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Simple Summary: Fighting bulls that participate in bullfighting face energy and metabolic demands
due to the high intensity and duration of the exercise performed. Under these conditions, specific cor-
poral mechanisms, such as the acid–base balance, are affected, causing metabolic acidosis. However,
fighting bulls also undergo muscular injuries, physiological changes, and high enzyme concentrations
that reflect the stress to which they are subjected, and in some bulls, bullfights can trigger electrolytic
imbalances that include hypercalcaemia, hypermagnesaemia, and hyperphosphataemia, exacerbated
by muscular necrosis and myoglobinuria.

Abstract: During bullfights, bulls undergo physiometabolic responses such as glycolysis, anaerobic
reactions, cellular oedema, splenic contraction, and hypovolemic shock. The objective of this review
article is to present the current knowledge on the factors that cause stress in fighting bulls during
bullfights, including their dying process, by discussing the neurobiology and their physiological
responses. The literature shows that biochemical imbalances occur during bullfights, including
hypercalcaemia, hypermagnesaemia, hyperphosphataemia, hyperlactataemia, and hyperglycaemia,
associated with increased endogenous cortisol and catecholamine levels. Creatine kinase, citrate
synthase, and lactate dehydrogenase levels also increase, coupled with decreases in pH, blood bicar-
bonate levels, excess base, partial oxygen pressure, and oxygen saturation. The intense exercise also
causes a marked decrease of glycogen in type I and II muscle fibres that can produce myoglobinuria
and muscular necrosis. Other observations suggest the presence of osteochondrosis. The existing
information allows us to conclude that during bullfights, bulls face energy and metabolic demands
due to the high intensity and duration of the exercise performed, together with muscular injuries,
physiological changes, and high enzyme concentrations. In addition, the final stage of the bullfight
causes a slow dying process for an animal that is sentient and conscious of its surroundings.

Keywords: pain; abattoir; sensitisation; stunning; cattle; animal welfare; fighting bulls

1. Introduction

Fighting bulls are considered a specialized breed of cattle that has its origins in the
species Bos taurus, which includes all breeds of bovines involved in various zootechnical
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practices [1]. As with all domestic bovines, certain criteria exist in the selection of fighting
bulls. Since, in this case, the objective is to breed animals that will perform well during
bullfights, behavioural characteristics in calves and young bulls that manifest ferocity,
aggressiveness, and mobility are among those considered necessary for this spectacle. The
selection process of heifers and young bulls involves a testing phase (tienta in Spanish),
while for bulls, it occurs after an outstanding performance where the bull’s life is spared
once the bullfight is over. One goal of these practices is to identify bulls that will fight
when provoked by a person using some kind of lure [2].

During bullfights, the physiometabolic responses correspond mainly to the presence
of different types of stressors, such as physical (tissue injury, pathologies, pain [3]), en-
vironmental (extreme weather, microclimate, nutrition, handling [4], transportation [5],
noise [6]), and psychosocial factors (social isolation, overcrowding, pain, fear or distress [7]).
For fighting bulls, similar to any other mammal, the response degree and the consequence
in their homeostasis depends on the stressor type, the duration of the stimulus, and the
previous experiences of the animal [8,9]. However, in general, when an external stimulus is
perceived as potentially harmful, the central nervous system, through the activation of the
sympathoadrenal and hypothalamic–pituitary–adrenal axes (Broom, 2019) and the limbic
system [7], triggers a cascade of physiological (i.e., tachycardia, tachypnea, hyperthermia),
metabolic (hyperglycemia) [9], endocrine (i.e., stress hormones—catecholamines or gluco-
corticoids), and behavioral responses. In the short term, these changes serve as an adaptive
defense mechanism. However, when an animal cannot maintain its homeostasis due to
the process’s chronicity or magnitude, the organism and its health deteriorate along with
its welfare [8]. Understanding stress responses in livestock can help refine management
procedures and promote the selection of stress-tolerant animals.

The bullfight is divided in three stages called tercios: tercio de varas, tercio de banderillas,
and tercio de muleta. In the first stage, a lance is stabbed into the bull’s hump, limiting its
mobility [10]. The injury inflicted by the lance destroys blood vessels and haemorrhages
that can decrease blood volume by 8–18% through perforations of the trapezoid and
rhomboid muscles, and the funicular portion of the occipital ligament. In some cases, this
injury also affects the accessory nerve and brachial plexus from spinal segments C5, C6,
C7, C8, and T1, which control the movement of the thoracic limbs [11,12]. The lance can
inflict wounds as deep as 30 cm. If not applied properly, it can compromise the animal’s
locomotion, as Barona et al. [10] determined in their analysis of the site, depth, and severity
of the lesions produced by this instrument after examining 277 fighting bulls from 43 events.
They suggest that those injuries are located, in order of importance, in bull’s shoulders and
hump. If the lance penetrates the hindquarters, it compromises the bull’s physical integrity
by causing pain in the dorso-lumbar region that reduces its force of locomotion.

In the second stage, the matador stabs six flags (banderillas) into the bull’s shoulders
and/or hump. This action aggravates the muscle damage already inflicted by the lance
because every movement the bull makes while charging the matador and his red cape
moves the flags inside the wounds. Their sharp points lacerate muscles in different
directions, causing additional haemorrhages [10].

In the third stage, the matador uses a sword to kill the bull by causing profuse bleed-
ing in the thoracic cavity, either by piercing the pleura to cause pneumothorax and the
consequent respiratory insufficiency, or the lung or right bronchia, allowing blood to leave
the lung, enter the bronchia, and reach the trachea, oesophagus, and upper respiratory
pathways [13]. In most cases, the sword also severs the spinal cord’s lateral nerve cords
responsible for innervating the thoracic cavity, producing paralysis and respiratory insuffi-
ciency. The sword ultimately causes asphyxia by severing of the medulla oblongata or its
caudal nervous projections [14–17]. In this case, the sword cuts blood vessels, the lungs,
and the bronchia, causing bronchoaspiration [18]. After the sword, the bull is stabbed
with a puntilla (short knife) to end the fight, which enters near the first and second cervical
vertebrae, it will damage the motor nerves, causing the bull to fall with its limbs extended.
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If the injury is made near the atlantooccipital joint, the bulb is cut the spinal cord and its
caudal nerve projections, possibly leading to the same result [11].

The death of bulls during bullfights—whether by asphyxia or exsanguination—occurs
while the animal is fully conscious because the brainstem and/or brain cortex remain
intact [17,19].

1.1. Stressors of Psychological Origin

Regarding fighting bulls, studies have determined that aggressiveness (animal’s
capacity to confront the matador vs. attempting to escape) and ferocity (amount of strength
it uses to attack with its entire body, and its resistance to pain) have strong genetic [20] and
environment [21] bases.

The temperament of the animal could be another factor that affects the quality of its
death. However, studies have determined that even bovines with harsh temperaments (Bos
taurus, including fighting bulls) and other species eventually become habituated to novel
environmental conditions and reduce their behavioural reactivity [22].

The typical handling practices used with fighting bulls require minimising or eliminat-
ing contact with humans. In part for this reason, no scientific studies have yet documented
the peculiarities of this breed of bulls (Bos taurus brachyceros) under these circumstances,
though similar results have been determined in Bos indicus steers [23], horses [24], and
pigs [25,26]. The anatomical and physiological difference observed in the fighting bull have
been described in the conformation of the cerebral hemispheres, in the brain weight/carcass
weight ratio, and in the size of the cerebral amygdala, observing a negative relationship
with respect to the aggressiveness of race [27].

In general, acute severe stress from physical and/or psychological injuries in indi-
viduals can induce emotions such as fear or anxiety [28]. During bullfights, factors such
as novelty, aggression, and noise, among others, can be stressors that could trigger these
emotions [29].

When animals are exposed to situations that they cannot control or are unpredictable
(such as isolation, acute noise, or confinement) [30], adaptive hypothalamic, sympathetic,
immune, and behavioral responses serve to survive [31]. In farm animals, routine situations
such as handling, restraining, or transport are events that can induce states of anxiety,
distress, depression, or fear [32,33]. Fear is a negative, subjective, and emotional experience
derived from the recognition or anticipation of actual danger [34]. The amygdala is the
main component of the so-called fear system [32] and is innately present in many domestic
species. Nonetheless, a fearful animal is in a state of chronic stress with its corresponding
productive and physiological consequences [35]. In fighting bulls, human contact with
animals is limited, sometimes until the bull enters the plaza, to preserve the fearfulness and
aggressiveness towards people. The above agrees with Daigle et al. [36], who mentions
that temperament and human–animal interaction influence the perception and adaptation
to various psychological stressors. It has been reported that the reactions derived from
fear preserve the integrity of the animal and improve animal fitness. However, as with any
other negative mental state, if fear persists, the animal cannot adapt to its environment,
and its welfare is compromised [37].

1.2. Stressors of Physical Origin

One example of a stressor of physical origin is fatigue due to transport or other causes
of strenuous exercise [38], which results in an increased body temperature, heart and
respiration rates, and activation of the hypothalamic–pituitary–adrenal axis [39]. In the
physical aspect, there is an increase in creatine kinase (CK) activity in the blood, which is
due to tissue damage and poor reperfusion of muscle tissue. When performing physical
activity, the active muscle requires oxygen and reserves glycogen energy. However, when
the intensity of physical activity increases, the oxygen demand also increases, exceed-
ing the transport system’s levels. In this condition the active muscle use energy from a
different source (anaerobic) and the concentration of lactic acid is increased, which, in
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turn, develops a metabolic acidosis that can lead to the breakdown of the muscle fiber. In
addition, CK concentration increases in the blood since it is responsible for maintaining
energy homeostasis in sites with high ATP content. Creatine kinase has been used as a
biomarker of physical stress and/or muscle damage in animals [40]. Thus, physical stress
promotes the inhibition of motor function when the limit of muscular demand is reached.
Therefore, CK predominates in physical efforts of high intensity and short duration, such
as transportation and vigorous exercise that fighting bulls develop. This could trigger high
enzymatic activity. Purroy et al. [41] set out to identify possible muscular pathologies in
fighting bulls, and to determine whether they are related to the weakness they show as the
bullfight proceeds. In serum samples drawn after the event, they identified increases in
the enzymatic activity of creatinine kinase, lactate dehydrogenase, and aspartate transam-
inase. Moreover, approximately 78% of the bulls sampled in that study presented some
histological lesion in skeletal or cardiac muscles with predominant, chronic lesions [41].

1.3. Physiological Responses to Stressors

Stress responses consist of a series of physiological and behavioural mechanisms
designed to promote adaptation and restore homeostasis in the individual [42], includ-
ing physiometabolic changes such as tachycardia, hypertension, and hyperthermia [43];
changes that are detectable in animals’ immunological and behavioural responses; elec-
trolyte imbalances; and molecular deficiencies that increase the incidence of oxidative
stress, cell death, and DNA alterations [44,45]. As occurs in other mammals, this physiolog-
ical response to stress begins with activation of the hypothalamic–pituitary–adrenal axis
(HPA), which triggers multiple reactions when the central nervous system (CNS) perceives
a potential danger. This, in turn, causes alterations of the autonomous nervous system
(ANS), and the neuroendocrine disorders described above [46–48].

In Bos indicus, excitable Brahman heifers had significantly higher serum cortisol
concentrations than docile ones, which negatively affected serum LH concentrations [49].
Similarly, Curley et al. [50] found a positive correlation between temperament and cortisol
values. The exercise that fighting bulls perform during the 15 min that an average fight
lasts [51] and the low aerobic resistance characteristic of bulls could lead their metabolism
towards an anaerobic process [52]. In relation to this, Escalera-Valente et al. [51] observed
the physiological response in blood samples drawn from 314 4–5-year-old fighting bulls
that died after fights characterised by intense exercise. They found that some responses had
decreased (blood pH, HCO3, BE, PO2, sO2), others remained within normal ranges (Na+,
K+, iCa, Htc), and the rest increased (PCO2, Hb, lactate) compared to normal reference
values for other bovine species. Clearly, these events could trigger multiple metabolic
responses in fighting bulls, including decreases in the acid–base balance and blood pH [52],
as occurs in other animals under similar conditions. However, it is important to point out
that, due to the handling procedures used with these animals, the researchers were unable
to draw samples before the event that would have permitted a comparative analysis [51].
It is well known that aggressive bovines such as Angus-cross steers can show elevated
values of certain metabolites associated with energy catabolism [22], so it is necessary to
conduct more studies with fighting bulls to determine whether the values reported by
Escalera-Valente et al. [51] could be considered normal due to the temperament of this
breed, regardless of the exercise performed during bullfights.

1.4. Behavioral Responses to Stressors

Animals modify their behavior as a defense mechanism to cope with or avoid stres-
sors [53]. The behavioral changes can include flight, fight, or freezing, associated with an
increase in the concentration of adrenaline or cortisol. Examples of stressful stimuli are a
new environment, transportation, vibration, noise, and duration of the trip [54], as well as
being exposed to adverse weather conditions [55].

Cattle can perceive sounds of much higher frequencies than humans, and may perceive
the noise in the fighting ring as a threat, which is another stressor that can affect their
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behavior, producing fear [56], especially if when joined with novelty and other negative
experiences. Other behaviors associated with fear are increased elimination patterns [57].

The vocalizations of the animals can provide an important source of information about
its physical and psychological condition [58]. For this reason, the vocalization structure
has been studied as an essential behavioral indicator of their stress level. Low-intensity
and lower-pitched vocalizations have been associated with higher cortisol concentrations
under stressful events [59].

1.5. The Aim of the Review

In this context, the aim of this review is to present current knowledge on the factors
that cause stress in fighting bulls during bullfights, including their dying process, by
discussing the neurobiology and physiological responses to which they are subjected. Due
to the scarcity of scientific studies of these topics, comparisons to other breeds of cattle are
included where appropriate.

2. Neurobiology of Pain
2.1. Pain Perception

Animals’ brains are irrigated through the basioccipital plexus and carotid arteries,
which supply blood primarily to the occipital lobe of the cerebral cortex, and the basilar
arteries that carry blood rostrally [60,61]. During bullfights, bulls are subjected to injuries
because the lance (puya) and flags (banderillas) are stabbed into their bodies, damaging
skin, muscles, arteries, veins, and connective tissue, all of which contain physiological
sensors called nociceptors. These sensors generate electrical impulses that send signals to
the central nervous system, where cattle could detect them as pain [60,62,63]. This sensory
information is transmitted from the reticular formation to the thalamus, and from there
to the cerebral cortex, where the sensation of pain is finally perceived [19]. The processes
involved in pain perception include transduction, transmission, modulation, projection,
and perception. Transduction corresponds to the transformation of the harmful stimulus
(in this case, mechanical) into an electrical impulse [64] generated by nociceptors in the skin,
muscles, bones, or viscera [65]. When activated, these nociceptors generate the aperture of
Ca2+, K+, or Na+ ionic channels to create the electrical impulses that travel through neuronal
axons to carry the nociceptive signal, successively, to the spinal cord, brainstem, thalamus,
and cerebral cortex [66]. In this process, information is transmitted through Aδ nerve
terminals that can be nociceptive or nonnociceptive and are composed of low-threshold
(<75%) and high-threshold (>25%) mechanoreceptors and mechanothermal receptors. The
latter are referred to as Aδ heat nociceptors. High-threshold Aδ nociceptors respond only
to tissue-threatening or tissue-damaging stimulation. Many of the Aδ nociceptors respond
only to specific stimuli, whereas others are polymodal and respond to mechanical, chemical,
and thermal stimulation [67]. In addition, according to Basbaum et al. [68], first and second
pain refers to the immediate and delayed pain responses to noxious stimulation. Other
terms that denote these pains are fast and slow pain or sharp/pricking and dull/burning
pain. The stimuli that generate first pain are transmitted by A-delta, small, and myelinated
afferents. Second pain results from the activation of C fibres, which conduct impulses
much more slowly, thus accounting for the time difference. Reaction times to first and
second pain are about 400–500 and 1000 ms, respectively. Lesions trigger the release of the
proinflammatory cytokines (prostaglandins, leukotrienes, bradykinin, serotonin, histamine,
substance P) that constitute the so-called “inflammatory soup” [69]. This “soup” can cause,
or intensify, nociceptive impulses that facilitate pain transmission [65]. Transmission is
followed by modulation, which begins when the stimulus is carried to the dorsal horn of the
spinal cord in Rexed laminae I, II, and V [70]. These events stimulate various brain regions,
including the cerebral cortex and reticular formation, which transmit sensory information
from the thalamus. This is the point at which the perception of pain in the thalamus
and cerebral cortex occurs through the spinothalamic and spinoreticular tracts [19,71]
(Figure 1).
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transformation of the harmful stimulus into an electrical impulse generated by nociceptors in the skin and muscles that
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nociceptive neurons called Aδ and C fibres to the dorsal horn of the spinal cord and is then projected by electrical impulses
and brainstem to the thalamus, reticular formation, and cerebral cortex, where the pain is perceived.

2.2. Emotions and Pain

Some studies of beef and dairy cattle have used the extension of eye white and ear
position as indicators when evaluating the emotional states of animals. Battini et al. [72],
for example, analyzed 430 photographs of the heads of dairy cows classified in four levels
according to the degree of eye opening and ear position. For the latter indicator, drooping
ears indicated greater relaxation, while an upright ear position suggested greater excitation.
This model was tested under different conditions: during feeding, while at rest, and
while grazing, complemented by an avoidance distance trial at the feeding place (ADF).
Their findings showed that when the animals were relaxed, their eyes tended to remain
half-closed and their ears drooped (67.8% of half-closed eyes, 77.3% with ears drooping
or backward, while grazing). In the case of excitation, in contrast, the white surface of
the eye increased in extension and was more visible (excitement during the ADF test
showed 44.8% of eye white clearly visible), and the ears were pushed forward towards
the approaching evaluator (95.5%). Those results support using eye white and ear posture
as reliable indicators of emotions in dairy cows. The eye white indicator was also tested
by Core et al. [73] to predict temperament in a herd of cattle. The 147 animals studied
were a mix of British (predominantly Angus), Continental (predominantly Simmental),
and Piedmontese breeds. They were grouped as heifers (n = 48), bulls (n = 39), and steers
(n = 60), and then videotaped while in a squeeze chute where they were selected. Chute
temperament scores were assigned as follows: 1 (calm) to 5 (agitated), and the eye white
area was expressed as the percentage of exposed eye area. Those authors found the highest
average percentage of eye white in the bulls (31.43 ± 14.77), followed by the heifers and
steers (30.14 ± 14.37 and 28.57 ± 12.38, respectively). The Pearson correlation coefficients
for eye white percentage and chute temperament scores were 0.95 for bulls (p < 0.0001),
0.674 for heifers (p < 0.0001), and 0.696 for steers (p < 0.0001). Thus, they concluded
that the percentage of eye white in cattle can be used as a quantitative tool that requires
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minimal equipment to assess temperament in beef cattle, and that it provides an objective
method for temperament selection. These indicators might, therefore, also be used as
non-invasive tools for evaluating the degree of excitation in fighting bulls, though under
different conditions.

Fighting bulls are reared in extensive environments with minimal exposure to humans.
Fear is arguably the most investigated emotion in domestic animals. It is a potent stressor.
The highly variable results are likely due to different levels of physiological stress such as
fear stress, including handling, contact with people, or exposure to novelty. However, we
lack scientific studies of this breed that evaluate the degree of expression of positive and
negative emotions under different conditions. Since the stimuli that can cause fear in bulls—
and other animals—during fights include confronting a closed, unfamiliar environment,
isolation, separation from conspecifics, exposure to predators or aggressors, the absence of
escape routes or refuge, and the presence of harmful stimuli in conditions that preclude
escape [74]. Pain and emotion are part of a more extensive motivational system that
promotes survival, and the neurocircuitries associated with emotion and pain overlap
significantly [75].

2.3. Analgesic Effects

It is possible, however, that the stress provoked could inhibit the transmission of pain
stimuli in the brain and spinal cord [76]. To become effective, this pain reduction process
must be activated by the amygdala. This involves endogenous opioids that modulate
signalling and synaptic transmission in the neural loci that contribute to the experience of
pain [77]. The genetic makeup and aggressive behaviour typical of fighting bulls during
events leads them to adopt a challenging attitude as they confront their attacker, making
no attempt to flee from the situation. The activation of neuroendocrine mechanisms
allows release of the hormone proopiomelanocortin (POMC), β-endorphins, and methane
cephalins, cortisol, and ACTH in response to stress. Centenera [78] took blood samples from
fighting bulls at four stages of the event: immediately upon entering the ring (n = 159 bulls),
after the wounds inflicted by the lance (n = 137 bulls), after the placing of the banderillas
(n = 110 bulls), and at the end of the fight when the bull is killed (estoque) (n = 80 bulls).
Their post-event findings showed an increase in the concentration of POMC—a precursor
hormone of the β-endorphins and methane cephalins—that was six times higher in the
animals after the estoque compared to the concentrations determined when the bulls entered
the ring (p < 0.01). With respect to serum ACTH and cortisol levels, that study found higher
concentrations in the bulls immediately after leaving the ring, while the lowest values were
determined for the samples drawn and analyzed after the final estocada (four and three
times lower, respectively) (p < 0.01).

3. Muscle-Skeletal Injuries during Bullfights

According to Fernández and Villalón’s [11] anatomical review, fighting bulls lack
clavicles, so their two anterior extremities are joined at the trunk, mainly by muscles. The
scapula has a prolongation cartilage where those muscles are inserted to join the two
extremities more strongly and fix them to the trunk. Muscle fibres, of course, are classi-
fied histologically in various types according to the relation between myosin adenosine
triphosphatase activity (m-ATPase) and pH [79]. When pH is alkaline, type I muscle fibres
(slow-contracting) have low m-ATPase activity, while type II fibres (fast-contracting) have
high m-ATPase activity [80]. Under conditions of intense exercise, such as a bullfight, the
fast-contracting muscle fibres with low oxidative capacity (type II) are the main ones that
function to produce anaerobic glycolysis as a pathway for producing the energy required
for the effort involved. During this process, either pyruvate is formed and used by the
mitochondria, or lactate is produced, which is (partly) delivered to the blood stream. From
there, it reaches the liver and kidneys that convert it to glycogen, as occurs in other mam-
mal species, including humans [81–84]. The enzyme lactate dehydrogenase catalyses the
interconversion of pyruvate and lactate. However, when lactate is abundant, it remains
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detectable and indicates recently performed heavy physical activity. Increased physical
activity may also induce damage to muscle fibres and the release of creatine phosphokinase
(an enzyme used by the muscular tissue for produce creatine) into the blood [85]. Dur-
ing bullfights, bulls are subjected to anatomical injuries such as torn muscles, ligaments,
tendons, and ruptured nerves and blood vessels caused by the bullfighters’ weapons [11].
Other injuries that may occur include fractures of the ribs, the spinous processes on the
vertebrae, and prolongation cartilages [11] that could cause severe pain and changes in the
animal’s neurobiology.

Gomariz et al. [12] attempted to determine the causes of the physiological disequi-
librium of the locomotor apparatus by evaluating various transversal cuts of several
muscles—common digital extensor, long digital extensor, long thorax, Latissimus dorsi,
Ventral thoracic serrate, and gluteobiceps—from six fighting bulls killed by the matador’s
sword that presented an obvious lack of strength before death, manifested in frequent
falls recorded in their movement profile, as Table 1 shows. They used histological and
histochemical techniques, stained their samples and then microphotographed them at 10×,
20×, and 40×. Findings allowed them to identify the following lesions: mitochondrial al-
terations, loss of the polygonal contour of fibres, centralization of nuclei, necrotic processes,
fibrillar fragmentation, and vacuolization of the sarcoplasm. In some subjects, the injuries
examined were accompanied by alterations of the connective tissue (peri and endomysial
fibrosis). The authors concluded that this series of injuries could be a consequence of the
excessive muscular effort that the bulls made in a short time-period. They did not rule out
the possibility that some of the animals may have suffer from a myopathy. Whatever the
case, they suggest that the lesions affected muscle fibres and connective tissue, leading to a
loss of strength and frequent falls during the bullfights.

Table 1. Contribution of muscles to movement in fighting bulls.

Muscle Group Function

Common digital extensor, gluteobiceps, and
long digital extensor Support in extending and retracting extremities

Long thorax

Fixing and righting action of the rachis; dorsal
flexor agent of the thoracic-lumbar rachis;
regulating mechanical influences in the
protraction–retraction of pelvic members

Latissimus dorsi

When contracted, once the protraction of the
thoracic member is culminated (support in
extension); drags body mass while retraction of
the member lasts

Ventral thoracic serrate Constitutes the principal suspensor agent of
the trunk.

From Gomariz et al. [12]

In addition to the injuries visible at first sight during a bullfight, there are condi-
tions in fighting bulls that could exacerbate muscular and skeletal damage. The study of
120 fighting bulls by Lomillos-Pérez and Alonso de la Varga [86] detected the presence of
osteochondrosis in over 70% of the animals evaluated, bilaterally in 78.3% of them. Various
authors identify osteochondrosis as an element that predisposes fighting bulls to develop
the so-called “falling syndrome” [87,88], an affliction characterized by loss of equilibrium
and transitory falling that has also been associated with damage to muscle cells [12].

Martínez [89] and Lomillos-Pérez et al. [90] reported that causes of the falling syn-
drome can include genetic factors, transport conditions, the physical demands of the
bullfight, a lack of functional exercise, alimentary deficiencies, and circulatory, nervous,
metabolic, endocrine, or etiological disorders. According to Lomillos-Pérez et al. [90], this
syndrome has decreased over time, as incidence has decreased from 99.56 to 79.82%, and
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that it is in the third (cape) stage of the bullfight that it occurs most frequently. Even though
the incidence remains very high, it is noteworthy that this partial decrease in incidence
occurs during the banderillas stage. Dávila et al. [91] point out that any discussion of the
aetiology of osteochondrosis in fighting bulls must mention the trauma and biochemi-
cal elements of the cartilage, which can be affected by nutritional deficiencies, hormonal
imbalances, inadequate vascular contribution, and genetic factors.

4. Hypovolemic Shock

The wound inflicted by the lance causes a loss of blood volume, the first event in a
series that ends in hypovolemic shock [10]. Hypovolemia is the reduction of blood volume
due to massive haemorrhaging that induces severe dehydration. In this condition, both the
amount of blood that reaches the body’s vital organs and the pressure with which it arrives
are insufficient, impeding their functioning and viability [92]. Three phases of hypovolemic
shock have been described: compensatory, in which the organism generates a neuroen-
docrine response as it struggles to maintain haemodynamic status; decompensatory, when
it sustains continuous hypoperfusion that triggers a process of cell injury and death; and
microcirculatory dysfunction, when the parenchymal tissue is damaged and inflammatory
cells are activated [93]. This condition is partially compensated at onset by the release of
K+ ions from the intracellular space to the blood. This mechanism aims to self-compensate
and cause isotonic dehydration and hyperkalaemia, but the resulting hydroelectrolytic
imbalance produces vascular dysfunction. At the same time, other compensating mecha-
nisms are activated to lower arterial pressure. This is detected initially by baroreceptors
in the aortic arch and carotid sinus, leading to activation of the sympathetic system that
secretes catecholamines, angiotensin II, and the antidiuretic hormone to preserve cardiac
output and maintain adequate cerebral and cardiac perfusion [94].

Other essential responses of the fighting bull’s organism during a bullfight include
splenic contraction, when erythrocytes are mobilized towards the zones where additional
oxygen support is required with increased haematocrit due to the dehydration the ani-
mals may present as a consequence of the intense physical activity performed in a short
period [51].

5. Metabolic Responses Linked to Psychological Stress and Physical Exercise

Animals are subject to various environmental and behavioural stressors that affect
their survival and physical state [95]. To respond physiologically to these stressors, they
present a series of neural and endocrine responses that divert energy away from short term,
non-essential physiological processes such as growth, digestion, and reproduction, in an
effort to resolve the stressful situation. Meanwhile, the neural stress response involves
secreting catecholamines from the adrenal medulla and the sympathetic nervous system,
and mobilising energy to increase cardiac frequency, blood pressure, and respiration [96,97].

The exertion demanded of bulls during the 15–18 min that bullfights usually last can
be considered similar to that performed by athletic animals forced to perform enormously
intensive exercise [52,98]. This explains why acid–base balance alterations are observed
that lower blood pH [51]. Under these conditions, blood pH can decrease to levels below
7.2, aerobic glycolysis is inhibited, extracellular osmolarity increases, and cellular oedema
may occur. It is well known that increased acidity can produce a broad range of harmful
effects on neural functioning, such as increasing the permeability of the blood–brain
barrier, inhibiting mitochondrial function, and altering synaptic transmission and ionic
functions [99]. Among the mechanisms that the organism has at its disposal to eliminate
hydrogen ions and maintain pH, we can mention several buffering systems, such as the
respiratory and buffer bases [100].

Bullfights demand an enormous physical effort by the bulls, so these animals must be
in optimal health conditions before participating. The intensity of the fight triggers signif-
icant metabolic alterations that are observable after the event, including haematological
changes (increased red blood cells and haematocrit), and elevated peroxides and lactic
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acid production that reduce concentrations of muscle glycogen and pH [101]. Accordingly,
Lacourt and Tarrant [102] and Agüera et al. [103] showed that the physical and emotional
stress and exercise to which fighting bulls are subjected during an event causes a marked
reduction of glycogen in type I and type II fibres. These changes are accompanied by the
release of large amounts of enzymes into the bloodstream, including creatinine kinase (CK),
lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) [52]. The antemortem
analysis of certain biological variables in animals can be useful for diagnosing diseases or
detecting metabolic states [104]. Fighting bulls are known for their aggressiveness and natu-
ral resistance to handling, so drawing in vivo blood samples can be extremely difficult [105].
Although the emotional and physical stress that these bulls experience during bullfights can
cause significant changes in blood analyte levels (Figure 2), blood variables are influenced
by physical exertion and stressful situations; consequently, post-mortem blood analysis
does not reflect basal concentrations for this species. Therefore, these indicators cannot
always be used as diagnostic findings in post-mortem blood evaluations [106]. However,
ocular fluids such as vitreous humour maintain a stable composition after death and can
be used post-mortem to estimate the blood levels that animals presented antemortem.
González-Montaña et al. [105] used post-mortem ocular fluids in fighting bulls, finding that
all the variables assessed in plasma showed concentrations above basal levels. Specifically,
alterations were observed for glucose, uric acid, LDH, and creatinine kinase (CK). These
findings can be caused by the overexertion, stressful situation, destruction of muscle cells,
and loss of bodily fluids that the bulls undergo during the intense exercise of a bullfight.
Several studies of pigs and horses showed that animals performing high levels of physical
activity and training have a corresponding higher oxidative capacity, higher glycogen
content, and larger amounts of type II muscle fibres than animals that perform less physical
activity [106–109]. It seems that the metabolic capacity of bulls varies according to age. A
study of young and mature fighting bulls by Agüera et al. [103] analysed the values of
citrate synthase (CS), 3-hydroxyacyl coenzyme A dehydrogenase (HAD), LDH, glycogen,
lactate, and pH in biopsies of the gluteus medius muscle obtained after bullfights. They
observed that HAD and LDH activity were higher in the group of older bulls. Glycogen
concentrations and pH were low in both groups, but lactate concentrations were higher
in the older bulls. These results show that young and old bulls have similar muscle fibre
type composition but the metabolic capacity differs, with a higher glycolytic capacity
and lactate production in older bulls [103]. In another study, Purroy and Buitrago [110]
observed that the levels of CK, oxalacetate glutamate transaminase (GOT), and LDH were
higher post-mortem because the animals had been subjected to more intense exercise in the
days leading up to bullfights. When the data obtained after exercise in fighting bulls were
compared to normal reference values for cattle, it was clear that some blood variables—pH,
bicarbonate (HCO3

−), base excess (BE), oxygen partial pressure (PO2), and oxygen satu-
ration (sO2)—decreased, while others—sodium (Na+), potassium (K+), calcium ion (iCa),
and haematocrit (Htc)—remained within normal limits [51]. Other analytes, such as PCO2,
haemoglobin (Hb), and lactate, were above normal values. A study by Muñoz-Juzado
et al. [111] evaluated the oxidative and glycolytic potential in muscle biopsies of fighting
bulls taken after an event. Samples were drawn from the gluteus medius and semitendi-
nosus muscles of bulls aged 1 to 3 years. Those authors found that the highest oxidative
muscular potential was manifested in the 2-year-old bulls and that glycolytic capacity
increased progressively with age. This contrasts with other bovines, where a reduction in
the oxidative potential occurs from the time of birth onwards [102]. These findings lead
to the suggestion that the age of the bull might participate significantly in the metabolic
responses during bullfights, as it does in muscle enzyme production. Physiological re-
sponses are the reactions to stressful stimuli that occur in organisms. Heart rate is the most
useful parameter for evaluating the activation of the flight-or-fight syndrome [103]. When
correlated with body temperature, it can be interpreted as the heart’s response to metabolic
demand [92]. Likewise, skin temperature is a useful parameter for evaluating vascular
resistance, vasodilatation, and vasoconstriction. When body temperature decreases distally,
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vasoconstriction is present with low cardiac output and likely, hypovolemia [112]. If, in
contrast, the temperature tends to increase towards distal areas, vasodilatation is occurring
with high cardiac output [113]. Finally, to compensate the condition of metabolic acidosis,
animals present hyperventilation or tachypnea, which can be detected by the flaring or
flapping of their nostrils and more evident inspiratory movements of the abdominal and
thoracic walls.
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Figure 2. Metabolic, haematological, and acid–base balance alterations that occur during the en-
docrine response to stress and the physical effort in fighting bulls. One of the main metabolic
responses that occurs during stressful conditions consists in an increase of adrenal glucocorticoids,
such as cortisol, that circulate in the bloodstream [95]. In other species, it is well known that short
periods of glucocorticoid release can cause irreversible damage, including reproductive disorders,
immunosuppression, and reduced life expectancy [96,114,115]. In addition, the emotional stress
and intense exercise that fighting bulls undergo and the exposure to a new environment during the
event produce marked increases of cortisol, glucose, and T3 in the bloodstream that can generate
significant biochemical changes in the organism by triggering the stress-adaptation syndrome [52].
Catecholamines function to prepare an organism for the “flight-or-fight” response but triggers tachy-
cardia, hypertension, hyperthermia, hyperventilation, and sweating [48,116]. Cortisol begins to be
secreted by the adrenal cortex around five minutes after the stressful stimulus is presented. This
substance, which can be detected in blood, saliva, urine, and faeces, performs the primary function
of increasing and then maintaining blood glucose levels using reserves of hepatic and muscular
glycogen to provide the animal with sufficient energy to sustain the physical effort that the situation
demands [117]. CRF: corticotropin releasing factor; HPA: hypothalamic-pituitary-adrenocortical
axis; ACTH: adrenocorticotropic hormone; ATP: adenosine triphosphate; ANS: autonomic nervous
system; HR: heart rate; RR: respiratory rate; CK: creatine kinase; LDH: lactate dehydrogenase; AST:
aspartate aminotransferase; ROS: reactive oxygen species; BBB: blood–brain barrier.

According to García-Belenguer et al. [118], fighting bulls present low selenium and
vitamin E levels but high copper levels in the blood, possibly associated with exercise
during the fight. Carpintero et al. [119] identified that calcium, phosphorus, and magne-
sium levels are well above normal physiological values after bullfights. They attributed
hypercalcaemia and hypermagnesaemia to dehydration during fights and the finding of
hyperphosphatemia to respiratory and lactic acidosis. After a bullfight, high magnesium
and phosphorus levels were reported by González-Montaña et al. [120] in 15 fighting bulls
aged 4–5 years, based on measurements of the vitreous humour, aqueous humour, and
blood. They also determined that these levels were higher in blood plasma than in the
vitreous humour, while calcium, chrome, and sodium levels were similar in all three fluids.
Selenium, iron, zinc, and copper values were 16–32 times higher in plasma than in the
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ocular fluids. In summary, studies have found that changes at the muscular level and in di-
verse body fluids result from the physiological effort and energy demand to which fighting
bulls are subjected during bullfighting events [103,111]. The most significant changes from
the perspective of animal welfare include those related with psychological stress [121] with
negative emotions, including fear, pain, and triggering physiological responses, including
dehydration, hypermagnesaemia, hypotension, muscular necrosis, myoglobinuria, and
metabolic acidosis.

6. Conclusions

The existing information allows us to conclude that bulls face energy and metabolic
demands during bullfights due to the high intensity and duration of the exercise performed,
together with muscular injuries, physiological changes, and high enzyme concentrations.
In addition, the final stage of the bullfight causes a slow dying process for an animal that is
sentient and conscious of its surroundings. Unfortunately, due to the scant literature on
this breed, many gaps exist in the available information; more specific information, such as
physiological evaluations, could help verify these effects.
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