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Simple Summary: This study explores the potential intensive neurorehabilitation plasticity effects
in post-surgical paraplegic dogs with severe acute intervertebral disc extrusion aiming to achieve
ambulatory status. The intensive neurorehabilitation protocol translated in 99.4% (167/168) of
recovery in deep pain perception-positive dogs and 58.5% (55/94) in deep pain perception-negative
dogs. There was 37.3% (22/59) spinal reflex locomotion, obtained within a maximum period of
3 months. Thus, intensive neurorehabilitation may be a useful approach for this population of dogs,
avoiding future euthanasia and promoting an estimated time window of 3 months to recover.

Abstract: This retrospective controlled clinical study aimed to verify if intensive neurorehabilitation
(INR) could improve ambulation faster than spontaneous recovery or conventional physiotherapy
and provide a possible therapeutic approach in post-surgical paraplegic deep pain perception-
positive (DPP+) (with absent/decreased flexor reflex) and DPP-negative (DDP−) dogs, with acute
intervertebral disc extrusion. A large cohort of T10-L3 Spinal Cord Injury (SCI) dogs (n = 367) were
divided into a study group (SG) (n = 262) and a control group (CG) (n = 105). The SG was based on
prospective clinical cases, and the CG was created by retrospective medical records. All SG dogs
performed an INR protocol by the hospitalization regime based on locomotor training, electrical
stimulation, and, for DPP−, a combination with pharmacological management. All were monitored
throughout the process, and measuring the outcome for DPP+ was performed by OFS and, for the
DPP−, by the new Functional Neurorehabilitation Scale (FNRS-DPP−). In the SG, DPP+ dogs had an
ambulation rate of 99.4% (n = 167) and, in DPP−, of 58.5% (n = 55). Moreover, in DPP+, there was a
strong statistically significant difference between groups regarding ambulation (p < 0.001). The same
significant difference was verified in the DPP– dogs (p = 0.007). Furthermore, a tendency toward
a significant statistical difference (p = 0.058) regarding DPP recovery was demonstrated between
groups. Of the 59 dogs that did not recover DPP, 22 dogs achieved spinal reflex locomotion (SRL),
37.2% within a maximum of 3 months. The progressive myelomalacia cases were 14.9% (14/94).
Therefore, although it is difficult to assess the contribution of INR for recovery, the results suggested
that ambulation success may be improved, mainly regarding time.

Keywords: spinal cord injury; locomotor training; functional electrical stimulation; transcutaneous
electrical SC stimulation; 4-aminopyridine; neurorehabilitation; acute dogs
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1. Introduction

Spinal cord injury (SCI) leads to temporary or permanent changes in the motor, sen-
sory, and automatic functions [1]. Following SCI, it is possible to activate and strengthen
connections until spontaneous recovery [2], although it is not clear how intensive neurore-
habilitation (INR) training can induce plasticity.

INR is a field of physical medicine and rehabilitation that is based on the evidence of
signal transmission throughout the lesion caudally and rostrally, which can be detected
by electromyography [3–5]. Thus, the main goal of INR is to trigger the central axon
pathways, traversing the lesion, by synaptic stimulation [4,6] and to stimulate propriospinal
connections that may bypass the injury site and possibly mediate recovery [6,7].

The INR intends to facilitate central nervous system (CNS) reorganization at multiple
levels. Mostly, it intends to achieve a balance between the central pattern generators (CPG),
spinal rhythm-generating circuitry plasticity, persistent descending pathways [8,9], and
the sensory feedback, which stimulates the CPG [10–13]. While descending pathways
can produce start–stop signals, which are essential for coordination and posture [12],
propriospinal interneurons may promote new intraspinal circuits after severe SCI [2].
Therefore, INR, in addition to spontaneous recovery, could induce recovery based on
similar mechanisms.

The INR protocols are based on a multimodal approach, which includes locomotor
training [10,14–16], electrostimulation protocols [2,17–22], and, in circumstances of absent
deep pain perception (DPP_), pharmacological management [23–29].

Locomotor training promotes the activation of the spinal locomotor circuitry, which
interacts dynamically with afferent inputs from the receptors of muscles, joints, and
skin [16,30,31].

Functional electrical stimulation (FES) promotes an unnatural recruitment pattern of
muscle fibers, starting with large-diameter ones (fast neurons) instead of fatigue-resistant
slow motoneurons. In addition, FES may stimulate new intraspinal circuits and persistent
residual spinal circuits [3,32–35].

Furthermore, transcutaneous electrical stimulation can promote neuromodulation
effects in the spinal cord locomotor network of the lumbar region [36–38] and plays a role
in the spinal rhythm-generating circuitry [39,40].

The use of multidisciplinary approaches in human patients and in animal models may
improve ambulation [41,42]. A similar approach could be applied in DPP− and DPP+ dogs
in a clinical setting.

The main aim of this study was to verify if INR could improve the ambulatory status
faster than spontaneous recovery or conventional physiotherapy with a minimum sensory
deficit and, also, to provide a possible therapeutic approach in post-surgical dogs with
acute intervertebral disc extrusion (IVDE).

This study hypothesized that a multimodal training protocol may improve ambulation
in paraplegic dogs DPP− and DPP+.

2. Materials and Methods

This study was conducted between May 2011 and May 2020 at the Arrábida Veterinary
Hospital (Arrábida Animal Rehabilitation Center, Setúbal, Portugal), after approval by the
Lisbon Veterinary Medicine Faculty Ethics Committee and after the owners’ consent.

2.1. Participants

This was a retrospective controlled clinical study using a large cohort of dogs (n = 367).
The study group (SG) was composed of 262 dogs, and the control group (CG) consisted of
105 dogs.

Dogs from the SG were prospective clinical cases that were monitored, and all data
was collected and registered during the rehabilitation process.

The 105 dogs of the CG were selected from the Arrábida Veterinary Hospital data man-
agement system, and the medical records were retrospectively investigated. These medical
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records focused on breed, age, weight, etiology, surgical treatment, and a neurological
examination at admission and at medical discharge.

All the dogs (n = 367) had compressive myelopathy by extruded material (Hansen
Type I IVDE) with T10-L3 segment injury diagnosed by computed tomography (CT)
with/without myelogram or magnetic resonance imaging (MRI). The standard CT signs
observed were hyperattenuating material inside the vertebral canal, a loss of epidural fat,
and deformity of the spinal cord. Dogs were included with two different imaging patterns:
acute extruded mineralized nucleus pulposus or acute extrusion of nucleus pulposus with
hemorrhage. The myelogram findings reported lateralized focal spinal cord compression
or herniation into the ventral subdural space. Regarding MRI, only some dogs of both
groups needed this type of exam, showing hyperintensity on T2W images, which could
correlate with the severity and presentation of the clinical neurological findings, such as
necrosis, myelomalacia, inflammation, edema, and intramedullary hemorrhage.

Dogs were treated by hemilaminectomy 3–5 days after injury (first clinical sign ap-
pearance) and classified with the Frankel Modified Scale (FMS) as grade 0 (DPP−) or 1
(DPP+) before and after surgery.

Regarding the SG, all dogs were admitted to the rehabilitation center less than 7 days
after surgery. One hundred and sixty-eight dogs were paraplegic DPP+ with an ab-
sent/decreased flexor peripheral reflex and classified as grade 1 according to the Open
Field Score (OFS) [43].

The other 94 dogs were paraplegic DPP−, evaluated according to a new score scale—
the Functional Neurorehabilitation Scale for dogs with Thoracolumbar SCI without Deep
Pain Perception (FNRS-DPP−) [44]—and classified as grade 0 or 1 (Figure 1). The dogs
were classified with FNRS-DPP− grade 1 only if the patellar reflex was present.
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Concerning the CG, 62 dogs were paraplegic DPP+ with an absent/decreased flexor
peripheral reflex and classified with OFS 1, and 43 dogs were paraplegic DPP−.
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This group was subjected to cage rest, passive range of motion exercises (PROMS),
massages, supported postural standing, gait stimulation, and neuromuscular electrical
stimulation (NMES).

All animals in the study were less than 7 years old and weighed less than 25 kg. Most
were of chondrodystrophic breeds and lacked other concomitant diseases. Dogs were ex-
cluded if they presented other SCI, were outside T10–L3, or if they had a surgical approach
before 3 days or more than 5 days after the injury. Moreover, animals were excluded if
they had higher OFS scores (>1) or higher grades of FNRS-DPP− (>1). Regarding the SG,
dogs that were admitted to the rehabilitation center more than 7 days post-surgery were
also excluded.

2.2. Study Design

The 367 dogs were subjected to a neurorehabilitation consultation and evaluated
according to their history and physical and neurorehabilitation examinations. In the
neurorehabilitation examination, the following were examined: mental status, posture,
postural reactions, spinal reflexes, cutaneous trunci muscle reflex, spinal palpation, pain
perception, and gait. For the SG (n = 262), the gait for DPP+ dogs was evaluated using the
OFS and for DPP– dogs using the FNRS-DPP−.

Regarding gait, SG dogs were evaluated during the same time (3 to 7 p.m.) on the
same 4-m ceramic surface floor by the same observer always in the same position. The
neurorehabilitation examination was performed in a controlled environment, without
external noise and with a restricted number of people. Study participants underwent an
accurate evaluation regarding DPP, tested on the medial and lateral digits of the hindlimb
bilaterally and on the tip and base of the tail. Superficial sensitivity was assessed on the S1
and S2 dermatomes with 12-cm Halsted mosquito forceps. The perineal region, including
the bulbocavernosus reflex, was also assessed.

INR protocol started 24 h after admission for all dogs. Within this period, the dogs
were prepared for training and rehabilitation modalities (e.g., trichotomy), adapted to the
treadmill, and presented to the rehabilitation team, who attended to their tender, love, and
care needs.

All SG dogs were subjected to weekly evaluations by a certified canine rehabilitation
professional (CCRP) examiner/instructor at the University of Tennessee. The data were
recorded (Canon EOS Rebel T6 1300 D camera), and all images were then revised by another
CCRP instructor and a non-CCRP neurologist at the Lisbon Veterinary Medicine Faculty.
SG dogs were admitted to an INR through a hospitalization regimen for a maximum period
of 3 months, as described in Figure 2.

As acute IVDE dogs, all SG and CG dogs were under a nonsteroidal anti-inflammatory
treatment with carprofen (2.2 mg/kg BID) or meloxicam (0.1mg/kg SID) for 5 days or
corticosteroids with prednisolone (0.5 mg/kg per os BID/SID) for 3–5 days. After 7 days
post-surgery, this treatment was totally discontinued in both the SG and CG. The SG
dogs remained only with the INR protocol, and the CG remained with cage rest, PROMS,
massage, postural standing, gait stimulation, and NMES.
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Figure 2. Flow diagram (as recommended by Strengthening the Reporting of Observational Studies in
Epidemiology, STROBE, guidelines) illustrating the study design. IVDE: intervertebral disc extrusion;
DPP: deep pain perception, INR: intensive neurorehabilitation, OFS: open field score, FNRS-DPP−:
functional neurorehabilitation scale for thoracolumbar SCI dogs without DPP, UWTM: underwater
treadmill, IES: interferential electrical stimulation, FES: functional electrical stimulation, TESCS:
transcutaneous electrical spinal cord stimulation, and 4-AP: 4-aminopyridine.

2.3. Interventions

Dogs started INR training with an association of locomotor training and electrical
stimulation 24 h after admission. Pharmacological management was only applied in
DPP− dogs that did not recover DPP until day 30 but demonstrated a flexion–extension
locomotor pattern.
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2.3.1. Locomotor Training

Dogs were accustomed to the land treadmill and started with a higher body weight
support (BWS) (60–80% body weight) [45], which was decreased with the load toler-
ance [46], always supervised by a rehabilitator.

BWS was achieved with a harness, allowing quadrupedal step training as part of
their daily protocol. However, when some resistance was offered, a change to bipedal step
training was required [47,48]. During bipedal training, the forelimbs rested on a platform
raised above the treadmill belt [49] while the perineal area was stimulated by suspending
and crimping the tail [50] or with assisted bicycle hindlimb movements [51].

For each training session, variables such as the walking speed and duration were
increased and recorded, starting from 0.8 km/h (0.5 mph) to a maximum of 1.9 km/h
(1.2 mph) [52–54] over 5 min (4–6 times/day, 6 days/week), with the aim of reaching
20 min (2 times/day, 6 days/week) [55].

The clinical study participants in quadruped training received similar stimulation with
the same speed and frequency variables. The goal in this group was to reach 30–40 min (2
to 3 times/day, 6 days/week) [56]. The treadmill slope was then elevated from 10◦ [47] to
25◦ [57] to encourage forelimb–hindlimb coordination [58].

All patients began underwater treadmill training 2–7 days after admission. All started
with a water temperature of 26 ◦C [59,60] and a 5-min walk until reaching 1 h of training
once a day (5 days/week) from 1–3.5 km/h (2.2 mph) [61,62] while overtraining signs
were monitored.

Furthermore, kinesiotherapy exercises were performed, such as: Cavaletti rails (3 rounds
3 times/day), balance boards (1 to 2 min and increase to 5 min 3 times/day—with or
without BWS), and gait stimulation on different surfaces (1–5 min 3 times/day).

2.3.2. Electrical Stimulation

Electrical stimulation protocols were used to manage the pain through interferential
electrical stimulation (IES): increase muscle strength and neural connections with FES and
increase the potential descending pathway depolarization with transcutaneous electrical
spinal cord stimulation (TESCS).

• Interferential electrical stimulation

This technique is a form of stimulation that has two separate channels and uses
alternating currents [63] through four electrodes placed on the skin near the region of
spinal hyperesthesia and crossed at a 90◦ angle with the following parameters: acute pain,
80–150 Hz, and 2–50 ms; chronic pain, 1–10 Hz, 100–400 ms [64,65], once a day (Figure 3).

• Functional electrical stimulation

This neuromodulation modality uses a short electrical pulse sequence, resulting in
spinal reflexes. It aims to stimulate the lower motoneuron near the motor region or through
peripheral afferent stimulation [66–68]. This modality was performed in all patients with
superficial electrodes, using a segmental technique. One electrode was placed on the skin
region corresponding to L7–S1, and the other electrode was placed near the ventromedial
motor region of the hindlimb flexor muscle group using a pulsated and biphasic current.

The parameters were 60 Hz, 6–24 mA [69,70]; 1:4 duty cycle; and 2–4-s ramp up,
8-s plateau, and 1 to 2-s ramp down [64] over 10 min. This routine was performed 2 to
3 times/day (5 days/week) and was discontinued according to each patient’s neurological
improvement. After the dogs were subjected to the FES modality, they had a therapeutic
window of 40 min, during which the locomotor training was conducted [71–73].

• Transcutaneous electrical spinal cord stimulation

All the patients underwent TESCS 3 times/day (5 days/week), which was gradu-
ally discontinued when the flexion–extension locomotor pattern appeared. The surface
electrodes were placed on the paravertebral muscles (one electrode at T11to T12 and the
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other at L7–S1) [74–77] with a continuous current of 50 Hz, 2 mA for 10 min [36,37,78–80]
(Figure 4).
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2.3.3. Pharmacological Management

During the 3rd to 4th weeks (T4–T5) of the training, if the flexion–extension locomotor
pattern was present with a DPP− result (tested on the medial and lateral digits of the
hindlimb bilaterally and on the tip and base of the tail), it was added with the owner’s
consent and is called pharmacological management.
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4-aminopyridine (4-AP) was administered, a K+ channel-blocking compound [25,26,29,81–84],
under the following regime: 0.3 mg/kg per os BID for 3 days, 0.5 mg/kg BID for 3 days,
0.7 mg/kg BID for 3 days, and 1.1 mg/kg BID for 21 days. The 4-AP protocol was
implemented for a maximum of 2 months.

If any side effects (seizures, diarrhea, and vomiting) occurred, the dogs were immedi-
ately treated and withdrawn from the clinical study.

INR protocol application was consistently performed within the patient’s cardiorespi-
ratory capacity and, according to the evolution observed during the functional neuroreha-
bilitation examination and OFS (DPP+ dogs) or FNRS-DPP− (DPP− dogs) assessment over
a maximum of 3 months.

2.3.4. Supportive Measures

Most of the dogs in the clinical study had neurogenic bladders. Thus, bladder ex-
pression was performed 3 to 4 times/day [85], and the urine was monitored daily for
odor and color changes. If there was a suspected urinary tract infection, urine culture (by
cystocentesis) and specific antibiotic treatment were administered.

The dogs were maintained under a full-time hospitalization regime. They were able to
rest on soft beds with multiple disposable absorbent pads and were encouraged to maintain
sternal recumbency. Dogs were fed three times per day with an intake increase of 30% and
oral hydric support of 100–120 mL/kg; after, the resistance training was alternated with
strength training, according to the patient’s needs. At the end of the day, class IV laser
therapy was administered to reduce pain at the trigger points [86].

All dogs started training at 9:00 a.m. and finishing at 7:00 p.m. They were assisted
only by veterinarians and veterinary nurses who had taken the CCRP course.

2.4. Outcome Measures

SG dogs were assessed by neurological examination every 5–7 days by the same
certified CCRP examiner/instructor. The measured outcomes, including the OFS or FNRS-
DPP−, were evaluated at different time points: admission (T1), day 3 (T2), day 7 (T3), day
15 (T4), day 30 (T5), day 45 (T6), day 60 (T7), day 75 (T8), and day 90 (T9) after starting the
INR. Follow-ups were performed after 8–10 days (F1), 1 month (F2), 6 months (F3), and
one year (F4) (Figure 2).

The presence of DPP, the flexor reflex, flexion–extension locomotor pattern, and postu-
ral standing ability were monitored in these evaluations, which facilitated the establishment
of an accurate and systematic evaluation of ambulation recovery among dogs.

Ambulation was defined as the patient’s ability to stand up, maintain postural stand-
ing, take at least ten steps without assistance or weight support on any walking surface,
and obtain voluntary or automatic micturition and defecation.

Autonomous ability in movement control suggests that parts of the brain and, also,
the spinal cord may presumably activate movements with some conscious control [87].

“Spinal Reflex” Locomotion (SRL) can promote the autonomous ability to stand up
and walk in “DPP− dogs”, maintaining some coordination between the forelimbs and
hindlimbs, perhaps by propriospinal system reorganization, promoting the dog´s ability to
not fall when changing directions on a non-slippery floor.

DPP− SG dogs were considered ambulatory if they showed an SRL score of ≥14 on
FNRS-DPP−. For DPP+ SG dogs, ambulation was considered when the OFS was≥11.

At the end of the study, dogs that become DPP+ or DPP− but with functional SRL or
non-functional SRL were discharged and released into the owner´s guardianship.

DPP− dogs that showed signs compatible with progressive myelomalacia (PM), and
upon the owner’s request, were euthanized by induction with Propofol IV after they fell
asleep, followed by Pentobarbital IV, within a quiet room.

CG dogs were evaluated at admission and at discharge, regarding the neurological
examination and FMS. For the CG, ambulation was considered within the same parameters
as described for the SG.
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2.5. Statistical Analysis

Database and statistical analyses were performed through Microsoft Office Excel
2016 software (Microsoft Corporation, Redmond, WA, USA). Quantitative, qualitative, and
categorical data were analyzed using IBM SPSS Statistics software, version 22 (International
Business Machines Corporation, Armonk, NY, USA), and the results were interpreted at
the p ≤ 0.05 level of significance. The categorical data were presented as frequencies and
proportions (95% confidence interval).

Regarding the data, normality tests and histograms were performed, showing a
normal distribution.

Chi-square tests were performed to demonstrate the presence of statistically significant
differences between the SG and the CG. Independent t-tests of the samples were also
performed to compare groups regarding population characterization.

In the SG, the estimated marginal means and interaction plots for comparison at each
time point regarding the OFS scores or FNRS-DPP– scores were performed.

3. Results

The total sample of this study was 367 participants, distributed into an SG (n = 262)
and a CG (n = 105). Acknowledging that the size of the SG and the CG could impair
the analysis, Cohen’s d tests were performed, when applicable, and the effect size was
always small.

In each group, dogs were admitted in both grade 0 (DPP−) and 1 (DPP+), according to
the FMS. Thus, the results are divided as follows.

3.1. DPP+ Dogs

Grade 1 (DPP+) was represented by 62.7% of the total population (n = 230). Of these,
168 dogs belonging to the SG (73%) and 62 (27%) were controls.

Regarding population characterization, the most common breed among the DPP+ dogs
was the Mixed breed (18.7%; n = 43), followed by the French Bulldog (17.4%; n = 40) and the
Dachshund 11.3%; n = 26). However, 68.3% (157/230) were of a chondrodystrophic breed.

In the total DPP+ population (SG + CG), there were 59.6% males and 40.4% females,
and, regarding the neuro-location, the main region was T12 to T13 (30.4%), followed by
T13–L1 (26.1%). The mean age of the population was 4.07 years (median of 4.00), and the
mean weight was 8.79 kg (median of 8.00). Individual means and medians of the age and
weight for both groups are represented in Table 1.

Table 1. DPP+ population characterizations at admission (n = 230).

DPP+ (n = 230) SG (n = 168) CG (n = 62)

Mean (SD) 95% CI Median Mean (SD) 95% CI Median Mean (SD) 95% CI Median

Age (years) 4.07 (1.574) 3.86–4.27 4.00 4.07 (1.642) 3.86–4.27 4.00 3.76 (1.339) 3.42–4.10 4.00

Bodyweight (kg) 8.79 (4.032) 8.27–9.32 8.00 8.79 (4.484) 8.27–9.32 8.00 7.79 (2.159) 7.24–8.34 7.00

Abbreviations: DPP: deep pain perception, SG: study group, CG: control group, CI: confidence interval, and SD: standard deviation.

Concerning ambulation, 99.4% (n = 167) of the dogs became ambulatory in the SG,
whereas only 75.8% (n = 47) achieved ambulation in the CG. Furthermore, while only one
dog did not achieve ambulation in the SG, 24.2% (n = 15) were considered non-ambulatory
in the CG. Comparing both groups, there was a strong difference regarding statistical
significance (X2 (1, n = 230) = 38.963, p < 0.001).

Dogs of the SG had clinical discharge as follows: 23.2% (n = 39) in T3, 44.6% (n = 75)
in T4, 25% (n = 42) in T5, 4.8 % (n = 8) in T6, 0.6% (n = 1) in T7, and 1.8% (n = 3) in T8
(Figures 5 and 6).
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Figure 5. Graphic describing the number of DPP+ dogs in the study group (SG) with clinical discharge
in each time point. DPP+: deep pain perception-positive, T3: day 7, T4: day 15, T5: day 30, T6: day
45, T7: day 60, and T8: day 75.
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Figure 6. Flow diagram describing the results of the DPP+ dogs in the study group. SG: study group,
DPP+: deep pain perception-positive, T1: admission, T2: day 3, T3: day 7, T4: day 15, T5: day 30, T6:
day 45, T7: day 60, T8: day 75, and FMS: Frankel modified scale.

Moreover, in each time point and follow-up consultations, the OFS values of each
dog in the SG were registered, and their estimated mean values revealed a progressive
evolution in time (Figure 7), achieving a maximum value in time point day 30 with an OFS
mean of 11.8 (n = 54). The graph obtained showed a slight decrease in time point day 45
with an OFS mean of 10.7 (n = 12).
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3.2. DPP− Dogs

Grade 0 (DPP−) was represented by 37.3% of the total population (n = 137), with
94 dogs belonging to the SG and 43 dogs to the CG.

From these 137 dogs, the French Bulldog was the most common at 27% (n = 37),
followed by the Mixed breed at 25.5% (n = 35) and the Dachshund at 15.3% (n = 20). Most
dogs were chondrodystrophic, representing 72.3% of the DPP− population (n = 99), with
39.4% females and 60.6% males.

For the total DPP− population (SG + CG), regarding the neuro-location, T12 to T13
represented 27%, followed by T13–L1 (19.7%) and L1–L2 (18.2%). Thus, most lesions
occurred caudally to T12. The mean age of the population was 4.03 years (median of 4.00),
and the mean weight was 8.14 kg (median of 8) (Table 2).

Table 2. DPP− population characterization at admission (n = 137).

DPP− (n = 137) SG (n = 94) CG (n = 43)

Mean (SD) 95% CI Median Mean (SD) 95% CI Median Mean (SD) 95% CI Median

Age (years) 4.03 (1.576) 3.76–4.30 4.00 3.90 (1.566) 3.58–4.23 4.00 4.30 (1.582) 3.82–4.79 4.00

Body weight (kg) 8.14 (3.218) 7.59–8.68 8.00 8.51 (3.466) 7.80–9.22 8.00 7.33 (2.437) 6.58–8.08 7.00

Abbreviations: DPP, deep pain perception; SG, study group; CG, control group; CI, confidence interval; and SD, standard deviation.

Having tested the equality of variances (nonsignificant), the t-test for independent
samples in the categories age and weight revealed no significant difference between the
two groups, SG and CG (p = 0.864 and p = 0.112), thus making them comparable. The
means and medians of age and weight for both groups are represented in Table 2.

The DPP recovery in the SG was observed in 33.2% (35/94) and 21% (9/43) in the CG.
Participants that did not recover their DPP were 62.8% (59/94) in the SG and 79% (34/43)
in the CG. Thus, there was a tendency towards a significant statistical difference between
groups (X2 (1, n = 137) = 3.597; p = 0.058).

Of the 59 dogs that did not recover their DPP, 22 dogs regained ambulation through
SRL, 37.3% (22/59) of them within a maximum of 3 months.

In regard to ambulation, 58.5% (n = 55) recovered their ambulatory status in the SG,
while there were only 32.6% (n = 14) in the CG. On the other hand, 41.5% (n = 39) did not
achieve ambulation in the SG and 67.4% (n = 29) in the CG. Therefore, the comparison be-
tween groups showed a strong difference with statistical significance regarding ambulation
recovery (X2 (1, n = 137) = 7.311; p = 0.007).

As mentioned earlier, from the total DPP− population, 35 dogs recovered DPP: two
dogs in T4, although they were withdrawn from the study by the owner’s decision; seven
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dogs in T5, achieving ambulation with grade 5 (FMS); five dogs in T7 (grade 5 FMS); and
21 dogs in T9 (grade 5 FMS) (Figure 8).
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Figure 8. Flow diagram describing the results of the DPP− dogs in the study group. SG: study group,
DPP−: deep pain perception-negative, T1: admission, T2: day 3, T3: day 7, T4: day 15, T5: day
30, T6: day 45, T7: day 60, T8: day 75, T9: day 90, FMS: Frankel modified scale, and SRL: spinal
reflex locomotion.

Regarding the 39 dogs that did not achieve ambulation, two left the study in T4, as
mentioned above, and 37 were discharged in grade 0 (FMS). From these, in T3 (n = 3),
T4 (n = 9), and T5 (n = 2), the dogs presented signs of PM. Thus, 14.9% (14/94) of the
participants in this study presented with myelomalacia. Furthermore, in T7 and T9, the
remaining 23 dogs were discharged in grade 0 (FMS).

For the dogs in the SG, after 30 days of INR, it was associated with pharmacological
management with 4-AP. Thus, in the group of dogs that had DPP recovery and regained
ambulation, 26 of them were after 4-AP. SRL was also obtained in T7 (n = 10) and T9
(n = 12), always after 4-AP administration.

Comparing each time point and follow-up, the dogs that did not recover DPP (n = 59)
were monitored with the FNRS-DPP– scale. The estimated mean values were recorded
and are shown in Figure 9, demonstrating an ascending curve throughout the 90 days of
INR, with the first maximum value achieved at the time point day 60. Moreover, in the
6-month follow-up, the mean score value was 11.3, which increased to 17.3 in the one-year
follow-up (n = 11).

The 35 dogs that recovered their DPP were monitored according to the OFS, and the
estimated means were registered (Figure 10), revealing an OFS of 0 until time point day
7, ascending from that day on with a maximum value at time point day 90 (OFS mean
12.3) and achieving a mean score of 13 in the 6-month follow-up that was maintained until
one year.
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4. Discussion

This retrospective-controlled clinical study intended to evaluate the effect of INR in
the SG versus the CG in both DPP+ and DPP− dogs.

The total population was 367 dogs, allowing an approximate level of power (1 − β) of
0.90 and an α (type I error) of 0.01. For the SG (n = 262), an approximate level of power
(1 − β) of 0.90 and an α (type I error) of 0.05 [88] was possible.

The population sample of both the SG and CG was not easy to obtain, needing a total
of nine years, given the strict and specific inclusion criteria. A pilot study was previously
carried out with 84 dogs subjected to similar INR protocol guidelines as this study. The
results were accepted for publication in the ISCOS meeting and were continued in this
clinical study [89].

In acute IVDE dogs, it is challenging to differ recovery due to spontaneous plasticity
or by possible induced plasticity due to rehabilitation techniques. Thus, this study explored
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the possible INR plasticity effects, considering that spontaneous neurological recovery
usually reaches a plateau within the first few weeks after surgery [90–92].

Furthermore, selecting the participants—DPP− dogs or DPP+, but with absent/decreased
flexor peripheral reflex, similar to Jeffery et al. (2020) [93]—makes recovery harder to
achieve. Participants were classified at admission using the FNRS-DPP− scale with grades
0/1 or OFS 1, respectively, in order to fully understand the possible effects of INR.

The absence/decreased flexor reflex may be attributed to the incidence of spinal shock,
which can lead to a secondary lesion within the spinal cord segments containing the hind
limbs reflex circuitry; when this clinical sign persists over time, it may be consistent with
descending myelomalacia.

At admission, FNRS-DPP− grade 0 is attributed to the absence of any peripheral
reflex in the hindlimbs, whereas dogs in grade 1 have a positive patellar reflex, making the
possibility of PM less probable. In the future, it would be of interest to relate the presence
of this reflex with the ability to achieve SRL.

All the DPP− dogs underwent a strict evaluation regarding DPP—decreasing the
variability and increasing the degree of accuracy in testing—which is essential for predicting
outcomes [94–96].

The SG and CG could be considered analogous and a homogenous sample population,
making comparison possible. Both had similar breed prevalence, with the majority French
Bulldogs and Dachshunds, justifying the chondrodystrophic high incidence. In addition,
the t-test revealed no statistically significant difference between groups in the DPP− dogs.

4.1. DPP+ Dogs

The ambulation rate obtained in the SG was 99.4% (n = 167), with one dog achieving
ambulatory paraparesis (but without the ability to perform 10 consecutive steps without
falling). Between the SG and CG, there was a strong statistical significance regarding
ambulation recovery (p < 0.001).

Within the SG, 68% of ambulation was achieved from T3 to T4 (Figure 6)—a similar
result found in previous studies [65,97,98]. An ambulatory state was considered when
OFS ≥ 11, and at T4, the OFS mean obtained in the DPP+ dogs was 11.0, higher than that
previously reported by Zidan et al. (2018) [96] at the same time, which obtained an OFS
mean of 7.87 in the basic group and 7.73 in the intensive group.

Furthermore, at time point T5 (day 30), a maximum result in the graphic curve was
shown: 94.4% (156/167) of ambulation, achieving an OFS mean of 11.8. The following
decline in the graphic curve may be explained by the remaining small number of dogs in
the next time points, not allowing the results to be discussed.

In this study, all dogs from the SG underwent the same INR protocol, which differs
from most protocols, given the early start of the underwater treadmill (UWTM) training
(2–7 days after admission) in contrast to the 7–14 days reported by Zidan et al. (2018) [96].
Moreover, a major difference was the association of electrical stimulation with FES and not
NMES, complementing the TESCS. Early training has been previously reported as having
a major importance in recovery [6,99,100].

The BWS training was based on repetitive movements, depending on intensity, vol-
ume, and duration [6], with some clinical evidence suggesting that this training may
improve the excitatory influence of descending pathways. In this study, all SG dogs per-
formed locomotor training, in which the parameters were chosen according to different
authors [45,53–56]. Slope training was also performed (inclination 10–25◦) to promote the
standing up ability [47,57].

This INR applied to DPP+ dogs was shown to be a feasible, safe, and repeatable
protocol—able to be performed with some knowledge in the field of neuro-rehabilitation
and acquiring a land treadmill and a UWTM.

Furthermore, electrical stimulation by FES may potentiate large-diameter motor neu-
rons recruitment capable of fast conduction velocity fibers instead of recruiting small
diameter motor neurons, which are slower and more susceptible to fatigue [101,102]. FES
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may also increase the muscle tonus in the hindlimbs and enhance the polysynaptic re-
flex, essential in this population of dogs that showed an absent or decreased withdrawal
reflex [66,67,103,104].

This multidisciplinary treatment also included TESCS, which is considered a nonin-
vasive and nonpainful neuro-modulation modality. TESCS has been proposed to induce
stimulation through multi-segmental interactive and synergistic pathways, which combine
the central components of motor descending paths and ascending sensorial paths [102],
recruiting a diverse population of motor neurons by projecting sensory and intraspinal
connections [75].

4.2. DPP− Dogs

In regard to the assessment of DPP− dogs, the OFS has limited value, given the fact
that it is unable to evaluate the neurological signs based on peripheral reflexes—mainly, the
evaluation of the flexion/extension locomotor pattern. Thus, there is a need to implement
a precise and restricted outcome with the FNRS-DPP− scale (published at the 31st ESVN-
ECVN Symposium in Copenhagen 2018 [44]).

The total DPP− dogs were 137, and 94 dogs were within the SG. The ambulation rate
within this group was 55.8% (55/94), and when comparing the DPP recovery between
the SG and CG, there was 33.2% (35/94) recovery in the SG, higher than the CG, with
a tendency to be a significant statistical difference (X2 (1, n = 137) = 3.597, p = 0.058),
although a lower number, when compared to the results published by the CANSORT-SCI
(2021) [105], refers to nearly 60% of the DPP recovery [105,106].

The DPP recovery assessment in the CG was very limited, because these were retro-
spective data, with most dogs euthanized by the owner´s decision after 3 weeks, a decision
that did not allow for investigating the theory that permanent DPP− dogs may demonstrate
spontaneous motor recovery over time [2,107–109].

This reflects the major importance of 22 dogs in the SG that regained ambulation
by SRL—37.2% in a maximum period of 3 months. This percentage was higher than
the one reported by Olby et al. (2003) [107], with 32% (7/18) that regained ambulation
within 9 months on average (range 4–18 months). Furthermore, among a cohort of 94 dogs
examined in a chronic setting, nine became ambulatory within a median time of 12 months
(range 3–89 months) [109].

On the other hand, Gallucci et al. (2017) [108] found, via a retrospective review, a
median time of only 75 days to regain ambulation by SRL (range, 16–350 days), with 59%
(48/81) of the DPP− dogs recovering and a full-time hospitalization regime implemented
81% of the time; however, this had mixed etiology, including acute IVDE or trauma (e.g.,
vertebral luxation/fracture).

Most studies reported that a shorter average time to achieve ambulation may be related
to an early post-injury intensive rehabilitation, which could have a positive influence on
recovery [2,108]. In these studies [108–110], participants had T3–L3 as the major neuro-
location, which is similar to the present study.

In this type of population, body weight distribution allows body support in the
forelimbs, with the ability to postural stand but not regain ambulation, which could be
explained due to the larger demand on the supraspinal postural control that is needed to
maintain the balance that may be missing after severe injury [2].

Several investigations have reported that multimodal approaches may facilitate mo-
tor recovery and are useful in improving the outcome, in combination with additional
approaches directed to the lesion epicenter [2,111–114].

To Gallucci et al. (2017) [108], spinal walking is a “reflex gait with complex dynamic
interactions between CPG of pelvic limbs and proprioceptive feedback from the body in the
absence of superior control by the brain after complete spinal cord damage”. For the present
study, it is the author’s belief that the future aim for INR techniques is to develop strategies
that directly target the spinal cord injury and limit the secondary injury, enhancing axons
regeneration and/or increasing the compensatory plasticity of the persisting tissue. Thus,
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it is essential to understand broad knowledge regarding injury and recovery mechanisms
in order to develop new strategies.

The INR protocol focused on the ability to perform the flexion/extension locomotor
pattern, settled around the specific needs of each dog, and promoted exercises based
on flexor reflex and crossed extensor reflex stimulation. The UWTM locomotor training
was critical for the DPP− dogs, facilitating the possibility to regain the flexion/extension
pattern [108]. In Martins 2021 [104], randomization in different locomotor training groups
was only possible after 15 days of UWTM training, warranting that possible spinal chock
dogs were stimulated at a maximum level with a multidisciplinary treatment.

As a part of the treatment protocol, some authors recommend cage rest for 6–8 weeks [106,115],
preventing future traumatic injury and decreasing pain and inflammation [116,117]. It is
known that INR may be beneficial to locomotor recovery in a post-surgical patient, mainly
in populations similar to our SG, which are severely affected dogs. Studies have shown
that intensive locomotor training can promote anatomic and physiologic changes, allowing
an improved motor function [118,119].

This study is in accordance with Zidan et al. (2018) and Jeong et al. (2019) [96,120];
however, the latter received decompressive surgery alone, reporting only 17%, which is
much lower than the typical results reported in the literature, which usually range from 50
to 60%.

Moore et al. (2020) [106] refer to a similar training protocol when compared to our own,
stating that locomotor training (land or UWTM) may help to regain movement. Thus, these
types of rehabilitation strategies should be rationally implemented and initially encouraged
in the recovery process for IVDE [121], as already shown in human medicine [122].

SG ambulation was achieved in 58.4% (55/94) of patients, in contrast to the 32.6% of
the CG, probably because there is no case of SRL in the CG group. Thus, comparison be-
tween groups, regarding ambulation, has shown a strong statistically significant difference
(X2 (1, n = 137) = 7.311; p = 0.007).

In the SG, until T5, there was clinical evidence of PM, with dogs being euthanized
in T3 and T4. The PM cases were 14.9% in total, a result that agrees with the previously
reported studies [97,107,123–126]. However, the two dogs that remained until T5 had only
signs of descending myelomalacia.

Jeffery et al. (2020) [93] suggested that an increase in the ambulation rate and de-
crease in cases of PM could be associated with the durotomy surgical technique as a
means to examine the spinal cord and potentiate tissue perfusion, with an approximately
4% reduction.

In the present study, regarding DPP recovery, the greatest percentage occurred after
T5 at 74.3% (26/35), as well as the appearance of the SRL, which was only present in T7
and T9. Both situations occurred after the pharmacological support with 4-AP. Thus, it is
the author’s belief that the combination of these neurorehabilitation modalities, locomotor
training, and 4-AP administration may help in recovery within a maximum of 3 months,
including the possibility of a spontaneous plasticity contribution.

4-AP is a potassium channel antagonist that may improve hindlimb motor function
in chronic thoracolumbar spinal cord dogs [81,114,127]. This beneficial effect could be
achieved through the enhancement of central conduction by anatomically intact axons
traversing the injury site, as well as direct synaptic effects [29,128,129].

Dogs that did not regain DPP throughout the 3 months of hospitalization were mon-
itored by the FNSR-DPP− scale in each time point outcome. The appearance of the flex-
ion/extension locomotor pattern was a critical outcome, which was the moment of starting
4-AP administration. In Figure 9, the graphic represents a gradual increase throughout
the time points with an ascending curve, although not constant between each time point.
Substantial evidence at the beginning of the curve may be explained by the unlocked
inhibition of the nervous system pathways, followed by a fast excitation.

In T7 and T8, there is a slight decrease in the graphic curve, given the fact that 15 dogs
were clinically discharged within this period. In T9, the mean scale punctuation was 9.1,
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although 22 dogs achieved ambulation by SRL. All 22 dogs reached a minimum FNRS-
DPP− score 14, and the mean of FNRS-DPP− ≥ 14 was only achieved in the follow-ups F3
and F4.

This mean that the scale punctuation may be justified by each variability (ranging
from dogs with PM with lower scores to dogs with higher scores) and by the fact that
dogs were clinical discharged throughout the process, decreasing the number of dogs that
remained and were in a worse neurological state.

For Olby et al. (2020) [130] and CANSORT-SCI (2021) [105], approximately 60% of
dogs with IVDE recovered DPP and ambulation by 6 months after SCI. In the present study,
we had 57.4% of ambulation by 3 months, which might have been influenced by the INR
that helped to decrease the time of recovery. Moreover, in the same study, 31% of dogs did
not achieve DPP but regained the ability to walk within a mean time of 9 months (range
2–28 months), similar to other authors [115]. In our study, we achieved a higher prevalence
with 37.3% (22/59) but at a period of 3 months, possibly leading to a better understanding
from the owners when discussing prognosis and decreasing future euthanasia. In regard
to dogs that regained DPP (n = 35), all were monitored with the OFS scale at each time
point. The maximum OFS mean was 12.3 at T0, always increasing and maintained in the
6-month and one-year follow-ups, proving the spinal cord memorization property in the
neural regeneration process.

The study limitations included the inability to achieve a level of power (1 − β) of
0.99 and an α (type I error) of 0.05 for each group, a lack of a prospective control group
with the same conditions and with the same study group size, and the need to statistically
relate the presence of peripheral reflexes with ambulation recovery and a nonexistent
biomarker of regeneration, usually associated with structural proteins (e.g., glial fibrillary
acidic protein—GFAP), although this would imply highly sensitive measuring techniques.

5. Conclusions

In acute IVDE dogs classified with OFS1 or FNRS-DPP− grade 0/1 and after surgical
management, the outcomes obtained were difficult to attribute to spontaneous recovery or
with intensive rehabilitation. However, the results suggested that, with INR ambulation,
success could be improved, mainly regarding time, within an estimated period of 3 months.
Thus, its implementation may be useful in acute post-surgical IVDE dogs.
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