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Simple Summary: The average cycle of laying hens is prolonged by improving one or more aspects,
including genetics, nutrition, and management. Yet, this prolongation needs to go hand-in-hand
with laying hens staying vital. Our objective was to explore hen vitality at an age of 95 weeks in
association with performance parameters (egg production and breaking strength). To this end, we
measured metabolism and disease indicators in blood, microbiota composition and diversity in
different gut segments, and the biological activity of the small intestine. We observed that 12% of
the hens developed certain aberrations. Additionally, five metabolites were significantly associated
to these aberrations, and two metabolites to the performance parameters. In the small intestine we
observed that in the production groups the physical barrier function was affected, whereas in the
breaking strength group the immune function was affected. Taken together, these data show that hen
vitality at later ages can still be improved and we provided data on a molecular level that could be
used in future endeavors to improve animal health and welfare.

Abstract: Herein, we investigated to what extent molecular phenotypes of the systemic level (blood)
and local (intestine) are associated with the performance of laying hens at 95 weeks of age. After the
trial had run for 95 weeks, two performance groups were generated, i.e., egg production (PROD) and
egg breaking strength (BS). A subset of 21 cages, 116 hens, was measured to indicate the metabolism
and disease status. Additionally, a focus group (four cages) was made to perform molecular pheno-
typing in the intestine. A notifiable observation made during the post-mortem dissection was that
approximately 12% of the birds at 95 weeks had developed certain aberrations and/or impairments
(denoted as organ morbidity). At the systemic level, we observed five metabolites (γGT, triglycerides,
HDL, glucose, and cholesterol) significantly associated to organ morbidity, and only two metabolites
(urea and aspartate aminotransferase) to the performance phenotypes. At the local level, when com-
paring high PROD vs. low PROD, we observed differentially expressed genes involved in cell cycle
processes and the extracellular matrix. When comparing high BS vs. low BS differentially, expressed
genes were observed mainly involved in immune and cell cycle-related processes. This knowledge is
crucial for developing novel strategies of keeping laying hens vital.

Keywords: laying hens; vitality; (blood) metabolites; intestinal gene expression; intestinal microbiota

1. Introduction

The average cycle of laying hens is prolonged by improving one or more aspects,
including genetics, nutrition, and management. However this prolongation needs to go
hand-in-hand with laying hens staying vital because, at later stages in life (>80 weeks),
laying hens have an increasing incidence to develop abnormalities and/or other impair-
ments, which we defined as organ morbidity. A central organ involved in this vitality
is the intestine, the primary functions of which include digestion of the feed, uptake of
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nutrients, and the monitoring of the environment/immune surveillance [1]. Next to the
earlier-mentioned intestinal functions from the host’s perspective, the (resident) microbiota
also has a complex interplay with the host, collectively playing an important role in the
behavior of the intestinal ecosystem. Consequently, the intestine will signal on a systemic
level, via specific molecules in the blood, about the intestinal (health) status.

The development of these intestinal functions [2–4] is the outcome of the interplay
between host and microbiota in early life, where it is already been shown that the chicken
gut microbiota composition changes during life [5,6]. In early life, successive changes are
observed in both composition and (microbial) metabolic function(s). After this period,
a more stable state is reached, often termed as “adult-like”, harboring a diverse set of
microbial species. In humans, it is described that at old age (>65 years of age), there may
be a decline in physiological condition. This also affects the gut microbiota, decreasing the
number of beneficial species (e.g., Bifidobacteria) [7]. These shifts in the gut microbiota in
the elderly also showed shifts in microbial metabolism [8], thus changing the (gut) system’s
behavior. This loss of certain bacterial species is correlated with increased frailty. It has also
been shown that health decline in humans is associated with gut microbiota composition,
and that this microbiota composition is mainly shaped by the diet [9]. Thus, in humans,
food and management strategies are already being developed, but contrary to humans,
animal breeding could play a specific role in livestock. By selecting specific genetic lines
and/or families, it is possible to increase the prolongation of laying rate of the hens or the
increase of the breaking strength of the eggs. For brown laying hens, increasing age, an
increasing intestinal permeability, compromised digestive function, and poor egg quality
were observed [10]. However, this study focused on specific enzymes representing specific
intestinal functionality, and in-depth molecular data were not presented.

Modulation of health-related parameters in human elderly is mainly established
by dietary interventions, i.e., food supplements and/or ingredients. Feed interventions,
including pro- and prebiotics, have already shown a positive effect on performance and
egg shell quality [11–14]. However, in laying hens, the impact of feed, management,
and genetics on molecular (gut) health parameters still needs to be addressed. To our
knowledge, there is no to little information about the baseline levels of biological activity
on the systemic and local (intestinal) level of laying hens of approximately 95 weeks old.
The objective of this study was to investigate differences in the levels of blood metabolites
(21 cages, 116 hens) and intestinal functionality (4 cages, 20 hens) in relation to the layer’s
performance (egg production and breaking strength of the eggs), aiming to demonstrate
the related mechanisms of keeping laying hens vital.

2. Materials and Methods
2.1. Ethics Statement

In this study, biological material and tissues from hens were used that were available
from a larger proprietary research by Hendrix Genetics. Hendrix Genetics was licensed for
performing this animal research and to apply animal procedures for health monitoring,
and for selective euthanasia of hens at the end of their productive lives by a Certified
Poultry Veterinarian. No (additional) animal procedures were performed for the study
reported here.

2.2. General Experimental Design

In this study, blood metabolites, intestinal microbiota composition, and gene expres-
sion in the ileum were measured in subsets of layer hens, made available from a larger
proprietary research study by Hendrix Genetics on a cohort of 21,000 hens. Hens used
in the study reported here were selected from the larger cohort on the basis of recorded
performance as described below (see also Figure 1). The 21,000 layers were housed in
3500 layer cages (6 birds per cage). The hens (per cage) differed in genetic background
(9 combinations of 4 father lines and 4 mother lines) and feeds (four feed treatments).
Hens were maintained until the age of 96 weeks and egg production (PROD, cumulative
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week 95) and egg Breaking Strength (BS, eggs of week 92) were monitored. Four subsets of
cages were selected, comprising the 5 cages with highest BS (BS-Hi), 5 cages with lowest BS
(BS-Lo), 6 cages of highest PROD (PROD-Hi), and 5 cages with lowest PROD (PROD-Lo),
respectively, with a total of 116 live hens in these 21 cages at week 96. All hens were
euthanized. Autopsy was performed to assess health or potential morbidity of internal
organs. Blood metabolites were measured in blood from all hens of all 21 cages. Intestinal
microbiota composition and gene expression were only measured in hens of one cage per
subset, selected per subset on the basis of (1) control feed, (2) no hens with morbidity of
internal organs, and (3) highest and lowest BS and highest and lowest PROD, respectively,
with 5–6 hens per cage/subset.
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Figure 1. General experimental design. At the left side of each box the number of cages and hens are
indicated (e.g., COHORT 3500 cages and 21,000 hens). At the right side, characteristics are shown.
Top box: when the production (PROD) and breaking strength (BS) were measured. Middle box:
the range of high and low PROD, PROD-Hi and PROD-Lo, respectively. As well as high and low BS,
BS-Hi, and BS-Lo, respectively, metabolites were measured. The bottom box: microbiome and gene
expression of specific intestinal segments that were measured.

2.3. Hen Housing

The 21,000 layers were housed at an age of approximately 17 weeks in 3500 layer
cages (6 birds per cage) at a contracted research facility of Hendrix Genetics. Cages were
organized in 7 stacks, 5 tiers, with controlled-random allocation of genetics/feed treatments
to stacks/tiers. Hens in stacks 1, 3, 5, and 7 received control feed, whereas hens in stacks 2,
4, and 6 received feed with a feed addition, i.e., a probiotic (CloStat® (Bacillus subtilis PB6,
Kemin, Des Moines, IA, USA) in stack 2, a prebiotic (ButiPearl®, an encapsulated source
of butyric acid, Kemin, Des Moines, IA, USA) in stack 4, and the a symbiotic (CloStat®

and ButiPearl®, Des Moines, IA, USA) in stack 6. Hens were maintained until the age of
96 weeks and health, hen livability and percentage lay (number of eggs laid per day per live
hen), and cumulative eggs per hen housed (PROD) were monitored at flock level. PROD
is the number of eggs produced per cage divided by 6 (i.e., by the number of hens per
cage at start). Thus, PROD combines the fraction of hens which remained alive (livability)
and production per live hen. Hens that died were removed from the cages. In week 92,
a sample of 3–5 eggs for the breaking strength (BS) cages was used to assess BS. For the
PROD cages, this was not determined for four cages or 1–6 eggs were used for the other
PROD cages.
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2.4. Autopsy

The birds were first sedated and subsequently cervical dislocation was performed.
Thereafter, the health status or potential morbidity of internal organs was assessed. This was
followed by collection of the samples of interest, including blood, (mid-)ileum, (left)cecum,
and (mid-)colon. Intestines from hens of the selected cages (see general design, four cages,
5 or 6 hens per cage) were obtained. Samples of intestinal contents of ileum, caeca, and
colon were collected, snap frozen, and stored at −80 ◦C for later analysis of microbiota
composition. Tissue samples from the (mid-)ileum were collected and snap frozen and
stored at −80 ◦C for later analysis of gene expression.

2.5. Blood Samples

Blood from hens of the selected cages (see general design, Figure 1), 116 hens in
total, was obtained and stored at −20 ◦C until later use. A metabolite panel was chosen a
priori to cover different biological aspects, comprising of liver function (Alanine amino
transferase (ALT), Alkaline phosphatase (AP), aspartate aminotransferase (AST), gamma
glutamyltransferase (γGT), Glutamate dehydrogenase (GLDH), bilirubin), kidney function
(creatinine and urea), and non-specific tissue damage (Lactate dehydrogenase (LDH)).
Other variables included the blood lipid profile (cholesterol and triglycerides), glucose,
and proteins (total protein, albumin, and globulins). In addition, hen body weight was
recorded. Note that the information regarding the relevance of blood variables is mostly
acquired from the human field, and reference values for some of the measured metabolites
in birds were identified [15–17]. Analysis of the mentioned blood (serum) metabolites was
performed by Laboklin N.V. (Hoensbroek, The Netherlands), using standard blood clinical
chemistry methods.

Metabolites and other hen data, i.e., body weight, were analyzed in a linear mixed
model by using the lme4 package (1.1–21) in R (v3.6.1). The following model was used:
y = cage number + cage number | group + Organ Morbidity, where ‘y’ represents the
metabolite value(s), ‘cage number’ denotes the cage number, ‘group’ represents PROD-Hi,
PROD-Lo, BS-Hi, or BS-Lo, ‘cage number | group’ denotes that group is a factor for the
random term ‘cage number’, and ‘Organ Morbidity’ denotes the fixed (binary) factor for
hens that either developed certain aberrations and/or impairments or not.

2.6. Microbiota: Intestinal Luminal Content Samples

In total, 66 samples of intestinal content from 21 chickens (caecum, ileum, and colon)
were analyzed for microbiota composition via Next Generation Sequencing (NGS). To-
tal DNA from collected samples was isolated as described by Ladirat et al. [18] with some
minor adjustments; the samples were initially mixed with 250 µL lysis buffer (Agowa,
Berlin, Germany), 250 µL zirconium beads (0.1 mm), and 200 µL phenol before being
introduced to a Bead Beater (BioSpec Products, Bartlesville, OK, USA) for two times for
2 min.

The microbiota composition was analyzed by using mass V4 16S rRNA amplicon
sequencing [19]. For 16S rRNA amplicon sequencing of the V4 hypervariable region, 100 pg
of DNA was amplified as described by Kozich et al. [20] with the exception that 30 cycles
were used instead of 35; applying F515/R806 primers [21], this deviation was made because
at 30 cycles the quality and quantity were already sufficient. Primers included Illumina
adapters and a unique 8-nt sample index sequence key [20]. To determine the amount of
bacterial DNA, a quantitative polymerase chain reaction (qPCR) using primers specific for
the bacterial 16S rRNA gene was applied. The amplicon libraries were pooled in equimolar
amounts and purified using the QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germania).
Amplicon quality and size were analyzed on a Fragment Analyzer (Advanced Analytical
Technologies, Inc, Ankeny, IA, USA). Paired-end sequencing of amplicons was conducted
on the Illumina MiSeq platform (Illumina, Eindhoven, The Netherlands).

The MiSeq produces sequencing data which need to be processed before the data
can be interpreted. The processing was performed in a series of quality control steps,
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analysis of unique sequences, and classification using modules implemented in the Mothur
software platform [22]. In short, the following steps were followed: (1) the sequences
were trimmed to remove primer sequences and low-quality sequence data, (2) overlapping
paired-ends were stitched together, (3) sequences that did not fit certain quality parameters
were removed, (4) sequences were grouped, based on the barcode (the sequence tag),
which allows the back-translation of sequences to individual samples, and (5) sequences
were taxonomically classified using the SILVA database. After the pipeline analysis, the
sequence information provided insight into the microbial diversity within the samples (in
general down to the level of genus). This means that, in general, no distinction between
different species can be made. For example, 16S amplicon sequencing according to the
conditions used does not discriminate between different Bacillus species but rather indicates
the sequence belonging to the Bacilli group. Furthermore, the sequence information
provides semi-quantitative data on the abundance of the various micro-organisms, which is
subsequently used in the predictive modelling. The data were analyzed by using R (v3.6.1)
using the phyloseq package (v1.28.0) and rarefied to a library size of 61,204. To calculate the
alpha diversity, i.e., observed species and Shannon index, the function estimate_richness was
used. To visualize the beta diversity, the function plot_ordination was used, i.e., Bray-Curtis
dissimilarity was used to quantify the differences in species populations.

2.7. Ileal Gene Expression

Total RNA was extracted from 50 to 100 mg of whole ileum tissue (approximately
1 cm). Samples were homogenized using the TissuePrep Homogenizer Omni TP TH220P
in 5 mL TRIzol reagent (Life Technologies, Carlsbad, CA, USA). The homogenate was
centrifuged for 5 m at 21,000× g, and 350 µL of supernatant was used to isolate RNA
using the Direct-zol kit (Zymo Research, Irvine, CA, USA) according to instructions of the
manufacturer. Quality control was performed on the BioAnalyser (Agilent Technologies,
Santa Clara, CA, USA), and quantity of RNA was determined using the Tape station
(Agilent 2200 tape station, Agilent technologies, Santa Clara, CA, USA).

Labelling of RNA was carried out as recommended by Agilent Technologies using the
One-Color Microarray-Based Gene Expression Analysis Low-Input Quick Amp Labelling;
200 ng of total RNA was used as input, and 600 ng of labelled cRNA was used to hybridize
the chicken microarray (Agilent Technologies, Santa Clara, CA, USA). Hybridization was
performed at 65 ◦C for 17 h with head-over-head rotation. Microarrays were washed
as recommended by the manufacturer. Microarrays were scanned using the Surescan
high-resolution scanner (Agilent Technologies, Santa Clara, CA, USA) at a resolution of
3 µm, 20 bits, and PMT of 100%. Feature extraction was performed using protocol 10.7.3.1
(v10.7) for 1-color gene expression.

The data were analyzed by using R (v3.6.1) by executing different packages, including
LIMMA and arrayQualityMetrics [23]. The data were read in and background corrected
(method = “normexp” and offset = 1) with functions from the R package LIMMA from
Bioconductor [24]. Quantile normalization of the data was carried out between arrays. The
duplicate probes mapping to the same gene were averaged (‘avereps’) and subsequently
the lower percentile of probes were removed in a three-step procedure: (1) get the highest
of the dark spots to get a base value, (2) multiply by 1.1, and (3) the gene/probe was
expressed in each of the samples in the experimental condition. To test the differences
between the experimental groups, i.e., high versus low group, contrasts within the LIMMA
package were generated and analyzed.

3. Results
3.1. Flock Performance

The overall production data (Figure 2), approximately 3500 cages housing 21,000 hens,
showed that most hens started laying between week 20–24 and that 50% of hens were
laying in week 22. From 18 to 95 weeks of age, cage and overall flock performance
was measured, i.e., percentage lay (number of eggs laid per day per live hen), livability
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(percentage of hens alive), and mean cumulative number of eggs laid per housed hen
(Figure 2). Cumulative mortality for this flock at week 95 was 7.5%, and percentage lay
was 95% at week 25, above 95% for 29 consecutive weeks, above 90% for 49 consecutive
weeks (between 23 and 72 weeks of age), and below 80% at week 93. The time course of
percentage lay indicated some decline of the daily egg number after week 45, followed
by a stronger decline after week 75, indicating either decreased daily laying frequency
of all hens, or cessation of laying of a subgroup of hens, or both. Note, the effect of feed
was a part of the overall study of the cohort by Hendrix Genetics, but was disregarded in
our study because the effect was negligible. In the subset of 21 selected cages in which
blood metabolites were studied, many confounding factors were present; however, no
confounding factors were included in the four cages, where intestinal microbiota and gene
expression of the hens was studied.
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Figure 2. Performance statistics over the whole laying period of the flock. The percentage lay
(number of eggs laid per day per live hen, red line, primary y axis), the livability (percentage hens
alive, green line, primary y axis), and the eggs per hen housed (blue line, secondary y axis) are shown.
The total number of weeks this flock had a percentage of lay above 90% is 49 weeks, and above 95%
is 29 weeks and the flock drops below 80% of lay at 93 weeks of age.

3.2. Pathology, Blood Metabolites, and Intestinal Characteristics (in Subsets of Cages)

Subsets of cages, in total 21 cages, were selected for autopsy and measurement of
blood metabolites as explained above. Individual hen data (116 hens) are provided in
Supplementary Table S1. Pathology (autopsy) data revealed that a fraction of the hens
had severe internal organ pathology that would clearly cause cessation of egg production,
including tumors (e.g., gut and oviduct), ascites (water belly), cysts in the abdomen,
blockage in the oviduct, and inflamed oviduct (for more detail per hen, see Table S1).
PROD of the six cages with best PROD (PROD-Hi) was 518 eggs per hen housed (range:
516–521). These six cages had no hens with recognized morbidity at week 95. Assuming
that hens on average started laying in week 22, a daily egg production through week 95
would indeed correspond with 518 laying days. Figure 3 shows that PROD was correlated
with the fraction of hens per cage with severe internal organ pathology, with an intercept
of 485 eggs and a slope of 214. When correcting the means per cage of eggs laid per hen
for the fraction per cage of hens that had severe organ pathology, the results show that
eggs laid per hen for all but one cages of the subgroups would come close to the maximally
attainable number of eggs produced.
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3.3. Systemic Level: Blood Metabolites

The a priori metabolite panel encompasses diverse metabolic and/or disease markers
and was analyzed by a linear mixed-effects model. The factor ‘Cage’, in which group
(PROD-Hi, PROD-Lo, BS-Hi, or BS-Lo) was nested, had a significant effect on two metabo-
lites, aspartate aminotransferase (AST), and urea. The factor organ morbidity significantly
affected five metabolites, namely, γGT, triglycerides, HDL, glucose, and cholesterol (see
Table 1).

Table 1. Results of the linear mixed-effects model.

Metabolite # 1
p-Value

Intercept Cage Organ
Morbidity

Globulins (g/L) 113 <0.001 0.225 0.371
γGT (U/L) 100 <0.001 0.319 0.024

LDL (mg/dL) 12 0.53 0.499 0.053
GLDH (U/L) 100 <0.001 0.096 0.577

Triglycerids (mmol/L) 113 <0.001 0.866 <0.001
Albumin (g/L) 116 <0.001 0.624 0.518

Creatinine (µmol/L) 109 <0.001 0.997 0.343
AST (U/L) 81 <0.001 0.017 0.265
ALT (U/L) 81 <0.001 0.169 0.817

HDL (mg/dL) 43 0.143 0.544 0.008
Bilirubin (µmol/L) 72 <0.001 0.722 0.299
Glucose (mmol/L) 113 <0.001 0.882 0.002

Urea (mmol/L) 111 <0.001 0.004 0.448
AP (U/L) 114 <0.001 0.226 0.068

Total Protein (g/L) 113 <0.001 0.223 0.733
Cholesterol (mmol/L) 113 <0.001 0.878 0.014

LDH (U/L) 115 <0.001 0.554 0.611
1 # is the number of hens per group. Note that for each metabolite, the number of hens for which we had data
may be lower.
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When focusing on the significant metabolites for cage, the PROD-Hi group showed
lower values for AST and urea compared with PROD-Lo, BS-Hi, and BS-Lo. In the three
metabolites that were significant when testing for the difference in the organ morbidity
group, cholesterol values were higher and glucose and triglyceride values were lower in
hens that were found to have severe organ morbidity compared with the healthy subgroup
(Table 2).

Table 2. Means of significant metabolites and body weight for all hens per healthy and morbid subgroup.

n 1
Cage Morbid

BW 2 (g)
AST (U/L) Urea

(mmol/L)
Cholesterol

(mmol/L)
Glucose

(mmol/L)
Triglycerides

(mmol/L)

All hens
All groups 116 43.0 0.45 4.43 11.4 12.6 1717

BS-hi 30 47.6 0.47 4.39 11.5 13.0 1615
BS-lo 27 47.9 0.51 4.46 11.1 12.3 1686

PROD-hi 34 26.8 0.40 4.36 11.5 13.4 1761
PROD-lo 25 53.7 0.44 4.55 11.2 11.3 1814
Healthy

All groups 102 41.6 0.44 4.31 11.5 13.1 1692
BS-hi 28 48.1 0.47 4.41 11.6 13.2 1605
BS-lo 25 47.9 0.49 4.32 11.1 12.9 1660

PROD-hi 34 26.8 0.40 4.36 11.5 13.4 1761
PROD-lo 15 48.9 0.41 3.99 11.7 12.2 1749

Morbid
All groups 14 58.1 0.54 5.42 10.3 9.0 1901

BS-hi 2 42.5 0.45 4.10 9.5 9.7 1754
BS-lo 2 - 0.80 6.20 10.8 5.0 2002

PROD-hi 0 - - - - - -
PROD-lo 10 64.3 0.50 5.55 10.3 9.8 1910

1 Number of hens per group. Note that for each metabolite, the number of hens for which we had data may be lower. 2 Body weight, mean
per group.

3.4. Molecular Phenotyping at the Local Intestinal Level

Intestinal microbiota and gene expression were studied in the four ‘focus’ cages that
were selected on the basis of high vs. low PROD and BS, respectively (one cage per subset,
see General Experimental Design). Cage performance data and individual hen body weight
of the four cages are shown in Table 3.
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Table 3. Cage performance data and individual hen body weight of the four cages selected on the
basis of high vs. low PROD and BS, respectively.

Subset Cage PROD 1 BS 2 Sample BW (g)

PROD-hi 24.036 521 2610 (5)

55 1641
56 1659
57 1777.5
58 1847
59 1726
60 1789

PROD-lo 22.011 367 3311 (1)

50 1772.5
51 1620
52 1611.5
53 1693
54 1733.5

BS-hi 2.053 470 4518 (3)

1 1351
2 1593
3 1558
4 1559.5
5 1447
6 1668

BS-lo 32.074 482 2321 (3)

101 1758
102 1731
103 1593.5
104 1557.5
105 1722.5

Abbreviation used: PROD 1, cumulative eggs per hen housed on week 95; BS 2, breaking strength of the egg(s) in
gram; BW, body weight.

3.4.1. Profiling Microbiota in Different Intestinal Segments

In all four groups, microbiota diversity in the caeca was significantly higher than in
the colon and ileum. Comparing the groups, the microbiota diversity in the caeca was
only numerically higher in high-BS hens than in low-BS hens (Figure 4). The diversity
values in both the ileum and colon were also numerically higher (p-value > 0.05) in the
high-BS hens than in low-BS hens, but these differences were not significant. The principal
coordinate analysis (PCoA) showed only a significant effect for tissue (p-value < 0.001)
for both BS and PROD. Furthermore, the BS-Hi and BS-Lo hens differed slightly in caecal
microbiota composition according to principal coordinate analysis (PCoA). PROD-Hi hens
appeared to have lower diversity values in both the ileum and colon than PROD-Lo hens,
but differences between the two PROD groups were not significant (p-value > 0.05, Figure 5).
Additionally, PCoA did not show differences regarding microbiota composition between
the two PROD groups (p-value > 0.05).
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Figure 2. Cont.Figure 4. Microbiota results of various intestinal segments from hens in the high and low breaking
strength. (A) shows the microbiota diversity, observed species, for the tissues, whereas (B) shows
the Shannon index. (C) shows the microbiota composition for the ileum (circles), caecum (triangles),
and colon (squares), in principal coordinate analysis (PCoA) plots. Dark green represents the low
breaking-strength (BS-Lo) samples, whereas light green represents the high breaking-strength (BS-
Hi) samples.
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Figure 5. Microbiota results of various intestinal segments from the high and low production groups. (A) shows the
microbiota diversity, observed species, for the tissues, whereas (B) shows the Shannon index. (C) shows the microbiota
composition for the ileum (circles), caecum (triangles), and colon (squares), in principal coordinate analysis (PCoA) plots.
Red represents the low-production (PROD-Lo) samples, whereas orange represents the high-production (PROD-Hi) samples.
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3.4.2. Comparing the Gene Expression in the Ileum between High and Low Production
and Breaking Strength Groups

Gene expression in the ileum of hens in the selected PROD-Hi and PROD-Lo cages
was analyzed (as explained, one cage per subset was selected, within which hens had no
morbidity and received control feed). For each individual hen, genome-wide expression
data were generated, and thereafter comparisons were made between BS-Hi and BS-
Lo, as well as PROD-Hi and PROD-Lo, resulting in 53 and 423 differentially expressed
genes (DEGs), respectively. Table 4 shows the differentially expressed genes per contrast,
specifying up- or down-regulated probes/genes.

Table 4. Differentially expressed genes per contrast.

Comparison Contrast Probes Genes

BS-hi vs. BS-lo
Up 96 38

Down 50 15

PROD-hi vs.
PROD-lo

Up 1157 334
Down 179 89

Subsequently, DEGS (up- and down-regulated taken together) were submitted to
pathway analysis. For BS-Hi vs. BS-Lo, pathway analysis resulted in scores ranging from
4.34–8.13 for the top 10 enriched pathways (Table 5), whereas for PROD-Hi vs. PROD-
Lo top 10 enriched pathways, scores ranged from 10.33–14.23 (Table 6). In the enriched
pathways, the maximum of hits was only 4 genes in the BS contrast and 27 genes in the
PROD contrast. In the results comparing BS-Hi vs. BS-Lo, many pathways are involved
in cell cycle or immune-related pathways. In the PROD-Hi vs. PROD-Lo results, many
pathways relate to cell-cycle processes or the extracellular matrix.

Table 5. Significantly enriched pathways 1 for breaking strength contrast.

Score SuperPath Name SuperPath
Total Genes

SuperPath
Matched Genes

Matched Genes
(Symbols)

8.13 SMAD Signaling Network 131 3 HDAC1, ACTA1, FLNC

7.84 ICos-ICosL Pathway in
T-Helper Cell 141 3 HDAC1, ITPR1, ACTA1

5.73 Proteoglycans in Cancer 242 3 ITPR1, FLNC, WNT5B

5.45 Pancreatic Secretion 100 2 ITPR1, CPA1

5.13 Immune Response Function
of MEF2 in T Lymphocytes 113 2 HDAC1, ITPR1

4.74 Phospholipase-C Pathway 544 4 HDAC1, ITPR1, PLCH2, ACTA1

4.60 VEGF Pathway 138 2 ITPR1, ACTA1

4.51 NFAT and Cardiac
Hypertrophy 338 3 HDAC1, ITPR1, ACTA1

4.38 FMLP Pathway 350 3 HDAC1, ITPR1, ACTA1

4.34 Adipogenesis 153 2 WNT5B, CISD1
1 only depicting the top 10 pathways and pathways with two or more matched genes.



Animals 2021, 11, 3012 13 of 18

Table 6. Significantly enriched pathways 1 for production contrast.

Score SuperPath Name SuperPath
Total Genes

SuperPath
Matched Genes

Matched Genes
(Symbols)

14.23 Cyclins and Cell Cycle
Regulation 92 9

HDAC1, RAF1, PPP2R2A,
PPP2R2B, SKP1, E2F4,

TP53, UBB, UBC

13.02 ADP Signalling Through
P2Y Purinoceptor 12 237 14

GRK6, GNAT2, ITPR1,
GNAT3, RAF1, WNT10A,

CRHR2, SRC, WNT3,
AKT2, UBB, UBC,
ADRA2A, CLTA

13.00 ECM Proteoglycans 60 7
LUM, MATN3, NCAN,

COL9A2, NCAM1,
COL9A1, COMP

12.65 Peptide Ligand-binding
Receptors 692 27

NMU, TRH, GNAT2,
GPR6, NPY, LHCGR,

GPR15, GNAT3, CCR2,
PPY, PTGER2, TSPO,

S1PR4, RGS14, GABRG1,
PROK1, PRSS3, TACR2,

WNT10A, PCDHA6,
SSTR2, CRHR2, GABRB3,
WNT3, SSTR4, TAS2R7,

ADRA2A

11.82 Beta-catenin Independent
WNT Signaling 197 12

GNAT2, ITPR1, PSMD11,
PRKG2, WNT10A, SKP1,

WNT5B, WNT3, CAMK2A,
UBB, UBC, CLTA

11.58
Signaling By NOTCH1

PEST Domain Mutants in
Cancer

118 9
HDAC1, KAT2A, FURIN,
TLE3, SKP1, TP53, UBB,

UBC, ATP2A1

10.83 Thyroid Hormone
Signaling Pathway 127 9

HDAC1, KAT2A, RAF1,
TSC2, ATP1A3, DIO3,

TP53, SRC, AKT2

10.44 Ion Channel Transport 160 10

TRPV4, RAF1, TRPV6,
ATP1A3, GABRB3, UBB,

UBC, ATP2A1, ASIC5,
BEST4

10.44 Mitotic G1-G1/S Phases 160 10

HDAC1, PSMD11,
PPP2R2A, PRIM2, SKP1,
E2F4, TP53, ORC6, UBB,

UBC

10.33 Apoptosis Signaling
Pathways 82 7

PPIG, NGFR, TNFRSF10B,
TNFRSF25, PIDD1, TP53,

AXIN2
1 only depicting the top 10 pathways and pathways with two or more matched genes.

4. Discussion

This work was embedded within a larger proprietary research study by Hendrix
Genetics encompassing approximately 21,000 layers in 3500 cages, in which (cumulative)
egg production (PROD) and breaking strength (BS) were measured per cage. These two
performance parameters are important economic traits for laying hens. At 95 weeks of age,
we generated four subsets of cages with high and low PROD (cumulative week 95) and
high and low BS (measured at 92 weeks), respectively. For selection of the four subsets,
cages were allocated post hoc, i.e., they were not a priori groups with intrinsically different
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PROD or BS. Figure 3 indicates that the variation between the four subsets in the value of
PROD was largely explained by the fraction of hens per cage that had severe morbidity
of the internal organs. The high value of PROD at zero morbidity (485 eggs per hen for
all groups; 518 in the PROD-Hi group) was close to the estimated number of 518 laying
days between week 22 (start of laying) and week 95, indicating that most healthy hens
laid an egg virtually on each day until week 95. The slope of Figure 3 further indicates
that hens that were seen as morbid in week 95 produced on average 214 fewer eggs than
the apparently healthy hens. This would be compatible with cessation of laying of these
morbid hens on average around week 65. Note that the effect of genetics and feed were a
part of the overall study of the cohort by Hendrix Genetics. In this cohort, many genetic
families are being tested for breeding purposes, and these families could have a specific
overall blood and intestinal physiological state, which may influence the results. However,
feed was disregarded in our study because the effect was negligible. In the subset of
21 selected cages in which blood metabolites were studied, many confounding factors
were present. However, no confounding factors, i.e., we only included control feed, were
included in the four cages where intestinal microbiota and gene expression of the hens
was studied.

4.1. Systemic Blood Metabolites in Hens with Differing Performance Parameters and Organ
Morbidity

We used a linear mixed model to investigate the differences in the metabolite profiles
between the four subsets. With the available small sample size of 21 cages, we could
not disentangle the factor genetics (nine different combinations of 4 father and 4 mother
lines) and the factor feed (four treatments), and therefore cage was the unit. For aspartate
aminotransferase (AST), PROD-Hi hens had the lowest average value of 26.8, which
was almost half of the AST value in the other groups, which ranged from 47.6 to 53.7.
This range of AST values was close to that reported in duck [16]. Moreover, a study with
one-year-old laying pheasants at the end of lay observed increasing concentrations of AST,
cholesterol, phosphorus, and calcium [17]. Another study showed much higher AST levels
compared with our study; however, these values of approximately 230 U/L were observed
in broilers [25]. The low AST values in the PROD-Hi group (and the much higher values in
the other groups) were still found when we only considered hens in which autopsy did not
show morbidity. Thus, persistence of egg laying was associated with lower AST values, or
rather, the cages selected for high PROD had low AST, and showed low (zero) morbidity
and persistent laying until week 95. An observation similar to that for AST was made for
urea, where PROD-Hi had a low average urea value (0.40) compared with the average urea
values of the other groups, which ranged from 0.44 to 0.51. These findings suggest that
AST can be used as an indicator for general health, i.e., absence of heart or liver damage, in
laying hens.

Compared with healthy hens, morbid hens had significantly lower triglycerides and
glucose, and higher cholesterol, without this being explained by the factor group (as most
morbid were from PROD-Lo). Additionally, body weight (BW) was (significantly) higher
in morbid hens than in healthy hens, which was only for a smaller part explained by the
factor performance group (PROD or BS). In many hens, it appeared impossible to properly
determine blood levels of HDL and LDL (missing data for 73 and 104 hens for HDL and
LDL, respectively) because of ‘creamy’ blood. For the same reason, it was also difficult to
measure bilirubin (44 missing values). Furthermore, 10 of the 14 morbid hens were seen
at the high end of cholesterol values. Hens for which we had missing data for AST had
on average higher cholesterol and higher creatinine. Cholesterol values varied from 1.9–
10.9 mmol/L and this corresponds with earlier observations in laying hens [15]. However,
here we observed that morbid hens had, on average, higher cholesterol levels compared
with healthy hens. By taking all this evidence together, i.e., higher BW, higher cholesterol,
we assume that the morbid hens (most of which had severe internal organ pathology
that would clearly cause cessation of egg production) stopped laying and, consequently,
grew fat. This is reflected by the mean BW that was 12.4% higher in morbid hens than in
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healthy hens, and this relationship between more abdominal fat and higher cholesterol has
previously been observed as well [26]. Thus, a combination of body weight and cholesterol
levels may indicate hens with possible underlying (severe) internal organ pathology.

4.2. Intestinal Functionality in Hens with Differing Performance Parameters

Intestinal microbiota and gene expression measurements were performed exclusively
in hens from four selected cages that received control feed and of which none of the hens
had organ morbidity, thus excluding additional sources of variation. Regardless of PROD
and BS, i.e., in all four focus groups, actually in all individual hens, the microbiota diversity
in the caeca was larger than that in the ileum and colon. This relates to the special function
and anatomy of the caeca. The caeca are blind-ended sacs [27], making the passage of caecal
content independent from that of the small intestine and colon. Indeed, the caecal content
may rest as long as 12–20 h in the caeca, compared with a transit time of the upper intestine
of only 2.5 h. A high passage time may reduce diversity as a consequence of selection on
bacterial growth rate (‘wash-out’), whereas a slower passage time would allow organisms
with a lower growth rate (but perhaps a better bioenergetic efficiency) to compete. Indeed,
in humans, it was found that a slower intestinal transit is associated with higher bacterial
diversity [28].

When comparing a specific segment of the GIT between individuals, it is generally
assumed that a high microbiota diversity is indicative of a healthy gut function. It may be
that specific bacteria species have a beneficial effect on gut health and function [29]. On the
other hand, it may be that microbiota diversity is not a cause of gut health, but rather a
consequence. We could, for instance, speculate that a ‘good’ healthy intestine would be
characterized by a well-balanced immune response with a low level of inflammatory symp-
toms. In contrast, an unbalanced (too strong) immune response could negatively affect
villi health and would lead to an increased passage rate, while the latter could negatively
affect microbiota diversity. This negative effect has already been shown in poultry, where
more aberrant and/or pathogenic microbiota populations were observed [30–33]. How-
ever, at any rate, if the microbiota diversity of individual chickens or of selected groups
would indeed be a measure of gut function, this would certainly bear on the production
characteristics BS and PROD, as discussed below.

In the BS-Hi group, the microbiota diversity in the caecum was numerically higher
than in BS-Lo hens. Additionally, the BS-Hi and BS-Lo slightly differed in caecal microbiota
composition according to principal coordinate analysis (PCoA). In ileum mucosa, 38 genes
were upregulated and 15 downregulated in BS-Hi versus BS-Lo hens, and many of these
genes are involved in cell cycle or immune related processes. Upregulation of genes related
to cell cycle seems consistent with larger villi with higher cell turnover. BS can depend on
egg shell thickness, but also other factors can be important, such as the egg shell matrix
proteins. It is known that certain genetic lines can have thicker shells containing more
calcium [34,35], but with lower breaking strength than other lines. However, generally, BS
is correlated with egg shell thickness [36,37], and therefore with the amount of calcium
bicarbonate deposited in the egg shell. Maintaining egg shell thickness requires adequate
levels of calcium in the feed, and the ability to take up the calcium. It has been suggested
that the microbiota composition also may promote the intestinal absorption of calcium and
support competitive exclusion of harmful bacteria [38]. Thus, it seems a likely assumption
that the BS-Hi hens, which were able to maintain a high breaking strength at an age
of 92 weeks, were better equipped to absorb calcium from the feed in the gut than the
BS-Lo hens.

To sustain a high daily laying rate, the hen must be able to absorb nutrients (biomass
and bioenergy) from the gut at a high rate. This must mean a high daily feed intake
and consequently a fast (or optimal) passage through the intestine. This must certainly
apply to the small intestine and colon, where steady state flux conditions must apply,
and not necessarily in the caeca. The high egg production of the PROD-Hi hens would
require absorption of nutrients (biomass and bioenergy) from the gut at a high rate, and,
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thus, a good performance of the GIT, with healthy villi and a high epithelial cell turnover.
The results of gene expression of the ileum is consistent with that picture, as in these
hens, 334 genes were upregulated and 89 genes were downregulated in PROD-Hi versus
PROD-Lo, and many of these genes relate to cell cycle processes or the extracellular matrix.
Furthermore, the high production would require a high daily feed intake and consequently
a fast (or optimal) passage through the intestine. This must certainly apply to the small
intestine and colon, where steady state flux conditions must apply, and not necessarily in
the caeca. As discussed above, a higher passage rate could favor a decrease of microbiota
diversity. The colon microbiota diversity did not differ significantly between the PROD-Hi
and PROD-Lo groups. However, the numerical difference seen with numerically higher
diversity mainly in the colon (and not in the caeca) in PROD-Hi hens could be a reason to
look at the relation between PROD, daily feed intake, and microbiota diversity in future
research. Taken together, the molecular data are only the starting point of grasping the
underlying mechanisms of bird vitality in a commercial setting.

5. Conclusions

To our knowledge, to date, no datasets exist that describe the blood metabolite profiles,
as well as intestinal microbiota and gene expression of 95-week-old laying hens. A subset
of 21 cages that were post hoc selected based on their performance, i.e., cumulative egg
production (PROD) and breaking strength (BS), showed differences in blood metabolites,
as well as in ileum mucosal gene expression. In the post-mortem examination, we observed
that 12% of the hens developed certain aberrations and/or impairments (denoted as organ
morbidity). In blood, we observed five metabolites that were significantly associated to
organ morbidity, including γGT, triglycerides, HDL, glucose, and cholesterol. Whereas,
only two metabolites were associated to performance phenotypes, i.e., urea and aspartate
aminotransferase. In ileum, we observed differentially expressed genes that were involved
in cell cycle and extracellular matrix processes in PROD-Hi vs. PROD-Lo. In hens of
BS-Hi vs. BS-Lo, we observed differentially expressed genes that were mainly involved
in immune and cell cycle-related processes. This knowledge is crucial to understand the
mechanisms of keeping laying hens vital, as the aim in the layer industry is to increase
laying persistency to 100 weeks of age and beyond.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11113012/s1, Table S1: Individual hen data.

Author Contributions: Conceptualization, D.S. and J.V.; methodology, D.S. and H.W.; formal anal-
ysis, D.S. and H.W.; writing—original draft preparation, D.S.; writing—review and editing, D.S.,
J.V. and H.W.; visualization, D.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Dutch Ministry of Economic Affairs, TKI Agri & Food
project 14215 and the Public–private partnership “Breed&Feed4Food”, BO-47-001-008.

Institutional Review Board Statement: In this study, biological material and tissues from hens
were used that were available from a larger proprietary research by Hendrix Genetics. Hendrix
Genetics was licensed for performing this animal research and to apply animal procedures for health
monitoring, and for selective euthanasia of hens at the end of their productive lives by a Certified
Poultry Veterinarian. No (additional) animal procedures were performed for the study reported here.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be acquired on reasonable request by contacting the corre-
sponding author.

Acknowledgments: We want to thank all persons involved in the collection of samples.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://www.mdpi.com/article/10.3390/ani11113012/s1
https://www.mdpi.com/article/10.3390/ani11113012/s1


Animals 2021, 11, 3012 17 of 18

References
1. Broom, L.J.; Kogut, M.H. The role of the gut microbiome in shaping the immune system of chickens. Vet. Immunol. Immunopathol.

2018, 204, 44–51. [CrossRef]
2. Bar-Shira, E.; Friedman, A. Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched

chick. Dev. Comp. Immunol. 2006, 30, 930–941. [CrossRef]
3. Bar-Shira, E.; Sklan, D.; Friedman, A. Establishment of immune competence in the avian GALT during the immediate post-hatch

period. Dev. Comp. Immunol. 2003, 27, 147–157. [CrossRef]
4. Schokker, D.; Hoekman, A.J.; Smits, M.A.; Rebel, J.M. Gene expression patterns associated with chicken jejunal development. Dev.

Comp. Immunol. 2009, 33, 1156–1164. [CrossRef]
5. Videnska, P.; Sedlar, K.; Lukac, M.; Faldynova, M.; Gerzova, L.; Cejkova, D.; Sisak, F.; Rychlik, I. Succession and Replacement of

Bacterial Populations in the Caecum of Egg Laying Hens over Their Whole Life. PLoS ONE 2014, 9, e115142. [CrossRef]
6. Jurburg, S.D.; Brouwer, M.S.M.; Ceccarelli, D.; Van Der Goot, J.; Jansman, A.J.M.; Bossers, A. Patterns of community assembly in

the developing chicken microbiome reveal rapid primary succession. MicrobiologyOpen 2019, 8, e00821. [CrossRef] [PubMed]
7. Kumar, M.; Babaei, P.; Ji, B.; Nielsen, J. Human gut microbiota and healthy aging: Recent developments and future prospective.

Nutr. Health Aging 2016, 4, 3–16. [CrossRef]
8. Saraswati, S.; Sitaraman, R. Aging and the human gut microbiota-from correlation to causality. Front. Microbiol. 2014, 5, 764.

[PubMed]
9. Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.B.; Coakley, M.; Lakshminarayanan,

B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184.
[CrossRef]

10. Gu, Y.; Chen, Y.; Jin, R.; Wang, C.; Wen, C.; Zhou, Y. A comparison of intestinal integrity, digestive function, and egg quality in
laying hens with different ages. Poult. Sci. 2021, 100, 100949. [CrossRef] [PubMed]
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