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Simple Summary: Fat content and the degree of fatty acid unsaturation in meat are two major
concerns for consumers. Fat concentration and its molecular structure (fatty acid positional dis-
tribution) are related to the nutritional fat value and tissue rheological properties. Changes in fat
concentration and/or fatty acid profile related to modifications of dietary treatments are well de-
scribed in the literature. Nevertheless, studies aimed to control fatty acid positional distribution
by dietary intervention in pigs are scarce, and studies have shown that the internal sn-2 position
is highly regulated and resistant to dietary manipulation. However, this study demonstrated that
heavy pigs fed on free-range with high levels of oleic acid can alter the fatty acid composition of the
internal position of the triglyceride, thus affecting the nutritional value of their fat as well as their
physicochemical properties.

Abstract: The nutritional value of fat consumption depends on both the fatty acid composition and
the positional distribution of fatty acids within the triglyceride molecule. This research studies the
effect of feeding with three different diets (4% lard-enriched; 11.5% high-oleic sunflower-enriched;
and extensive feeding mainly with acorns) on the composition of fatty acids in the sn-2 position
(and sn-1,3) of triglycerides and the textural properties of subcutaneous fat in heavy Iberian pigs
(n = 210 castrated males). A moderate dietary enrichment with oleic acid in mixed diets did not
alter the regulation of the sn-2 position of triglyceride (69.9% and 13.9% of palmitic and oleic acids,
respectively), but the extremely high intake of oleic acid in pigs fed mainly on acorns changed the
proportions of palmitic and oleic acids at the sn-2 position in the subcutaneous fat of pigs (55.0%
and 27.2%, respectively). Hardness, adhesiveness, cohesiveness, gumminess, and chewiness showed
the least values in EXT pigs, and the greatest values in LARD-fed barrows. SUN cohesiveness
and gumminess did not differ from those fed LARD. In addition, Iberian pigs raised in free-range
conditions had a more favorable nutritional lipid profile for human health compared to pigs fed
conventional diets.

Keywords: swine; adipose tissue; triacylglyceride structure; positional distribution; fatty acid

1. Introduction

Dietary fats are the main energy supply in pig diets and other monogastric animals,
but their utilization for metabolic purposes depends on its absorption in the digestive
system [1]. Different factors may affect their absorption and the fatty acid composition of
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the triglyceride structure [2]. Studies show that the external position in sn-1 and sn-3 in the
triglyceride may impair fat absorption when compared to sn-2, which may affect its energy
value [3]. Pork fat, compared to other animal and vegetable fats and oils, present saturated
fatty acids (SFA) preferentially located in the internal sn-2 position of the triacylglycerol
molecule (TAG), reaching a concentration over 75 g SFA /100 g of total fatty acids [4]. This is
considered a drawback for the nutritional value of pig meat due to the association between
human diets with high SFA concentration in this position and obesity and cardiovascular
diseases [5,6]. Moreover, the technological properties of pig fat are affected by the fatty acid
(FA) distribution within the sn-2 position [7,8]. Therefore, greater fat consistency has been
associated with an increase in the sn-1,3 position of SFA, which could be an interesting
approach in order to control an excess of soft fat in specific pig genotypes.

Studies aimed to control the FA distribution by dietary intervention in pigs are scarce
and evidence that the FA composition in the internal sn-2 position is highly regulated
and resistant to dietary manipulation [7,9], thus maintaining a narrow range of variation.
Accordingly, previous studies in pigs evaluated the effects, such as dietary glycerol or satu-
rated diets, that resulted in limited modifications at the sn-2 position in the TAG [10]. Other
dietary supplementations, such as the use of compounds that reduce the A7-desaturase
enzyme activity, have been related to an increase in the proportion of saturated FA at the
sn-1,3 position [9]. There is no further information on the effects of the feeding with other
kinds of fats or natural resources on the TAG structure. However, since a relationship
between the high monounsaturated supply [11] and outdoors feeding system [12], and the
increase in certain desaturases was found, their possible effect on the triglyceride structure
deserves to be further explored.

Traditional feeding of Iberian pigs involves the intake of natural resources, mainly
acorns and pasture. Acorns provide high-levels of monounsaturated fatty acids (MUFA),
particularly oleic acid. Therefore, leading to an extremely high concentration of MUFA in
pig tissues (over 55 g oleic acid /100 g total FA) [13,14]. Iberian pigs are slaughtered at high
weights and studies have shown a particular lipid metabolism with increased activities of
both lipogenic and desaturase enzymes [15,16]. However, there is a lack of information on
how the metabolic pathways of heavy Iberian pigs fed different fat sources may affect the
TAG structure. Concurrently with this line and within the industry interest of mimicking
meat quality from the outdoor feeding system, monounsaturated fats have been used in the
indoor dry feed. Iberian lard has been used in a traditional way as a good source of MUFA
for a long time until the appearance of modified sunflower oils, that not only provide a
high content of oleic acid, but also provide a low SFA in the same way as the resources that
the pig consumes in free-range [14].

It was hypothesized that feeding heavy pigs with high levels of MUFA can alter
the FA composition of the internal position of the TAG, thus affecting the nutritional
value of their fat as well as their physicochemical properties. The objectives were to (1)
study the effect of a wide range of dietary FA (saturated or monounsaturated-mixed diets
indoors and monounsaturated outdoors from natural resources) given to Iberian pigs on
the triglyceride structure; and (2) study the effect of the FA positional distribution changes
on the rheological properties of the subcutaneous fat.

2. Materials and Methods
2.1. Experimental Design

Castrated males (1 = 210) from the mating of purebred Iberian dams mated to Iberian x
Duroc sires were selected at a live weight of 87.5 £ 5 kg and allocated at random to one
of the three dietary regimens: (1) Indoors feeding with a 4%-lard-enriched diet (LARD)
(8 pens; 10 pigs/pen); (2) Indoors feeding with a 11.5%-high-oleic-sunflower-enriched diet
(SUN) (8 pens; 10 pigs/pen); (3) Extensive feeding in free-range conditions with acorns
and grass (EXT) (n = 50). The indoor pigs were restricted until 87.5 kg (8 months old)
and then fed ad libitum in the final fattening phase with the specific diet, according to
the normal productive practices in Iberian pig production [17] (Tables 1 and 2). Outdoor
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pigs were fed according to the traditional production practices in extensive conditions.
This group is considered a reference in terms of maximum quality standards aimed at
obtaining high-quality meat products. In this case, following the indications of the quality
standard [17], the pigs received a longer period of restriction, in order to reach a weight of
90 kg at 12 months. The last fattening period was carried out in the Mediterranean forest
with acorns and grass [13,14,18]. Food intake was not measured in free-range pigs since it
is difficult to measure in outdoor conditions. However, the weight of the pigs was taken
at different intervals in order to know the amount of feed to provide to indoor groups
and to achieve a similar growth rate to the pigs fed under free-range conditions [12,14,18].
Water was provided ad libitum. At a live weight of approximately 150 £ 7 kg, 8 animals
(castrated males) from each dietary treatment were slaughtered by electrical stunning and
exsanguinated at a local abattoir (Mataderos Salamanca S.L., Mozarbez, Salamanca, Spain;
certified under the Spanish Quality Standard for the Iberian pig R.D. 4/2014) [17]. At
slaughter, back fat samples were taken at the level of the last rib and frozen under liquid
Ny. Samples were transported and kept at —80 °C until analysis (within 1 month).

Table 1. Diet composition.

Growing Fattening
>87.5 kg
Ingredients (%) <87.5kg : :
Lard High-Oleic

Barley NAC 2C/11 32.6 58.5 53.4
Wheat NAC/11 40.0 30.0 30.0
Soy 47 14.3 4.50 4.40
Corn 8.90 - -
Lard 1.00 4.00 1.20
Minerals (corrector) 3.20 3.00 3.00
High-oleic sunflower - 0.00 8.00
Fatty acids (%)

C16:0 24.5 18.7

Cle:l 1.25 1.29

C18:0 13.2 12.5

C18:1n-9 49.8 61.7

C18:2n-6 125 7.10

C18:3n-3 0.43 0.48
EN (M]/kg) 10.29 10.13 10.20
Crude protein (g/kg feed) 157.0 152.6
Crude fat (g/kg feed) 45.0 77.5
Crude fiber (g/kg feed) 50.0 57.2
Ash (g/kg feed) 52.3 63.7

2.2. Fat Extraction and Triacylglyceride Purification

The total lipids of the subcutaneous fat were extracted from 1 g of the outer layer [19].
TAG were purified by thin-layer chromatography (TLC) on 0.25 cm-thick silica gel plates
that were developed with hexane:ethyl ether:acetic acid (75:25:1 by volume) using 30 pL of
total lipids. To detect the position of the TAG, the TLC plates were sprayed with a 0.05%
solution of primuline in acetone:water (8:2 by volume). Then, TAG fractions were scraped
off the plates and eluted from silica with hexane:diethyl ether (95:5 by volume). In each
case, the samples of purified TAG were analyzed by both gas chromatography (GC) to
quantify the fatty acid profile and by lipase hydrolysis to determine the TAG structure [4].



Animals 2021, 11, 2802

40f12

Table 2. Triacylglyceride (TAG), position 2 (sn-2), and position 1 and/or 3 (sn-1,3) fatty acid composi-
tion (g/100 g quantified fatty acids) of fat sources (lard, high-oleic sunflower oil and acorns) used in
the experiment.

Lard High-Oleic Sunflower Oil Acorn

C14:0 1.07 0.871 0.070

C16:0 23.6 18.1 15.3

Cl6:1 1.92 1.95 1.88

TAG C18:0 13.7 12.1 2.68
C18:1n-9 47.1 59.7 61.5

C18:2n-6 12.1 6.78 17.9
C18:3n-3 0.569 0.465 0.705
C14:0 0.005 0.006 0.007

C16:0 68.9 21.1 1.78

Cle:1 2.54 2.48 1.66
sn-2 C18:0 9.05 14.0 0.296
C18:1n-9 16.1 57.2 65.3

C18:2n-6 3.31 4.95 30.3

C18:3n-3 0.127 0.311 0.671

C14:0 1.60 1.30 0.101

C16:0 0.988 16.6 2211

Cl6:1 1.61 1.68 1.99

sn-1,3 C18:0 16.0 11.2 3.87
C18:1n-9 62.6 61.0 59.6

C18:2n-6 16.4 7.69 11.7
C18:3n-3 0.790 0.542 0.722

2.3. Fatty Acid Profile of Subcutaneous Fat

Fatty acid methyl esters (FAME) were obtained from isolated lipids by heating the
samples at 80 °C for 1 h in 3 mL of methanol:toluene:H,SO; (88:10:2 by volume), according
to the procedures outlined by Garcés and Mancha [20]. After cooling, 1 mL of hexane was
added and the samples were mixed. The upper phase was recovered and the FAME were
separated and quantified using a gas chromatograph (HP 6890 Series GC System, Agilent,
Avondale, PA) equipped with a flame ionization detector. Separation was performed with
a J&W GC Column, Innowax Polyethylene Glycol (30 m x 0.316 mm x 0.25 um, Hewlett
Packard). After injection of 5 uL, the oven temperature was raised from 170 to 210 °C at a
rate of 3.5 °C/min, then to 250 °C at a rate of 7 °C/min and held constant for 1 min. The
flame ionization, injector, and detector were held at 250 °C. N, was used as the carrier gas,
no split ratio was used, and FAME peaks were identified by comparing retention times
with those of authentic standards (Sigma-Aldrich, Alcobendas, Spain).

2.4. Triacylglyceride Structure Analysis

For the positional analysis of TAG sn-2 FA, 10 mg of the purified TAG (see above)
were hydrolyzed with 2 mg of pancreatic lipase in a 1 mL Tris—-HCl buffer (1 M, pH 8),
0.1 mL of 22% CaCl,, and 0.25 mL of 0.1% deoxycholate. The reaction was stopped when
approximately 60% of the TAG were hydrolyzed (1 to 2 min) by adding 0.5 mL HCI 6 N.
The lipids were extracted 3 times with 1.5-mL aliquots of ethyl ether, and the reaction
products were separated by TLC, as described previously. The free fatty acids (FFA)
band, representing the positions 1 and 3 (sn-1,3), and the sn-2-monoacylglycerol band,
representing the position 2 (sn-2) of TAG, were scraped off the plate and transmethylated [4].
The validity of the procedure was confirmed by comparing the FA composition of the
original TAG with those remaining after the partial hydrolysis.

2.5. Melting Point of Subcutaneous Fat

The melting point, as determined by the slip point temperature, was performed in
triplicate. Briefly, the lipids were drawn 1 cm into capillary tubes while still warm, and the
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tubes were stored at 4 °C overnight. Then, the tubes were placed vertically in a chilled water
bath, the water temperature was increased gradually (2 °C/min), and the temperature at
which the lipid began to move up the capillary tube was recorded (ISO 6321:2002) [21].

2.6. Texture Profile Analysis

The texture profile analysis (TPA) was carried out using a TA.XT2i SMS Stable Micro
Systems Texture Analyzer (Stable Microsystems Ltd., Surrey, England) with the Texture
Expert programs. Textural tests were carried out at about 22 °C. Briefly, 4 cylinders (1 cm
height and 1.5 cm diameter) were prepared from each subcutaneous sample. A double
compression cycle test was performed up to 50% compression of the original portion height
with a 2 cm diameter aluminum cylinder probe (5 s were allowed to elapse between the two
compression cycles). Force-time deformation curves were obtained with a 30 kg load cell
applied at a crosshead speed of 2 mm/s. The following parameters were quantified [22]:
Hardness (N) = maximum force required to compress the sample; springiness (m) = ability
of the sample to recover its original form after the deforming force was removed; adhesive-
ness (N x s) = area under the abscissa after the first compression; cohesiveness = extent to
which the sample could be deformed prior to rupture; gumminess (N) = force to disintegrate a
semisolid meat sample for swallowing (hardness x cohesiveness); and chewiness (J) = work
required to masticate the sample before swallowing (hardness x cohesiveness x springiness).

2.7. Statistical Analysis

The chemical and TPA analyses were carried out by triplicate. Response data were
analyzed as a completely randomized design, two-way ANOVA, in PROC GLM of SAS v.
9.4 (SAS Institute, Inc., Cary, NC, USA, 2014) [23], with the dietary treatment as the main
effect in the model. The least squares means were computed, and Duncan’s test was used
to separate the means ata p < 0.05.

3. Results and Discussion

The dietary FA composition and positional distribution are important determinants
in FA digestion and absorption [2]. Marked differences in FA positional distribution were
found between the different fat sources of the diets (lard and high-oleic sunflower oil or
acorns) (Table 2). Lard was characterized by having approximately 47.1% of oleic acid
(C18:1n-9) mostly located in sn-1,3; 23.6% of palmitic acid (C16:0) almost fully occupying
the sn-2 position (68.9%), and similar concentrations (12-14%) of stearic and linoleic acids
(C18:0 and C18:2n-6, respectively) located in a 2:1 ratio external vs. internal position.
High-oleic sunflower oil and acorns had a similar concentration of C18:1n-9 (59.7%), which
was located in sn-1,3 (sunflower oil) and in sn-2 (acorns), whereas C16:0 was fully located
in sn-1,3 of acorns and randomly distributed in high-oleic sunflower oil. In addition, C18:0
and C18:2n-6 were also located in a randomized way in high-oleic sunflower oil, and acorns
had the lowest concentration of C18:0 in the sn-1,3 position and the highest concentration
of C18:2n-6, mostly found at the sn-2 location. Previous studies reported high proportions
of sn-2 C16:0 in lard [8,24] and high sn-2 C18:1n-9 in high-oleic sunflower oil [25]. However,
there is scarce information on the triglyceride structure of fat from acorns. Mattson and
Volpenhein [26] found that acorns had high proportions of sn-2 C18:1n-9 and C18:2n-6,
which agrees with the results observed in the present study, but there is no further evidence
to our knowledge.

The effect of dietary treatment on the FA of TAG is presented in Table 3. Proportions
of C14:0, C16:0, C18:0, as well as the total SFA and SFA /PUFA index, were less (p < 0.05) in
subcutaneous fat of EXT pigs than those of the LARD- and SUN-fed groups (Table 3). Sub-
cutaneous fat from pigs fed the LARD and SUN diets had greater (p < 0.05) proportions of
palmitoleic acid (C16:1n-7), but lower proportions of eicosenoic acid (C20:1n-9) (p = 0.015),
than the EXT pigs. Fat samples from EXT pigs had the greatest (p < 0.05) proportions of
MUFA and UI, especially C18:1n-9, whereas the SUN-fed group had intermediate values.
Similar high proportions of monounsaturated fatty acids mainly C18:1n-9 have been re-
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ported by other authors when heavy pigs were fed in extensive conditions with acorns
in comparison to those fed a diet enriched with lard [27] or a fat mixture rich in monoun-
saturated fatty acids (lard + olive oil oleine) [18]. In addition, proportions of all PUFA,
and specifically linoleic (C18:2n-6) and linolenic (C18:3n-3) acids, were greater (p < 0.05)
in the fat from EXT pigs than fat from SUN- and LARD-fed ones. Other authors [18]
reported similar results when free-range pigs were compared to the group receiving a
monounsaturated-enriched diet. However, Ventanas et al. [17] reported lower PUFA in
those pigs fed extensively when compared to others fed lard or a MUFA-enriched diet.
Changes in the PUFA accumulation in tissues between studies may be attributed to the du-
ration of the free-range feeding, since lower periods outdoors have resulted in higher PUFA
proportions in subcutaneous fat [14]. Moreover, the PUFA proportion may be affected not
only by diet, but also by other factors such as the different metabolic use by the pig, since a
preferential use of this kind of fatty acids for energy supply has been reported [28].

Table 3. Effect of dietary treatments on the fatty acid (g/100 g quantified fatty acids) profile of
triacylglycerides of subcutaneous fat.

LARD 3 SUN 4 EXT® MSE?2  p-Value!
C14:0 1.45 a 1.41 a 1.06 b 0.0039 0.0001
C15:0 0.051 ab 0.043 b 0.058 a 0.0001 0.0139
C16:0 24.5 a 23.7 a 182 b 0.1085 0.0001
C16:1n-7 2.58 a 2.58 a 2.05 b 0.0192 0.0001
C17:0 0.273 0.246 0.276 0.0006 0.1203
C17:1 0.311 a 0.270 b 0.271 b 0.0006 0.0135
C18:0 12.4 a 11.2 a 7.87 b 0.2485 0.0001
C18:1n-9 48.0 ¢ 50.7 b 57.9 a 0.3227 0.0001
C18:2n-6 7.71 b 7.13 b 9.44 a 0.0757 0.0001
C18:3n-3 0.603 b 0.546 b 0.706 a 0.0016 0.0001
C20:0 0.199 0.191 0.171 0.0006 0.1245
C20:1n-9 1.22 b 1.19 b 1.38 a 0.0040 0.0002
C20:3n-6 0.510 0.559 0.477 0.0097 0.3945
C20:4n-6 0.144 0.139 0.149 0.0001 0.2024
SFA © 389 a 36.8 a 27.6 b 0.4571 0.0001
MUFA 7 52.1 < 54.8 b 61.6 a 0.3420 0.0001
PUFA 8 8.97 b 8.38 b 10.8 a 0.0837 0.0001
ur’? 71.5 < 73.0 b 84.6 a 0.7588 0.0001
Yn-6/5n-3 10 13.9 14.3 14.3 0.3259 0.2714
SFA /PUFA 434 a 4.40 a 2.57 b 0.0251 0.0001

! Different letters within the same row indicate the difference between groups (p < 0.05). 2 MSE = pooled mean
square error (1 = 8). > LARD: Iberian x Duroc (IB x DR) pigs reared indoors and fed with lard as the fat source.
4 SUN: IB x DR pigs reared indoors and fed on a diet containing high-oleic sunflower oil. > EXT: IB x DR pigs
free-range reared and exclusively fed on acorns and grass according to the traditional feeding system. ¢ SFA
(saturated fatty acids) = C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0,  MUFA (monounsaturated fatty acids) =
C16:1n-7 + C17:1 + C18:1n-9 + C10:1n-9, 8 PUFA (polyunsaturated fatty acids) = C18:2n-6 + C18:3n-3 + C20:3n-6 +
C20:4n-6, ? UI (unsaturation index) = [(C16:1n-7 + C17:1 + C19:1n-9 + C20:1n-9) + 2 x C18:2n-6 + 3 x (C18:3n-3 +
C20:3n-6) + 4 x C20:4n-6], 1° ¥n-6/%n-3 = (C18:2n-6 + C20:3n-6 + C20:4n-6)/C18:3n-3.

The positional distribution of FA within the TAG molecule of pig subcutaneous fat is
shown in Table 4. In contrast to other species, the sn-2 in the TAG of pig adipose tissue was
occupied mainly by C16:0, C14:0, C16:1n-7, and the SFA and SFA /PUFA index (p = 0.0001),
as similarly described by other authors [29,30]. C18:0 was mainly esterified at the sn-1,3
of the TAG (p = 0.0001), as well as C18:1n-9 (p = 0.0001), C18:2n-6 (p = 0.0001), C18:3n-3
(p = 0.0001), C20:1n-9, and the Ul index (p = 0.0001). In the case of C20:0, C20:4n-6, and
Xn-6/%n-3, higher amounts were also observed in sn-1,3 than in sn-2 (p < 0.05), but no
differences were detected in the total proportion of triglycerides among dietary treatments
(Table 3). A similar distribution has been reported earlier in a variety of pig tissues [8,31],
human milk substitutes [32,33], plasma, and milk of rats and rabbits [34], thereby indicating
that FA are not randomly esterified to the glycerol hydroxyl groups in animal fats.
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Table 4. Triacylglyceride sn-2 and sn-1,3 fatty acid composition (g/100 g quantified fatty acids) profile of
subcutaneous fat. Effect of dietary treatment (D), positional distribution (P), and the interaction (D x P).

LARD® SUN* EXT5  MSE? p-Value !
D P D x P

sn-2 354 a 361 a 285 b

C14:0 a 0.0270  0.0001 0.0001 0.0010

sn-1,3 0439 0318 P 0168 ¢
sn-2 0146 2 0117 P 0150 =@
C15:0 13 0016 0.007 0.013 0.0003  0.0281 0.0001 0.2167
sn-2 692 @ 707 @ 550 b
C16:0 13 226 A 123 b 0460 < 24494  0.0001 0.0001 0.0001
sn-2 3.76 3.76 3.69
Cl6:1n-7 13 199 A 200 4 123 b 0.1861 0.0459 0.0001 0.1163
sn-2 0425 b 0367 b 0507 @
C17:0 13 0197 @ 0185 ® 0160 b 0.0020  0.0335 0.0001 0.0009
sn-2 035 b 0321 b 0417 =@
C17:1 13 0280 2 (0244 @ 0198 b 0.0022  0.1898 0.0001 0.0008
sn-2 431 2 301 P 356 P
C18:0 13 164 2 153 2 100 b 0.5657  0.0001 0.0001 0.0001
sn-2 137 b 140 P 272 a
C18:1n-9 13 652 < 681 b 77 a 1.5760  0.0001 0.0001 0.0001
sn-2 333 b 28 b 523 a
C18:2n-6 13 980 b 929 b 114 @ 0.3687  0.0001 0.0001 0.8371
sn-2 0333 b 0297 b (528 @
C18:3n-3 a-13 0727 b 0670 b 0795 a 0.0064 0.0001 0.0001 0.1407
sn-2 0142 2 0130 @ 0.090 P
C20:0 13 0227 0,222 0211 0.0015 0.1195 0.0001 0.6713
sn-2 0.147 b 015 P 0220 @
C20:1n-9 13 176 b 171 b 195 a 0.0054  0.0001 0.0001 0.0309
sn-2  0.456 0.542 0.471
C20:3n-6 13 0537 0.567 0.481 0.0393  0.6832 0.5952 0.9002
sn-2  0.105 0.107 0.135
C20:4n-6 o13  0.164 0.155 0.156 0.0010 05565 0.0012 0.3539
sn-2 778 @ 780 2@ 621 b
6
SFA 13 196 2 163 b 110 < 3.9942  0.0001 0.0001 0.0001
sn-2 180 P 183 P 315 a
7
MUFA 13 692 < 730 b 761 @ 2.6230  0.0001 0.0001 0.0001
sn-2 423 b 376 b 636 A
8
PUFA o13 112 b 107 b 129 a 0.3805 0.0001 0.0001 0.5854
sn-2 274 b 269 b 455 a
9
UI 13 933 b 959 b 1034 @ 6.1958  0.0001 0.0001 0.0001
o sn2 11.7 11.7 11.4
Yn-6/%n-3 onl3 145 14.9 153 12720 0.8128 0.0001 0.4744
sn-2 185 2 208 & 103 b

SFA /PUFA < 25737 0.0001 0.0001 0.0001

sn-1,3 174 @ 153 P 0859
! Different letters within the same row indicate the difference between groups (p < 0.05).2 MSE = pooled mean
square error (1 = 8). 3 LARD: Iberian x Duroc (IB x DR) pigs reared indoors and fed with lard as the fat source.
4 SUN: IB x DR pigs reared indoors and fed on a diet containing high-oleic sunflower oil. > EXT: IB x DR pigs
free-range reared and exclusively fed on acorns and grass according to the traditional feeding system. ¢ SFA
(saturated fatty acids) = C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0, 7 MUFA (monounsaturated fatty acids) =
C16:1n-7 + C17:1 + C18:1n-9 + C10:1n-9, 8 PUFA (polyunsaturated fatty acids) = C18:2n-6 + C18:3n-3 + C20:3n-6 +
C20:4n-6, ° UI (unsaturation index) = [(C16:1n-7 + C17:1 + C19:1n-9 + C20:1n-9) + 2 x C18:2n-6 + 3 x (C18:3n-3 +
C20:3n-6) + 4 x C20:4n-6], '° £n-6/Xn-3 = (C18:2n-6 + C20:3n-6 + C20:4n-6)/C18:3n-3.

The increase of C18:1n-9 proportion in the SUN treatment implied a slight decrease
of C16:0 (p = 0.0045) and SFA (p = 0.0001) in the sn-1,3 position of subcutaneous fat that
did not result in changes in C16:0 or SFA sn-2 when compared to the fat samples from pigs
fed lard-enriched diet. Whereas, the SUN group showed lower C18:0 accumulation in the
sn-2 position (p = 0.0001) when compared to the subcutaneous fat from the lard-enriched
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group. The decrease in the C18:0 sn-2 proportion in fat was also observed in pigs from the
EXT group when compared to fat from the LARD group in the present study. Although the
change implied only around 1% variation, it has been described that the mentioned obesity
and/or cardiovascular diseases related to SFA are truly related to the digested /absorbed
C18:0, therefore dependent on the C18:0 concentration in the sn-2 position [5,6]. A previous
dietary intervention has also been proven to alter FA in the external sn-1,3 position of the
TAG rather than the sn-2 location. Smith et al. [7] observed that the depressing desaturase
enzyme activity increased the concentration of C18:0 located in the external sn-1,3 position
in bovine adipose tissue, but had no appreciable effect on sn-2. In pigs, Segura et al. [10]
observed that the substitution of lard by palm oil as a dietary fat only produced slight
changes in sn-1,3.

The main changes by dietary manipulations on the triglyceride structure in the present
study were detected in the group fed in extensive conditions mainly based on the acorns
intake. Therefore, pigs fed EXT had lower C14:0, C16:0, C18:0, C20:0, and SFA (p < 0.05)
in the sn-2 position compared to those fed LARD or SUN diets. A decrease was also
observed in sn-1,3 of SFA in the EXT group when compared to the others but changes
were of lower magnitude that those observed for the sn-2 position. Moreover, the EXT
group had an increase in sn-2 MUFA (mainly C18:1n-9) (p = 0.0001) and in less magnitude
in sn-1,3 when compared to LARD or SUN. The different changes in the response to the
positional distribution according to diets were confirmed by the statistically significant
interaction effect (Table 4, Figure 1). Therefore, fat from EXT pigs showed a higher decrease
in C14:0 and C16:0 sn-2 and more substantial increase in C18:1n-9 sn-2 than the other groups
(p < 0.05). Other fatty acids (C18:2n-6, C18:3n-3, C20:0, C20:3n-6, and C20:4n-6) did not
show any interaction effect depending on the dietary treatment and positional distribution.

C16:0 C18:0
800 200
700 I = 180
60.0 160

EE L

50.0
400

30.0

20.0 6.0
40
10.0
20
00 + e

C18:1n-9
*5k ok

C20:1n-9 SFA

sn-2 Hgsn-1,3

Figure 1. Interaction Treatment x Position of main fatty acid positional distribution. * (p < 0.05); *** (p < 0.0001) of the interaction
Treatment x Position. LARD: Iberian x Duroc (IB x DR) pigs reared indoors and fed with lard as a fat source. SUN: IB x DR
pigs reared indoors and fed on a diet containing high-oleic sunflower oil (115 g/kg of diet). EXT: IB x DR breed pigs free-range

reared and exclusively fed on acorns and grass according to the traditional feeding system. sn-2 (in 2-position of triglyceride),
sn-1,3 (average of 1- and 3-position of triglyceride). SFA (saturated fatty acids) = C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0,
MUFA (monounsaturated fatty acids) = C16:1n-7 + C17:1 + C18:1n-9 + C10:1n-9, UI (unsaturation index) = [(C16:1n-7 + C17:1 +
C19:1n-9 + C20:1n-9) + 2 x (C18:2n-6) + 3 x (C18:3n-3 + C20:3n-6) + 4 x C20:4n-6].
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The predominant TAG structure accumulated in pig subcutaneous fat was partly
related to the TAG found in the diets. Hunter [35], Mu and Porsgaard [36], and Innis [33]
reported that the FA located at the sn-2 position suffer little alteration during digestion,
with approximately 70% of the FA located in this position conserved in chylomicrons.
Innis and Dyer [37] provided diets differing in the total FA composition and distribution
within the TAG, and reported a limited effect of dietary treatment on liver lipid in piglets,
suggesting the metabolic regulation of FA composition at the sn-2 position. Moreover, the
presence of C16:0 in sn-2 of the dietary TAG in human infants and piglets during lactation
seems to be of importance for the adequate development of the organism [33,38]. Gastric
and pancreatic lipases hydrolyze FA from the external positions of the TAG. With the
positional distribution of dietary fat sources used in the present experiment, the formation
of FFA and 2-monoglycerides during the digestion of fat is markedly different depending
on the dietary fat [30], thus the reassembly of the TAG could not be convergent.

The increase of TAG C18:2n-6 in fat from the EXT group when compared to the others,
was reflected equally in both positions in the present study, thus implying a high regulation
to keep a constant ratio between the external and internal position amounts of this FA.
Couédelo et al. [39] reported that the amount of linoleic acid moved from the sn-2 position
of structured TAG to the sn-1,3 increased during absorption. Further research is needed
to clarify whether this finding on the C18:2n-6 positional structure was completely due to
special feeding conditions or to any other aspect of importance in outdoor production.

The effect of dietary treatments on subcutaneous fat moisture, melting point, and
textural characteristics is presented in Table 5. The moisture content was higher in fat
from the LARD group followed by the SUN and EXT groups. The decrease of fat moisture
from pigs fed diets enriched with MUFA was also observed by other authors [40], who
noted that the more saturated the fat was, the greater the moisture level resulted. The
melting point, hardness, adhesiveness, cohesiveness, gumminess, and chewiness were
least (p < 0.05) in subcutaneous fat of EXT pigs, and greatest (p < 0.05) in fat samples from
LARD-fed barrows. Cohesiveness and gumminess of fat from pigs fed SUN-enriched diets
did not differ from those fed LARD, whereas fat from LARD-fed pigs had greater (p < 0.05)
chewiness values than the other groups.

Table 5. Effect of dietary treatments on moisture, melting point, and textural parameters of pig
subcutaneous fat !.

LARD SUN EXT MSE?3  p-Value?
Moisture (%) 6.5 a 5.7 b 4.80 c 0.16 0.0001
Melting Point (°C) 30.5 a 29.4 b 26.4 c 0.19 0.0001
Hardness (N) 44.1 a 40.6 b 329 c 1.14 0.0039
Adhesiveness (N x s) -041 2 027 P 007 ¢ 0.04 0.0001
Springiness (x10~3) (m) 1.11 a 0.47 b 067 2 020 0.1001
Cohesiveness 0.56 a 0.59 a 0.50 b 0.02 0.0225
Gumminess (N) 25.0 a 24.0 a 16.6 b 1.67 0.0038
Chewiness (x1072) () 2.82 a 1.11 b 1.09 b 0.49 0.0400

L LARD: Iberian x Duroc (IB x DR) pigs reared indoors and fed with lard as a fat source. SUN: IB x DR pigs
reared indoors and fed on a diet containing high-oleic sunflower oil. EXT: IB x DR breed pigs free-range reared
and exclusively fed on acorns and grass according to the traditional feeding system. 2 Different letters within the
same row indicate the difference between groups (p < 0.05). > MSE = pooled mean square error (1 = 8).

The different responses of the melting point in subcutaneous fat from heavy pigs ac-
cording to dietary fats has been reported previously [41]. In fact, the C18:0 content [42] and
the relationship between MUFA and SFA [43] have been considered the best predictors of
the melting point. In a more detailed study [8], in which the effect of positional distribution
within the TAG molecule on selected physical properties of subcutaneous fat of dry-cured
hams was analyzed, the melting point oscillations were related to the concentration and
positional distribution of FA. Therefore, when C16:0 is preponderant in sn-2, the melting
point depends largely on the FA present in sn-1,3. In the present study, an increase of
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slip point was observed when C16:0 or C18:0 were located in sn-1,3 (LARD-fed pigs) and
a decrease when C18:1n-9 was increased in this position. However, when the C18:1n-9
concentration at sn-2 increased, the increase of C18:1n-9 and C18:2n-6 (and no C18:0) in
sn-1,3 caused the slip point to decrease in fat from the SUN-fed and EXT pigs.

Concerning fat hardness, other authors reported that higher proportions of C18:0
and lower proportions of C18:2n-6 fatty acids led to a harder fat [43]. Segura et al. [8]
also observed that hardness was correlated with the FA of external positions of the TAG
molecule. These authors reported positive correlations of hardness with C16:0, C18:0,
and SFA in the sn-1,3 position and negative correlations when C18:2n-6 and total PUFA
occupied sn-1,3. In the present study, the lowest hardness values in fat from EXT pigs was
coincident with the lowest level of C18:0 and the highest levels of C18:1n-9 and C18:2n-6 in
sn-1,3, whereas the opposite was observed in the fat of LARD-fed pigs. Between the fat
from LARD and SUN-fed pigs, the only differences in sn-1,3 were found for C18:1n-9, total
MUFA, and total SFA proportions, which could explain the changes observed on hardness
between these groups.

Other textural parameters have also been related with the fatty acid profile and specific
triglyceride structure. In fat of bovine kidney, Casutt et al. [44] and Nishioka and Irie [45]
found that greater adhesiveness was associated with higher proportions of SFA or C18:2n-
6. Furthermore, Segura et al. [8] observed that adhesiveness was dependent on the FA
proportion in sn-2. A positive correlation was found specifically with C18:0 and C18:2n-6
sn-2, and was inversely proportional to the proportion of C18:1n-9 at sn-2. Therefore, the
decreased adhesiveness of fat from EXT pigs found in the present study may be explained
by the increase of C18:2n-6 and the decrease of SFA in sn-2.

A direct dependence of springiness and cohesiveness, and FA or triglyceride struc-
ture has not been clarified in our results. In fact, Sumena et al. [46] concluded that the
contribution to the texture features, mainly cohesiveness, was the network of predomi-
nantly collagen and small quantities of elastic and reticular fibers, and not the adipocyte
composition itself.

4. Conclusions

The sn-2 position of the triacylglyceride in pig subcutaneous fat is highly regulated
and concentrates C16:0 around 70 g/100 g fatty acids. A moderate dietary enrichment
with C18:1n-9 in mixed diet produce slight changes. However, the extremely high intake
of C18:1n-9 in extensively reared pigs fed mainly on acorns surpasses this regulation,
thereby modifying fatty acids in the sn-2 position. Therefore, extensive feeding increased
C18:1n-9 sn-2 and decreased C16:0 sn-2 proportions when compared to the other dietary
fats. Remarkably, the C18:0 proportion in sn-2 decreased with dietary treatments, but the
C18:2n-6 proportion and positional distribution showed a strong regulation to invariability.
Consequently, Iberian pigs raised extensively would have a more favorable lipid profile
from the human health perspective and distinctive fat rheological properties compared to
pigs fed mixed diets containing lard or high-oleic sunflower oil. The high differences in the
triglyceride structure between groups fed high-oleic diets and extensive feeding would
indicate that this analysis could be an interesting tool for free-range feeding authentication.
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