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Simple Summary: Anaplasma phagocytophilum and Anaplasma ovis, tick-borne pathogens with zoonotic
potential, have been detected in small ruminants in Europe and North America in the past. These
intracellular bacteria cause tick borne fever and ovine anaplasmosis, respectively. The most common
clinical signs of infection are fever, lethargy and anaemia. To date, little is known about the distribu-
tion of these pathogens in sheep and goats from Germany. Therefore, 3178 serum samples of small
ruminants from 71 farms distributed in five German federal states (Schleswig-Holstein, Lower Saxony,
North Rhine-Westphalia, Baden-Wuerttemberg and Bavaria) were examined for IgG antibodies to
Anaplasma species by a cELISA based on the MSP5 antigen. In 70 flocks, antibodies to Anaplasma spp.
were detected in both sheep and goats. Furthermore, a risk factor analysis was carried out by means
of a questionnaire answered by the farmers. Older animals and females were more likely to have
antibodies to Anaplasma spp. Moreover, sheep had a higher probability of becoming seropositive
than goats. Using flocks for landscape conservation and the presence of cats and dogs on the farm
increased the risk of having more than 20% seropositive animals within the flock significantly. Since
antibodies to Anaplasma spp. have been detected in almost all flocks (70/71), it can be assumed that
Anaplasma spp. might be underdiagnosed in small ruminants from Germany.

Abstract: Knowledge about the distribution of Anaplasma spp. in small ruminants from Germany
is limited. Therefore, serum samples were examined from 71 small ruminant flocks (2731 sheep,
447 goats) located in the five German federal states: Schleswig-Holstein (SH), Lower Saxony (LS),
North Rhine-Westphalia (NRW), Baden-Wuerttemberg (BW) and Bavaria (BAV). Antibodies to
Anaplasma spp. were determined by a cELISA based on the MSP5 antigen. A risk factor analysis
at animal and flock level was also performed. Antibodies to Anaplasma spp. were detected in
70/71 flocks without significant difference in the intra-flock prevalence (IFP) between the federal
states. The mean antibody levels from sheep were significantly lower in northern Germany (LS, SH)
compared to west (NRW) and south Germany (BW, BAV). Sheep had a 2.5-fold higher risk of being
seropositive than goats. Females and older animals (>2 years) were more likely to have antibodies
to Anaplasma spp. in one third and one quarter of cases, respectively. Flocks used for landscape
conservation had a five times higher risk of acquiring an IFP greater than 20%. Cats and dogs on the
farms increased the probability for small ruminant flocks to have an IFP of above 20% 10-fold and
166-fold, respectively. Further studies are necessary to assess the impact of Anaplasma species on the
health of small ruminants in Germany.

Keywords: Anaplasma phagocytophilum; Anaplasma ovis; tick-borne fever; ovine anaplasmosis; sheep;
goat; risk factors; landscape conservation
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1. Introduction

Across Europe and North America, sheep and goats can become infected with obli-
gate intracellular bacteria of the genus Anaplasma. Whereas Anaplasma phagocytophilum is
widespread in many European countries, an infection with Anaplasma ovis mainly occurs
in the Mediterranean Basin [1]. However, reports about the focal occurrence of A. ovis in
Central European countries like Hungary, Slovakia and Germany are increasing [2–4]. Both
pathogens are also present in the US sheep population, but detailed information about the
dissemination is lacking [5,6].

Wild ruminants may act as a reservoir for both pathogens in Europe and North
America [3,7–11]. The transmission of Anaplasma spp. usually happens through tick
bites [1]. The main vectors of A. phagocytophilum are Ixodes ricinus in Europe, as well as Ixodes
scapularis, Ixodes pacificus and Ixodes spinipalpis in North America [1,11–13]. Different tick
species belonging to the genera Dermacentor, Rhipicephalus and Hyalomma are considered to
transmit A. ovis [13,14]. In recent years, A. ovis was also found in sheep keds (Melophagus
ovinus) but their vector competence remains doubtful [15,16].

The replication of A. phagocytophilum takes place within the vacuoles of neutrophil
granulocytes and sometimes also lymphocytes [17]. This causes granulocytic anaplasmosis
in many domestic animals, such as horses [18,19], cattle [20,21], dogs [22,23] and cats [24,25],
and also in humans [12]. In small ruminants, A. phagocytophilum results in tick-borne
fever (TBF) and affected animals suffer from high fever, anorexia and dullness [26–28].
Neutropenia and thrombocytopenia are the haematological key findings in affected sheep
and goats [26,29]. Immunosuppression causes a high susceptibility to secondary infections
like Mannheima haemolytica and Bibersteina trehalosi and leads to respiratory distress in
lambs [30,31]. Furthermore, A. phagocytophilum favours co-infections with staphylococcal
bacteria which cause tick-pyaemia with polyarthritis [29]. TBF and co-infections can be
fatal for lambs [29–31]. However, mild courses of A. phagocytophilum were reported but
affected lambs had reduced growth rates [28]. Goats show similar clinical signs to sheep
after an infection with A. phagocytophilum, but to a lesser extent [26,32,33].

Anaplasma ovis mainly affects the ovine and caprine erythrocytes [34] but can also
be found in wild ungulates like roe deer (Capreolus capreolus) and red deer (Cervus ela-
phus) [7,15,35]. Humans rarely become infected [36]. The pathogen causes ovine anaplas-
mosis especially in sheep in poor health [37]. Main clinical signs in sheep are fever, severe
anaemia, extreme weakness, anorexia, and weight loss [34,37–39]. Moreover, haemoglobin-
uria and icteric carcasses were also described in sheep infected with A. ovis [2,39]. An
acute infection results in decreased values of red blood cells, haemoglobin and packed cell
volume [40]. Although the same signs are described for goats as for sheep, A. ovis appears
to be more pathogenic for goats [41].

In Germany, A. phagocytophilum was identified in I. ricinius across the country with
detection rates between 1.9% and 5.4% [42–44]. Although A. phagocytophilum has been well
described in domestic animals [19,20,25,45] and wild ungulates [9,46], knowledge of the
occurrence of the pathogen in German sheep and goat flocks is still limited. A molecular
investigation revealed an infection rate of 4% (n = 255) in sheep from Northern Germany [8]
and a clinical case of TBF was described in a goat from western Germany [47]. Recently,
A. phagocytophilum was detected by PCR in five sheep flocks located in the southern part
of the country [4]. In the same study, A. ovis was identified for the first time in a German
sheep flock.

Due to the lack of information about the occurrence of Anaplasma spp. in the German
small ruminant population, the present study aimed to determine the seroprevalence of
Anaplasma spp. in sheep and goat flocks across Germany by using a cELISA to receive
further information about the dissemination of Anaplasma species. Moreover, a risk factor
analysis was performed to identify potential threats for sheep and goats in Germany to
be exposed to Anaplasma species. This risk factor analysis was based on data from a
standardised questionnaire which was performed with the sheep farmers [48].
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2. Materials and Methods
2.1. Animals

Serum samples from sheep and goats were available from a Q fever study conducted
from winter 2017 to spring 2018, and details were described elsewhere [49]. In brief,
the specimens were collected from 3178 small ruminants (2731 sheep, 447 goats) within
71 flocks located in five federal states: Schleswig-Holstein (SH), Lower Saxony (LS), North
Rhine-Westphalia (NRW), Baden-Wuerttemberg (BW) and Bavaria (BAV) (Figure 1).
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Figure 1. In total, 71 small ruminant flocks were sampled in five German federal states: Schleswig-
Holstein: SH; Lower Saxony: LS, North Rhine-Westphalia: NRW, Baden-Wuerttemberg: BW, Bavaria:
BAV. Districts with participating farms are coloured in blue.

These states have the largest sheep populations within Germany and the farms were
selected based on the owners’ willingness to participate in the study. The number of
required samples to determine the intra-flock prevalence (IFP) was calculated on the
assumption of 3% expected prevalence, 95% confidence interval, 80% power and 5%
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precision. A maximum of 44 animals per flock were sampled. In sheep flocks with goats,
the sample size for the goats was calculated under the same assumptions as for sheep.
Individual ear tag number, species (sheep or goat), sex and age of every sampled animal
were recorded.

2.2. Detection Method

The serum samples were tested for IgG antibodies against the MSP5 protein of
Anaplasma spp. [50] by using a cELISA (Anaplasma Antibody Test Kit, cELISA v2, VMRD,
Inc., Pullman, WA, USA). The assay was performed in accordance with the manufacturer’s
instructions and is approved for the detection of antibodies against A. marginale, A. ovis
and A. centrale in cattle. Results with an inhibition of ≥30% were specified as positive. This
cELISA has already been successfully applied to ovine and caprine sera from areas where
A. ovis and A. phagocytophilum are present [37,51].

2.3. Risk Analysis

Information about farm management and flock health were available from a recently
performed Q fever study [48]. The standardised questionnaire consisted of questions
concerning: (1) general farm indicators, (2) information on livestock kept on the farm,
(3) the husbandry system, (4) flock history, and (5) last lambing season [48].

2.4. Statistical Analysis
2.4.1. Seroprevalence

The IFP of small ruminant flocks among the five federal states were tested for normal
distribution followed by a Kruskal-Wallis test. To examine the distribution of the values
of the individual animals between the federal states, the differences were calculated with
an ANOVA. Subsequently, a test for least significant differences (Fisher’s Least Significant
Difference (LSD) test) was carried out. In the southern federal states (BW, BAV) propor-
tionally more goats were sampled than in the northern and western ones (SH, LS, NRW).
Therefore, goats were excluded to avoid a distortion of the analysis and only the antibodies
to Anaplasma spp. from the sheep are presented in Figure 2 (PROC LOGISTIC, SAS Institute,
Inc., Cary, NC, USA).
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2.4.2. Risk Analysis
Correlation Analysis

First, all variables were verified in terms of their distinguishable content due to the large
number of possible risk factors. A correlation analysis was carried out to support this step.

The following measures were determined and confirmed for correlation: Cramer’s
V > 0.5 for qualitative variables, ANOVA (equal variances) or Kruskal-Wallis test (unequal
variances) (p > 0.05) and coefficient of determination (R2 > 0.1) for qualitative and quan-
titative variables, and the Pearson correlation coefficient (>0.7) for quantitative variables.
Either correlated variables were summarised, one of them removed for further analysis
but considered in the subsequent interpretation of the results, or, if there was a moderate
correlation, both variables were included in the model selection using an interaction term.

Risk Factor Analysis

A risk factor analysis was conducted to identify risk factors for exposure to Anaplasma
spp. at animal and flock level. As almost all flocks tested Anaplasma spp. positive, the
probability of acquiring an Anaplasma spp. seroprevalence of >20% was determined at
flock level. The target variable was dichotomised (positive/negative). Furthermore, the
geographical location was dichotomised (North = SH, LS, NRW; South = BAV, BW) to
reduce the results’ distortion. Due to the different farm management systems in these two
regions, the geographical location of the examined farms was considered as a confounder
and therefore the model was stratified for the two regions.

For risk factor analysis at animal level, the farm was considered as a cluster variable.
Therefore, an extended generalised linear model approach was chosen to take the hierarchi-
cal structure of the data into account. The parameters were estimated by using generalised
estimating equations [52,53] (PROC GENMODE, SAS, Institute Inc.).

For the risk factors at flock level, univariable and multivariable logistic regression
models were provided (PROC LOGISTIC, SAS, Institute Inc.). The model assumes the
predictors (i.e., risk variables) x1, . . . , xn and a binary response variable Y (i.e., anaplasmosis
<=/> 20%), with p = P (Y = 1). A linear relationship is assumed between the predictors and
the logit function of Y = 1. Where ` is the logit function and b is the base of the logarithm:

` = logb
p

1− p
= β0 + β1x1 + . . . + βnxn

Odds ratio (OR), a 95% confidence interval (CI), Akaike Information Criterion (AIC)
at flock level, or Quasi likelihood under the Independence Model Criterion (QIC) at animal
level and p values were calculated for categorical and continuous variables. The Odds ratio
was determined using:

p
1− p

= bβ0+β1x1+...+βnxn

A variable was used for further analysis if it had a p value lower than 20% (p < 0.20)
of the model [54]. Additionally, a distinctive OR < 0.75 or OR > 1.33 and a reasonable
corresponding 95% CI (lCI > 0.001; uCI < 999.99) led to the variable being taken further into
account. In rare cases, a variable took on the same value on all observed farms. As a result,
it was impossible to calculate meaningful ORs and CIs and the corresponding variables
were not considered for the multivariable models. These criteria allowed variables to be
considered for further analysis if they did not have a p value lower than 20% but still had a
distinctive OR. Hence, the multivariable model could be selected from the largest number
of possible risk factors and the probability of wrongly removing influencing factors was
minimised.

A forward selection was carried out with the variables that met the above-mentioned
criteria. The variables which most improved the model fittings and whose addition
achieved the best p values of the models were selected. The addition of the variables to the
models was terminated either if all variables were included or if the addition of variables
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led to no further improvement of the model fittings and the p values. In the ultimate step,
the final models were each examined for collinearity using the variance inflation factor.

3. Results
3.1. Occurrence of Anaplasma spp. in German Small Ruminant Flocks

In total, antibodies against Anaplasma spp. were detected in 70 out of 71 small ruminant
flocks. The IFP ranged between 0% and 97.7%. However, the level of IFP did not differ
in principle between the federal states (p > 0.05). There was only one sheep flock in BAV
without antibodies to Anaplasma spp. (Figure 2).

Overall, the mean antibody levels against Anaplasma spp. in sheep from the northern
federal states, SH and LS, were significantly lower compared to NRW, BW and BAV
(Figure 3). Among the northern federal states, there was no difference in the sheep’s
antibody response (p > 0.05). Moreover, the mean antibody levels were also not statistically
different between BW vs. NRW and BAV vs. NRW (p > 0.05), but sheep from BAV had
significantly lower Anaplasma spp. values than animals from BW.
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3.2. Univariable Analysis
3.2.1. Risk Factors at Animal Level for Exposure to Anaplasma spp.

Sheep had a 2.5 times higher risk acquiring an Anaplasma spp. infection than goats.
Females had a 37% increased chance of being seropositive, but the likelihood of anti-
body detection in young animals (≤2 years) was reduced by one quarter (Supplementary
Table S1).
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3.2.2. Risk Factors at Flock Level for Exposure to Anaplasma spp.

At flock level, only landscape conservation and cats had a significant p-value (Supple-
mentary Table S2). Small ruminant flocks used for landscape conservation were four times
more likely to have an IFP of above 20%. Farms with cats had an almost four-fold higher
risk of having more than 20% IFP than farms without cats.

3.3. Multivariable Analysis
3.3.1. Risk Factors at Animal Level for Exposure to Anaplasma spp.

The results of the multivariable analysis were in line with the univariable analysis and
revealed no additional information (Table 1).

Table 1. Multivariable risk factor model at animal level for exposure to Anaplasma spp.

Variable Category Odds Ratio
(OR)

95% Confidence
Interval p-Value Quasilikelihood under the

Independence Model Criterion (QIC)

Species Goat 2.525 1.443–4.417 0.001 4342.598
Sex Male 1.378 1.029–1.846 0.032
Age >2 years 0.739 0.970–0.970 0.029

3.3.2. Risk Factors at Flock Level for Exposure to Anaplasma spp.

The resulting multivariate model at flock level included four risk factors (Table 2)
which were all significant except for contact to deer.

Table 2. Multivariate risk factor model at flock level for the risk of having an Anaplasma spp. intra-flock seroprevalence of
above 20%.

Variable Category Odds Ratio
(OR)

95% Confidence
Interval

C-
p-Value

LR-
p-Value

Akaike Information
Criterion (AIC)

Landscape conservation No 5.348 1.026–7.877 0.047 0.0002 49.614
Deer No 0.149 0.015–1.461 0.102
Cats No 10.731 1.681–68.514 0.012
Dogs No 166.328 3.606–>999.999 0.009

Small ruminant flocks which performed landscape conservation had about a five times
higher risk of having more than 20% seropositive animals compared to flocks without
this farming purpose. Observations of deer near the flock reduced the risk to less than
one-sixth, while the presence of cats and dogs on the farms increased the probability of
having an IFP above 20% 10-fold and 166-fold, respectively.

4. Discussion

Information about Anaplasma spp. in the German sheep and goat population is
still scarce [4,8] despite A. phagocytophilum having been well described in horses [18,19],
cattle [20,21], dogs [22,23], cats [24,25] and wild ruminants [9,55] from Germany.

4.1. Occurrence of Anaplasma spp. in German Small Ruminant Flocks

In the present study, antibodies to Anaplasma spp. were determined in almost all
small ruminant flocks, indicating a high distribution of Anaplasma species across the
country which is consistent with molecular findings in small ruminants in different parts
of Germany [4,8,47]. The comparison of our serological results with findings from other
studies is hampered due to the different study designs and methods to identify antibodies
to Anaplasma spp. in small ruminants.

However, our results are similar to serological studies from Italy, Hungary and the US,
which also detected a high seroprevalence in small ruminants by using the same cELISA.
In Italy, antibodies against Anaplasma spp. were detected in 69.59% (n = 217) and 45.45%
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(n = 22) of the examined sheep and goats, respectively [56]. In a subsequent study, almost
all sheep (98%) in a single flock (n = 200) from Italy had antibodies to Anaplasma species [37].
A high detection rate was also reported from five sheep flocks (n = 156) in Hungary, with
99.4% seropositive animals [2] and from a sheep flock (n = 357) from Idaho (USA) with
an antibody response to A. ovis of 94.8% [5]. In contrast, the presence of antibodies to
Anaplasma species varied from 0% to 43.3% among eight sheep flocks in California and
Oregon (USA) determined by cELISA and indirect immunofluorescence assay [6]. The
mean antibody levels in sheep from the northern federal states (SH, LS) were significantly
lower compared to the levels from sheep in the West (NRW) and the South (BW, BAV) of
Germany. This might indicate a different exposure to ticks and to Anaplasma species of
sheep and goats in different parts of the country. Despite I. ricinus being widely distributed
across Germany [57], sheep from LS and SH may have less contact to ticks. In these federal
states, sheep play an essential role for coastal protection by grazing on dykes. These areas
usually have a low vegetation which is less preferred by ticks [58,59]. In contrast, sheep
flocks in the South are widely used for landscape conservation and grazing on forest edges
and scrubs representing the natural habitat of ticks [58,59]. This hypothesis is supported
by our findings from the multivariable risk factor analysis. Small ruminant flocks which
performed landscape conservation had a five times higher likelihood of having an IFP
above 20%. Moreover, the focal dissemination of Dermacentor spp. in NRW, BW and
BAV [57,60] as a potential vector for A. ovis and the recent detection of this pathogen in
BAV [4] might also influence the higher antibody response in small ruminants from these
areas compared to animals from Northern Germany.

4.2. Risk Factor Analysis on Animal Level

The likelihood of sheep testing positive for antibodies to Anaplasma spp. was 2.5 times
higher than for goats. This corresponds to observations from other serological studies in
which the percentage of seropositive animals was higher in sheep than in goats [56,61].
Sheep and goats responded differently to A. phagocytophilum regarding the severity of
clinical disease and haematological changes [26]. These might also result in differences in
production and longevity of antibodies against Anaplasma species. Additionally, it might be
possible that ticks are attracted to a varying extent by sheep and goats due to their different
odour. Some tick species might prefer individual mammal species and are attracted by the
specific host’s odour, but I. ricinus seems not to have any preferences [62,63]. However, the
conducted studies did not include goats as targeted species.

Due to the lack of Anaplasma risk factor analyses for sheep or goats in Europe and
North America, we will discuss our outcomes in a broader context. Older animals (>2 years)
and female small ruminants had a higher risk of becoming exposed to Anaplasma spp. in
the current study. In general, older animals might be exposed to ticks for a longer period of
time, which increases the chance of being exposed to Anaplasma species. This is supported
by findings from A. ovis DNA positive goats in France [64]. Animals older than three
years tested positive significantly more often. However, age was not related to Anaplasma
spp. antibody levels in sheep from Hungary [2]. Furthermore, antibodies against A.
phagocytophilum were detected age-independent in horses from the Czech Republic [65].
These conflicting results might occur due to differences in Anaplasma species, environmental
conditions and animal husbandry. Similar to our findings, mares were more likely to be
A. phagocytophilum seropositive than stallions [65]. Generally, male breeding animals are
managed differently compared to females; for instance, males graze on a separate pasture
or are kept indoors. The latter especially reduces the likelihood of tick infestation and thus
the risk of Anaplasma spp. exposure.

4.3. Risk Factor Analysis on Flock Level

The presence of cats on farms significantly increased the risk of Anaplasma spp. expo-
sure in small ruminants. In Germany, there is evidence of A. phagocytophilum infections in
cats. A seroprevalence of 16.7% (n = 326) was detected in cats from LS and BAV [24] and
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a proportion of 23% A. phagocytophilum seropositive cats (n = 956) were reported from a
nationwide study [25]. However, both studies examined sera from pet cats which might
have less access to tick habitats compared to barn cats. Therefore, the infection rate with A.
phagocytophilum might be higher in the barn cat population. This must be validated in the
future. Like cats, dogs were also identified as a risk factor for small ruminant flocks having
an IFP greater than 20%. Their presence on farms increased the risk 166-fold. In total, only
three farms (n = 71) had no dogs and from this group, one flock had an IFP of >20%. This
small sample size might have distorted our findings and probably overestimates the risks
of dogs. Nevertheless, canine granulocytic anaplasmosis has been regularly diagnosed in
Germany and an A. phagocytophilum seroprevalence between 43.2% and 50.1% was reported
within the dog population [22,66]. Finally, dogs and cats are hosts for A. phagocytophilum
but their epidemiological role for Anaplasma spp. infections in small ruminants remains
unclear.

The deer population is considered to be a reservoir for A. phagocytophilum and A. ovis in
several countries [3,7–11,67,68]. Molecular investigations determined high infection rates
of A. phagocytophilum in roe deer (Capreolus capreolus, 98.9%), red deer (Cervus elaphus, 100%),
sika deer (Cervus nippon, 86.4%) and fallow deer (Dama dama, 72.1%) in Germany [9,46,69].
In the present study, the farmers were not asked to distinguish between deer species when
these animals were in the vicinity of their small ruminant flocks. Our findings indicate
that deer did not increase the likelihood of exposure to Anaplasma spp. in small ruminants.
The roe deer population seems to have its specific A. phagocytophilum variants and gene
clusters, which are rarely found in sheep [4,8,70]. In contrast, red deer and sheep might
share some A. phagocytophilum variants/gene clusters [4,8,70,71]. Therefore, the interaction
of Anaplasma spp. between sheep and different deer species needs further clarification.

The observed tick infestation by the farmers and the ectoparasitic treatment had no
effect on the seropositivity of the sheep and goats, which is in line with findings from a
previous study on tick-borne encephalitis virus infections in small ruminants [72]. Although
a significant reduction in tick infestation was achieved after the prophylactic treatment of
lambs with flumethrin, the seroprevalence was not reduced through the treatment [73].
Consequently, other preventive measures are necessary to protect small ruminants from
exposure to Anaplasma species.

Species differentiation by cELISA is not possible and is a limitation of our study.
Hence, molecular investigations are crucial to distinguish between A. phagocytophilum, A.
ovis and possible other Anaplasma species. The recent detection of A. ovis for the first time
in a German sheep flock underlines the necessity of species identification [4]. Furthermore,
A. phagocytophilum is widely distributed within the German small ruminant population,
knowledge on different genetic variants is scarce but the limited numbers of studies
indicate a large diversity of A. phagocytophilum variants [4,8,47]. Therefore, molecular
analyses of Anaplasma spp. isolates from sheep and goats may reveal new insights into the
epidemiological situation and the possible clinical impact of different Anaplasma variants
on sheep and goats in Germany.

5. Conclusions

The present study generated important information about the dissemination of
Anaplasma spp. infection within the small ruminant population in Germany and con-
tributes to a better understanding of the complex epidemiology of anaplasmosis in sheep
and goats. Almost all small ruminant flocks tested seropositive for Anaplasma spp. anti-
bodies. Moreover, due to the wide dissemination of Anaplasma spp. in the German small
ruminant population, an infection with these pathogens is probably completely underdiag-
nosed. Thus, in cases of unspecific clinical signs like high fever, anorexia, anaemia, dullness
and poor growth rate in sheep and goats, veterinarians should rule out an infection with
Anaplasma species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11102793/s1, Table S1: Univariable risk analysis at animal level for sheep and goats to be
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Anaplasma spp. seropositive. Table S2: Univariable risk analysis at flock level for the risk of having
an Anaplasma spp. intra-flock seroprevalence of above 20%.
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