.011), 0.472 (+0.015) and
0.311 (£0.013) for FD, SD, and PM, respectively. The increases in accuracy from ssGBLUP
compared to BLUP expressed as a percentage of the BLUP accuracies were 2.623%, 6.442%,
and 1.471% for FD, SD, and PM, respectively, non-significant only for the PM trait (p > 0.05).
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Table 3. Mean prediction accuracy + standard error of 50 replicates of prediction accuracy of genetic
values (BLUP) and genomic values (ssGBLUP), the difference in accuracy between the methods
expressed as a percentage in Huacaya alpacas.

Traits BLUP 1 SsGBLUP 2 Difference Increase (%)
FD 0.505 + 0.015 0.517 £ 0.011 0.012 " 4 0.003 2.623
SD 0.445 + 0.019 0.472 4 0.015 0.027 ™ £ 0.004 6.442
PM 0.308 + 0.017 0.311 4 0.013 0.004 ™ + 0.003 1.471

1 BLUP = Best Linear Unbiased Prediction methodology, 2 ssGBLUP = single-step Genomic BLUP method-
ology, FD = fiber diameter, SD = standard deviation, PM= percentage of medullation, (") = non-significant,
(*)=p<0.05 (*)=p <0.01.

The Pearson correlations of genetic values for fiber traits between BLUP and ssGBLUP
were 0.975 for FD, 0.976 for SD, and 0.959 for PM. Meanwhile, the Spearman’s correlations
show how much the individuals conserve their position in a ranking. They were 0.972 for
FD, 0.970 for SD, and 0.956 for PM.

The percentage of animals for FD, SD, and PM that would be selected using both
methods with truncation selection of the best 25% of the animals is shown in Figure 1.
The number of animals selected using both methods is 93/108 for FD, 95/108 for SD, and
90/108 for PM.

90.00%
87.96%
88.00%
g 86.11%
o 86.00%
g
S
O 84.00% 83.33%
& 7
82.00% /
80.00% A
Fiber diameter Standard deviation Percentage of
medullation
Fiber traits

Figure 1. Percentage of same selected animals for fiber diameter (FD), standard deviation (SD)
and percentage of medullation (PM) using BLUP and ssGBLUP methods by truncation selection of
top 25%.

Analyses comparing the accuracies of BLUP to ssGBLUP in non-genotyped animals
showed that predictive ability increased by 1.331% and 0.522% for FD and SD, respectively,
but decreased 46.288% for the PM trait.

4. Discussion

Alpaca management systems in Peru are traditional and are based on the exploitation
of the Andean rangelands, where the management of other domestic animal species is
difficult [23]. In most Peruvian production systems for different livestock species, breeding
programs are not established. This practice does not represent a big problem in other
species, where genetics can be imported. However, Peru has 90% of the worldwide
alpaca population, which makes alpaca breeding an important tool for Peru and global
animal farming.
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Genomics is undoubtedly a tool of increasing interest that has different uses in animal
management [24]. Genomic selection is relevant when considering a breeding program
scheme, as other domestic species do [15], and alpaca breeding can be complemented with
this new methodology. Therefore, this first study, which addressed the utility of using SNP
markers, can help encourage the adoption of this new way of selection when considering
an improvement program. The deficiency in the data collection of both phenotype and
pedigree, or a much earlier evaluation when the animals do not yet have phenotypic data,
can be perfomed with much greater accuracy if we rely on molecular markers.

The first studies that evidenced the importance of using molecular genetics regarding
fiber traits were reported by Pérez-Cabal et al. [25]. However, the first approximation of the
use of markers was reported by Mamani et al. [26], where it was possible to cover 40% of the
alpaca genome. Subsequently, the identification and location of some genes related to the
genetic control of the diameter and color of the coat were described by Mendoza et al. [27].

This study showed that heritabilities estimated by BLUP and ssGBLUP were similar
to those reported by Cruz et al. [2], in which they analyzed the FD, SD, and PM traits,
but jointly with other production traits. On the other hand, there did not seem to be a
great difference between the heritabilities estimated by BLUP and ssGBLUP methods, as
the differences were not statistically significant (Table 2). Variations have been reported
that may be influenced by the repeatability of the data, where sometimes the heritability
estimated by the BLUP method may be greater, less, or equal compared to the ssGBLUP
method [10,28,29].

The ssGBLUP methodology provided greater accuracy of prediction than BLUP, as
reported in the case of carcass traits in chicken broilers [10,30,31]. The use of genomic
information (ssGBLUP) generates significantly greater accuracy than the traditional BLUP
for FD and SD traits since genomic relationships are more accurate than relationships based
on pedigree [32]. The marker panel can detect small genetic variations since the ssGBLUP
methodology can integrate the phenotypic, genomic, and pedigree information [10].

However, it must be considered that these comparisons are not directly comparable to
our results due to the differences between the size of the genotyped population, pedigree
size, and the number of records in other species. In carcass traits of sheep, the increase
in accuracy was 33.3% [33]. In dairy sheep for total milk yield, the accuracy increased to
47.98% [34], while in dairy goats, the increase in accuracy was from 5% to 7% for milk
traits [35] In chicken broilers, the increase was around 22% in growth-related and carcass
traits [10]. Accuracy of genomic evaluation depends on several factors, including linkage
disequilibrium (LD) between markers and quantitative trait loci (QTL), effective population
size (Ne), in addition to the relationship between individuals in the training and validation
data [36-38]. Additionally, the reference population size [33,39] and its composition [40],
the size of the training data [41], and heritability [38,41] are factors to be considered.

In the present study, the increase in accuracy was relevant even when the number
of genotyped animals was small (431 animals). The reference population size affects the
prediction accuracy of breeding values [40,42]. Accuracy tends to increase even more if the
size of the reference population continues to grow over the years [33,35], which suggests
that, in alpacas, a more significant increase in accuracy should be possible if the reference
population is increased.

The results comparing the predictive ability on non-genotyped animals showed much
less improvement in the new methodology for FD and SD traits. This highlights the
importance of genotyping the selection candidates. In fact, the prediction ability for the
PM trait, with low heritability and fewer records, considerably worsened.

Song et al. [11] explained that in real data, around 400 genotyped reference animals
probably could not provide more additional information compared to the pedigree infor-
mation consisting of 5000 individuals. In the present study, there were 431 genotyped
animals against 12,431 animals with pedigree information (Table 1); however, the increase
in precision was noticeable at 2.623%, 6.442%, and 1.471% for FD, SD, and PM, respectively.
This result can be explained by the fact that in the present study, animals that had second
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References

shearing data were the ones selected for genotyping, since in alpacas, it has been shown
that the second fiber evaluation, approximately when the alpaca is 2 years old, will be
related to the true genetic potential of each animal [6]. Lourenco et al. [40] highlighted the
importance of having a good reference population with consistent phenotypic information
when predicting the genomic values of young animals.

However, it should be noted that alpaca farming has not yet implemented artificial
insemination as an intensive breeding technique, and natural mating is a common practice.
This practice leads to the need for a high number of males to cover reproductive needs.
Therefore, the ranking variation may be less influential due to the low number of females
assigned to each male in the breeding campaign [43]. Our results show only an overlap in
selected animals of 86.11%, 87.96%, 83.33% for FD, SD, and PM, respectively, using PBV
and GPBV (Figure 1). However, the use of the genomic information can help to increase
the accuracy of the breeding values.

Genomic selection works best in populations where the effect of the marker comes
from animals with data and whose marker-selected progeny go on to produce phenotype
data and reenter the training population, which then becomes dynamic. Additionally,
considering that the cost of genotyping in alpacas is high and that prediction accuracy
is much higher when marker and phenotype information complement each other, data
collection is still an important tool when implementing genomic selection. The eventual
cost reduction may make its implementation more feasible.

5. Conclusions

The use of genomic selection increased the accuracy of the genetic value estimation
through the ssGBLUP methodology, showing its potential for the genetic improvement of
fiber traits. Therefore, ssGBLUP is a new methodology to predict genetic values, especially
for difficult-to-measure traits, such as the percentage of medullation. Moreover, it is
necessary to genotype more animals to know the real possibilities of genomic selection in
alpacas. Finally, it is important to encourage the recording of information from a larger
population to extend the benefits of this methodology to a larger population and, thus,
have more impact on alpacas.
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