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Simple Summary: Parentage misassignments directly affect genetic gain in traditional breeding
programs. The use of genetic markers facilitates parentage verification. In sheep, microsatellite
markers and single nucleotide polymorphism (SNP) markers have been proposed by the International
Society of Animal Sciences (ISAG) for parentage testing. Since the implementation of genomic
selection, the microsatellite information used for parental testing in previous generations is gradually
being replaced by SNPs. However, parentage verifications should all be performed using the
same technology. A strategy for transitioning from microsatellites to SNP markers, while avoiding
extra genotyping costs, is the imputation of microsatellite alleles from SNP haplotypes. This study
aims to identify the optimum approach, using a minimum number of SNPs to accurately impute
microsatellite markers and developing a low-density SNP chip for parentage verification in the Assaf
sheep breed. The imputation approach described here reached high accuracies using a low number
of SNP markers, which supports the development of a low-density SNP chip that could avoid the
problems of genotyping with both technologies, being a cost-effective method for parentage testing.
This study will help sheep breeders to perform parentage verification when different genotyping
platforms have been used across generations.

Abstract: Transitioning from traditional to new genotyping technologies requires the development
of bridging methodologies to avoid extra genotyping costs. This study aims to identify the optimum
number of single nucleotide polymorphisms (SNPs) necessary to accurately impute microsatellite
markers to develop a low-density SNP chip for parentage verification in the Assaf sheep breed. The
accuracy of microsatellite marker imputation was assessed with three metrics: genotype concordance
(C), genotype dosage (length r2), and allelic dosage (allelic r2), for all imputation scenarios tested
(0.5–10 Mb microsatellite flanking SNP windows). The imputation accuracy for the three metrics
analyzed for all haplotype lengths tested was higher than 0.90 (C), 0.80 (length r2), and 0.75 (allelic
r2), indicating strong genotype concordance. The window with 2 Mb length provides the best
accuracy for the imputation procedure and the design of an affordable low-density SNP chip for
parentage testing. We additionally evaluated imputation performance under two null models, naive
(imputing the most common allele) and random (imputing by randomly selecting the allele), which
in comparison showed weak genotype concordances (0.41 and 0.15, respectively). Therefore, we
describe a precise methodology in the present article to impute multiallelic microsatellite genotypes
from a low-density SNP chip in sheep and solve the problem of parentage verification when different
genotyping platforms have been used across generations.
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1. Introduction

Parentage misassignments directly affect genetic gain when pedigree information is
used in breeding programs by biasing heritability estimates, genetic parameters, breeding
values, and the identification of superior animals for selection [1–3]. Therefore, accurate
pedigree records are essential for a successful genetic improvement in livestock.

The use of molecular markers, specifically genetic markers, facilitates parentage
verification and individual identification by indicating the putative relatedness between
individuals through different approaches (simple exclusion, genotype reconstruction, or
categorical and fractional allocation) [4,5]. In this sense, microsatellite variants have
become one of the principal molecular markers used in livestock in recent decades for
parentage testing. Microsatellites, also known as short tandem repeats (STRs) or simple
sequence repeats (SSRs), consist of motifs of 1–6 base pairs (bp) repeated in tandem. These
variants represent the choice markers for parentage testing in livestock due to their high
polymorphic information content with codominant inherited alleles and easy but not fully
automated allele scoring [6].

At present, microsatellite information for parentage verification tests is being gradually
replaced by single nucleotide polymorphisms (SNPs). Although SNPs are less informative
due to their biallelic nature, which determines the range of markers required for parentage
testing (200–700 SNPs compared to 14–20 microsatellites) [7], there is increasing interest in
using SNP panels in livestock. The advantages of SNP panels include the more straightfor-
ward automation of technology, the lack of a need for interlaboratory calibration, lower
error rates, the uniform distribution of SNP markers across the genome, and recently re-
duced costs in genotyping technology [8–10]. Moreover, SNP panels are increasingly used
in livestock due to the implementation of genomic selection in breeding schemes [11–13].

In the case of sheep, there are two strategies for parentage testing proposed by the
International Society of Animal Sciences (ISAG): a panel of 19 microsatellites [14] and
a panel of 163 SNPs with verified qualities to use in diverse sheep breeds [7]. Notably,
in the Spanish Assaf sheep, most of the animals in the selection scheme are genotyped
with microsatellite markers. Therefore, the need for a consistent and reliable pedigree
database across generations has made the use of microsatellite information an essential
issue. However, since the implementation of genomic selection, with the first genomic
evaluation results obtained in 2020, there has been an annual increase in the number of
animals genotyped with a 50K SNP panel. Some of these animals are genotyped with both
platforms: SNPs and microsatellites. Because parentage verification should be performed
using the same technology applied in previous generations, this situation has resulted
in additional costs for farmers and breeders associations. One possible strategy in the
transition from microsatellites to SNP panels to avoid extra costs in genotyping is the
imputation of microsatellite alleles from SNP haplotypes [15]. Therefore, in this study,
we aimed to identify and evaluate a reliable approach to accurately impute microsatellite
markers from an SNP chip panel to perform parental verifications in sheep. Moreover,
we evaluated the optimum number of SNPs necessary to accurately impute microsatellite
markers to develop a low-density SNP panel for parentage verification.

2. Materials and Methods
2.1. Animal Genotypes and Quality Control

The genetic profiles of 4423 animals from 94 different flocks included in the breeding
program of Spanish Assaf dairy sheep were obtained from the Association of Spanish Assaf
Sheep Breeders (ASSAFE, Zamora). This dataset is composed of animals born between
1997 and 2019, of which 349 were artificial insemination rams, 2071 were natural mating
rams, and 2003 were ewes. These animals were genotyped for the 19 microsatellites
recommended by ISAG for paternity control [14]. A SNP panel with 49,897 markers (50K
SNP chip) was used in the genomic selection program implemented in the Spanish Assaf
sheep breed. As the data were obtained from the Spanish Assaf breeders association
(ASSAFE) database, no direct experimentation on animals was performed in this work.
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According to the Research Ethics Committee of the University of León, formal ethical
approval was not necessary for this case.

Prior to the imputation process, quality control was applied to both sets of markers.
We filtered out microsatellites with call rates below 80% and expected heterozygosity
below a Hardy-Weinberg equilibrium value of 0.095. This value corresponds to a minor
allele frequency (MAF) of 5% for biallelic markers. After quality control, microsatellite
alleles were recoded to fit the variant call format (VCF), following the VCFtools software
specifications [16]. The most common allele for each microsatellite was considered the
reference allele in the population and recoded as “0”. For the rest of the alleles, a consecutive
number was assigned (1, 2, 3, . . . , n) based on the microsatellite allele length. SNP-chip
quality control was performed using PLINK [17], and SNPs with call rates under 95%
were excluded from the dataset. To maintain haplotype diversity in the population, MAF
filtering was not included in the SNP quality control.

2.2. Imputation Procedure

The positions of the microsatellite markers in the ovine genome (Oar_v3.1) were
obtained from the sheep database from Ensembl v.95 (https://www.ensembl.org/Ovis_
aries/Info/Index), and they were verified through the alignment of the primer sequences
to the sheep reference genome using BLAST [18]. The genotypes were phased and imputed
using the phasing method implemented in BEAGLE 5.1 software [19] (50 rounds of burn-
in and 100 iterations) and the genotype imputation method [20] of the same program.
To establish the minimum number of flanking SNPs per microsatellite and the optimal
window length to achieve accurate imputation, several SNP window distances on each
side of the marker were considered (0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45,
50 Mega-bases (Mb)). In the genotype imputation process, pedigree information and the
effective population size (Ne) were also considered.

Given that the animals were genotyped for both microsatellite and SNP markers,
the imputation performance was estimated by a 10-fold cross-validation approach. For
this purpose, we divided the total population into two groups: the training group, which
comprised 90% of the total population, and the validation group, which comprised the
remaining 10%. The microsatellite information was masked in the validation population,
and the genotypes for these markers were imputed by Beagle software using all information
(microsatellite and SNP genotypes and pedigree relationships from the reference dataset
and the genotypes of SNPs in the validation dataset). The process was repeated for
ten rounds, using different animals in the validation dataset in each round, following a
nonparametric bootstrap of 10% of the total samples using a custom Fortran source code.

2.3. Imputation Performance Metrics

To assess the accuracy of the microsatellite imputation, we used the metrics of geno-
type concordance, genotype dosage, and allelic dosage, which were previously defined by
Saini et al. [21]. The genotype concordance (ci) was defined as 0 if neither of the imputed
alleles matched a true allele, 0.5 if one of them matched, and 1 if both alleles matched the
true alleles. Thus, the genotype concordance for a microsatellite (C) was calculated as the
average over all the samples of ci for each microsatellite C = 1

n ∑n
i=1 ci. The microsatellite

genotype dosage (length r2) was defined as the Pearson correlation between the sum of the
two alleles at a specific locus (di = xi1 + xi2) in imputed genotypes (Xd = {d1, d2, . . . , dn})
and the true (Yd = {d1, d2, . . . , dn}) genotypes, being the genotype dosage computed as the
Pearson correlation of the Xd and Yd vectors. The microsatellite allelic dosage (allelic r2)
was calculated as the Pearson correlation for each microsatellite allele length a, which is
defined in the population as Xa = {a1, a2, . . . , an}, being n the number of samples, where
ai = ∑2

j=1 1(xij=a), where j is the number of alleles per sample. In addition, Pearson’s
correlations between the frequencies of the reference microsatellite alleles and the imputed
microsatellite alleles were calculated. Furthermore, for each microsatellite, the imputation
performance was evaluated by computing the expected value for each metric under two

https://www.ensembl.org/Ovis_aries/Info/Index
https://www.ensembl.org/Ovis_aries/Info/Index
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null models: (1) a naive model in which the imputed genotype was selected as the most
common allele per microsatellite and (2) a random model in which the imputed genotype
was randomly selected from the available genotypes at each marker, depending indirectly
on the allelic frequencies [21].

2.4. Population Structure, Effective Population Size, and Parental Relationships

Finally, we used SNP chip information to evaluate different factors affecting impu-
tation accuracies, such as population structure, effective population size, and parental–
progeny pedigree conflicts. To assess the population structure, we estimated the genomic
relationship matrix (GRM) following VanRaden et al. [22], and the genomic relationships
between the individuals were plotted following the Pedigromics pipeline [23], calculat-
ing centrality metrics such as betweenness and closeness coefficients. In addition, the
GRM was also represented, considering the Euclidian distance, and clustered through
McQuitty’s criteria using the PermutMatrix software [24]. The effective population size and
the parental-progeny conflicts in the pedigree were computed using the BLUPF90 family
of programs [25]. Finally, we contrasted the real microsatellite information of the parents,
included in the pedigree, with the imputed microsatellite information of the offspring,
thus simulating a unique genotyping platform (low-density SNP chip) used in the next
generation of individuals. This analysis allowed us to confirm that the procedure proposed
here can be applied to impute microsatellite alleles and confirm the parental–progeny rela-
tionships.

3. Results
3.1. Genotype Quality Control

All microsatellite markers passed the quality control settings fixed in the analysis.
Regarding SNP markers, a total of 3537 markers showed a call rate lower than 95% and
were filtered out. Therefore, a total of 19 microsatellites and 42,665 SNPs were considered
for the imputation procedure. The microsatellites were located along the sheep autosomes
and on average each microsatellite included in this study had 12.73 alleles, ranging from 81
to 297 bp. The information for the microsatellites considered in this work is summarized in
Table 1, and their allele frequencies are presented in Table S1.

Table 1. Characteristics of microsatellite markers used in the present study. For each microsatellite
marker, the microsatellite ID, genome position (Oar_v3.1), number of alleles per marker, and allele
length range expressed in base pairs are shown in the table.

Microsatellite ID CHR 1 Position (bp) Nº of Alleles Range (bp)

INRA006 1 109478015 13 104–134
INRA049 1 1952560108 9 134–166
INRA023 1 86986507 14 194–220

FCB20 2 153680836 14 87–115
AE129 5 78045895 6 135–161
SPS113 7 23419543 11 126–152

ILSTS005 7 92854099 12 190–214
ILSTS011 9 25256863 8 268–282
ILSTS008 9 45990219 2 168–170
McM042 9 51865313 8 81–107
CSRD247 14 15564041 19 205–257
INRA063 14 39826970 18 167–207
SPS115 15 23269440 12 237–255
MAF65 15 30901387 9 119–137

MAF214 16 33667802 16 183–269
CP49 17 14434435 25 76–136
HSC 20 25764806 17 263–297

INRA132 20 4668849 17 146–180
INRA172 22 20603037 12 126–172

1 CHR = chromosome.
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3.2. Imputation Results

To impute the whole population considered in this study, we performed a 10-fold
cross-validation approach, as explained in the Materials and Methods section. Therefore,
ten imputation procedures were necessary to estimate the microsatellite information in the
whole population. Moreover, we assessed the accuracy (concordance, genotype dosage,
and allelic dosage) of the imputed microsatellite markers in the proposed imputation
scenarios (window lengths from 0.5 Mb to 50 Mb) to determine the best haplotype length
for the imputation procedure (Figure 1).
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There was a noticeable increase in the imputation accuracy of the microsatellite mark-
ers for the average accuracy metrics when 0.5 Mb (SNPs/window = 19.11, C = 0.922; length
r2 = 0.890, allelic r2 = 0.788), 1 Mb (SNPs/window = 38.05, C = 0.962; length r2 = 0.941,
allelic r2 = 0.878) and 2 Mb (SNPs/window = 74.05, C = 0.970; length r2 = 0.952, allelic
r2 = 0.899) window lengths were compared (Figure 1; Table S2). Considering a 3-Mb
window length, the addition of new information provided by the SNPs localized in the
surrounding windows (>100 SNPs) slightly improved the imputation accuracy metrics
(C = 0.972; length r2 = 0.957, allelic r2 = 0.901), whereas a stabilization in the imputation
accuracy was observed for wider windows (Figure 1). The number of flanking SNPs
used in the imputation process for the tested window distances is summarized in Table
S3. Considering that the objective of our work was to assess an SNP window length that
provides optimum accuracy for the microsatellite imputation procedure to design an af-
fordable low-density SNP chip to be used for parentage testing by breeders, we considered
2 Mb to be the best haplotype for further analyses. The imputation metrics (concordance,
genotype dosage, and allelic dosage) for the 2 Mb scenario are summarized in Table 2. The
distribution of the allelic r2 values is represented in Figure S1. Using a 2 Mb SNP haplotype,
the Pearson correlation between the real microsatellite allele frequency in the population
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and the frequency of the imputed alleles in these markers was 1.00. These frequencies are
represented in Figure S2.

Table 2. Imputation performance metrics summary for the 19 microsatellites considered in this study using a 2-Mb window,
together with the concordance obtained using the naive and random models.

CHR Position Microsatellite Conc. 1 GD 2 AD 3 Min AD 3 Max AD 3 Naive
Conc.

Random
Conc.

1 86986507 INRA023 0.98 0.97 0.97 0.93 0.99 0.28 0.13
1 109478015 INRA006 0.93 0.87 0.84 0.60 1.00 0.48 0.11
1 195256010 INRA049 0.97 0.97 0.88 0.32 0.98 0.44 0.16
2 153680836 FCB20 0.96 0.94 0.89 0.52 1.00 0.26 0.10
5 78045895 AE129 0.96 0.96 0.88 0.13 1.00 0.47 0.20
7 23419543 SPS113 0.95 0.93 0.79 0.16 0.94 0.34 0.16
7 92854099 ILSTS005 0.99 0.97 0.97 0.97 0.97 0.41 0.11
9 25256863 ILSTS011 0.98 0.96 0.92 0.83 0.97 0.50 0.18
9 45990219 ILSTS008 0.97 0.86 0.80 0.37 0.97 0.67 0.61
9 51865313 McM042 0.97 0.97 0.93 0.70 0.98 0.48 0.17
14 15564041 CSRD247 0.99 0.97 0.97 0.94 1.00 0.34 0.07
14 39826970 INRA063 0.97 0.95 0.82 0.47 0.98 0.33 0.09
15 23269440 SPS115 0.96 0.95 0.90 0.67 1.00 0.33 0.14
15 30901387 MAF65 0.98 0.97 0.92 0.75 1.00 0.36 0.18
16 33667802 MAF214 0.98 0.98 0.86 0.32 1.00 0.54 0.09
17 14434435 CP49 0.98 0.97 0.92 0.84 0.98 0.39 0.06
20 4668849 INRA132 0.98 0.97 0.95 0.84 0.97 0.29 0.11
20 25764806 HSC 0.98 0.98 0.95 0.77 0.99 0.54 0.09
22 20603037 INRA172 0.96 0.95 0.91 0.72 1.00 0.35 0.12

CHR = chromosome; 1 Conc. = concordance; 2 GD = genotype dosage length r2; 3 AD = allelic dosage allelic r2. The definition of each
imputation parameter (Conc., GD, AD) is provided in Section 2.

To validate our imputation results, we analyzed the imputation performance under
two null imputation models: naive imputation, in which imputed genotypes showed an
average concordance of 0.41 (ranging from 0.26 to 0.67) with observed genotypes, and
random imputation, which had an average concordance of 0.15 (ranging from 0.06 to 0.60).
Both validation procedures revealed considerably fewer concordance values using the
two null imputation models than the imputation method proposed in this study, which
validates our approach.

3.3. Population Structure and Effective Population Size

Figure 2 presents the population structure of the 4423 animals included in the study
using the GRM created with the 42,665 SNPs remaining after quality control filtering.
Individuals are represented as nodes in the network, and two animals are connected by an
edge when a pre-defined genomic kinship exists, e.g., parent–offspring. Those animals not
related to the main population were filtered in the representation. Genomic relationships
higher than 0.2 and 0.5 were represented through edges connecting the animals in Figure 2
and Figure S3, respectively. In addition, the GRM, estimated considering the SNPs remain-
ing after quality control filtering, has also been represented through a heatmap (Figure S4),
in which it can be seen that there is not a clear population structure. The Pedigromics
approach to the Assaf breed showed low average values of the betweenness centrality
coefficient (0.003) and the closeness coefficient (0.237), with both ranging between 0 and
1. Centrality coefficients reflect the influence of each vertex over the graph structure. In
this case, closeness centrality is based on the average length of the shortest paths from a
given node to other reachable nodes in the network [26], given how genomic information is
spread in the population [27]. The betweenness centrality coefficient reflects the amount of
control that a node exerts over the interactions with other nodes in the network. Animals
with high betweenness centrality in a pedigree graph could have a role in connecting dis-
connected groups [27]. The low average values of the betweenness centrality and closeness
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coefficient suggest a low relationship among the samples included in the population stud-
ied. However, 21% of the animals had a closeness coefficient higher than the third quartile
of the value distribution (0.24), which is represented by a green-to-red color scale in Figure
2. These samples are distributed in eight related family groups (as shown in Figure 2).
The low degree of relationship between these groups and the rest of the animals suggests
that the population is neither highly related nor structured. Moreover, we estimated the
effective population size of the studied Assaf population, which was 214 animals.
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Figure 2. Population structure using the Pedigromics approach. Genomic relationships (>0.2) among
the individuals are displayed. Each node represents one animal from the population. The color and
the size of the nodes are based on the closeness coefficient, on a green-to-red color scale, with the
higher values represented by a large size and red color.

3.4. Parentage Testing

The pedigree records available for the Assaf sheep population under study integrated
1450 parental–progeny relationships that could be confirmed with the SNP information
located in the 2 Mb around each microsatellite to detect parental–progeny conflicts. A
total of 24 misassignments were found in the pedigree, representing a total of 1.66% of
all the parental relationships analyzed. To ensure that the information from the imputed
microsatellites can help verify the relationship between parents and offspring, we con-
trasted the parental–progeny relationships confirmed through the 19 microsatellites with
the imputed microsatellite information, considering the window length scenarios proposed
above (1–50 Mb). A total of 86.50% of these relationships were confirmed through anal-
ysis of the 19 imputed microsatellite alleles obtained regarding the SNPs located in the
2-Mb surroundings of each microsatellite. Similar values were reached through the 1 Mb
(77.50%) and 3 Mb (85.70%) window lengths, with the 2 Mb scenario, described above as
the best haplotype for microsatellite imputation, being the best rate in terms of parentage
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confirmation. The distribution of the compatible microsatellite alleles between parents and
offspring is represented in Figure S5, together with the distribution of the average number
of compatible microsatellite markers of each individual with the rest of the non-related
population. A total of 99.55% of the parental–progeny relationships tested were confirmed
considering 17 or more imputed microsatellite markers, as can be observed in Figure S5.

4. Discussion

This study presents a precise methodology to impute multiallelic genotypes from bial-
lelic information in sheep. Traditional and new genotyping technologies must be aligned
by applying bridge methodologies, which allow breeders to avoid the additional costs of
re-genotyping historical data. Our study combines microsatellite and SNP markers in an
efficient approach to impute microsatellite markers through SNP haplotypes, achieving
high concordance rates. Therefore, the imputation procedure developed represents a useful
and inexpensive approach to performing parentage verification when different genotyping
platforms have been used across generations. The results from this study will undoubtedly
have a great impact on Assaf sheep breeders, allowing them to perform a transition from
microsatellite maker kinship verification to the use of SNP panels [28]. In addition to
constituting a clear advantage for sheep producers, the imputation methodologies devel-
oped can provide advantages in genomic studies by combining both types of data, such as
genome-wide association analyses (GWAS). In this approach, microsatellite information
could improve the detection of new associations, provide complementary information, and
explain part of the missing heritability for the trait under study [21].

In general, as shown in Figure 1, the accuracy of our imputation results for the three
metrics analyzed (C, length r2, and allelic r2) in the different scenarios tested (SNP windows
ranged between 0.5 and 10 Mb) was higher than 0.90 (C), 0.80 (length r2), and 0.75 (allelic
r2) for all haplotype lengths. The accuracy results presented in this study were higher than
those found in a previous study performed in cattle by Sharma et al. [28], which reached a
concordance of 0.40 and a correlation between real and imputed microsatellites of 0.31. In
addition, we explored not only the viability of performing microsatellite imputation but also
the optimum number of SNPs necessary to perform accurate imputation of microsatellite
information. Assessing the accuracy of the imputation of the optimum number of SNPs is
crucial to defining an appropriate genotyping strategy to minimize genotyping costs [29].
According to Strucken et al. [7], 700 SNP markers are required to reduce false-positive
results in parentage testing, which in our approach correspond to an SNP haplotype length
of 1 Mb, covering 38.05 SNPs per microsatellite, with adequate imputation accuracy rates
(C = 0.962; length r2 = 0.941, allelic r2 = 0.878). However, the imputation performance
reached high accuracy values at an SNP haplotype length of 2 Mb: 0.97 (C), 0.95 (length
r2), and 0.90 (allelic r2), with all accuracy metrics higher than 0.90. The SNPs located in
the 2-Mb window distance used in the imputation procedure have been summarized in
Table S4. These results were slightly higher than those obtained in a human genetics study
by Saini et al. [21], who achieved a genotype concordance of 0.97, a genotypic dosage of 0.91,
and an allelic dosage of 0.86. In our study, accuracy metrics were obtained using a 50K SNP
chip in sheep compared to the SNP data from whole-genome sequencing (27,185,239 SNPs)
with an SNP window of 100 Kb used by Saini et al. [21]. Moreover, the concordance rates
of the null models obtained by Saini et al. (naive (0.72) and random (0.61)) were higher
than those obtained in the present study (naive (0.41) and random (0.15)). This highlights
the genetic diversity of the microsatellite markers in sheep and the high efficiency of the
imputation procedure presented in this work.

The number of haplotypes per microsatellite and the frequency of these haplotypes
did not significantly affect the allele dosage, with correlations of 0.33 and 0.18, respectively.
Therefore, as the number of alleles and their frequency increases, the concordance tends to
rise. However, the correlations between the number of haplotypes of each microsatellite and
the concordance rate of the naive model (−0.45) or the concordance rate of the naive model
(−0.70) were both negatives, meaning that the naive and random models’ concordance
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rates decreased as the number of alleles increased because they depended on the number
of haplotypes of each microsatellite.

The imputation accuracies obtained may be overestimated due to (i) a highly struc-
tured and related population [30] or (ii) a low effective population size [31]. On the
one hand, the population included in the present work, represented using the Pedi-
gromics pipeline (Figure 2), achieved low rates of centrality coefficients (betweenness
coefficient = 0.003 and closeness coefficient 0.237), which suggests that the population is
neither structured nor highly related. In addition, the selection of the reference and test
populations during cross-validation using a nonparametric bootstrap approach avoids
the overestimation of the imputation metrics by avoiding the selection of immediate rel-
ative samples in different groups. On the other hand, the effective population size was
214, higher than in highly selected cattle breeds [28], but in the wide range of effective
population sizes described in sheep breeds, from values of 78 in Romney, 100 in the Wilt-
shire breed, 128 in the Churra breed, to 1317 in Qezel [32–34]. Lower values of effective
population size can lead to an overestimation of imputation accuracy metrics; however,
comparing our concordance rates with the concordance rates obtained in the microsatellite
imputation in Hanwoo cattle carried out by Sharma et al. [28], we achieved more than
double the concordance (0.90 vs. 0.40). Small population sizes reduce the genetic diversity
in the population [35] and would influence the naive and random models’ concordance
rates, increasing their accuracy parameters. Nevertheless, the average of the naive and
random concordance rates for these two models (0.41 and 0.15, respectively) was far lower
than those obtained in a human study by Saini et al. [21], (0.72 and 0.61, respectively). This
difference between the imputation accuracy and the accuracy of the null models could
be because the effective population size and the genetic diversity of the Assaf population
analyzed are large enough to perform an accurate imputation of the microsatellite informa-
tion. In particular, high genetic diversity in the reference population would help achieve
high squared correlations in the imputation process [10,30,36] and reduce the probability
of accurate imputations in the naive and random models. Therefore, the large number
of samples included in this study, and as a consequence the large number of individuals
genotyped in the reference population, could influence the high accuracy rates achieved,
because it is necessary to impute the rare haplotypes [31] accurately and this could also
reduce the concordance rates obtained in the null models. Therefore, this finding explains
the higher concordance rates obtained than those in previous studies on microsatellite im-
putation from SNP data conducted with lower sample sizes in humans [21] (1916 samples)
and Hanwoo cattle [28] (1482 samples).

In summary, the optimum window distance (2 Mb) achieved a high concordance rate
(0.97) in the microsatellite imputation procedure and the highest accuracy in parentage
testing (>0.99). The parental–offspring relationships confirmed by 17 or more imputed
microsatellite markers would ensure a 99.55% success rate, with no risk of parentage mis-
assignments (Figure S5). However, paternity tests with less than 17 imputed microsatellite
markers would increase the risk of parentage misassignments and are not recommended
in the Spanish Assaf population. These results highlight that 2 Mb is the most appropriate
window length for microsatellite imputation and parental verification. Therefore, the devel-
opment of a low-density SNP panel with the 1407 SNPs (2-Mb SNP window) proposed in
this work (Table S4) would also help to reduce the number of kinship errors in the pedigree
due to its lower error rates compared with microsatellite markers and the lack of a need for
interlaboratory calibration and easier automation [8–10].

5. Conclusions

This study presents an effective methodology to overcome the problems presented
by the transition from multiallelic markers (microsatellites) to biallelic markers (SNPs) for
pedigree verification analyses in sheep. The use of a flanking 2-Mb SNP window for each
microsatellite has been shown to achieve high accuracy in the imputation procedure while
providing a cost-effective, low-density SNP chip for breeders. The microsatellite-imputed
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information could be used for individual identification and parentage verification in sheep,
representing a useful approach in the sheep industry to avoid double genotyping.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-261
5/11/1/86/s1, Figure S1: Distribution of the allelic dosage values obtained through the imputation
process; Figure S2: The correlation between the minor frequency of the reference short tandem repeat
(STR) alleles in the population and the frequency of the imputed STR alleles; Figure S3: Population
structure represented through the Pedigromics approach. Each node represents one animal from the
population. Genomic relationships (>0.5) among the individuals are displayed. The color and the
size of the nodes are based on the closeness coefficient, on a green-to-red color scale, with the higher
values represented by a large size and red color; Figure S4: Hierarchically clustered heatmap of the
estimated genomic relationship matrix (GRM) considering the single nucleotide polymorphisms
(SNPs) created with the 42,665 SNPs remaining after quality control filtering. The genetic relationships
are represented through the Euclidian distance on a green-to-red color scale, with the higher values
represented in red; Figure S5: Box plot of the distribution of compatible microsatellite markers
between parents and offspring considered in this study (left; colored in red) and the distribution
of the average number of compatible microsatellite makers of each individual with the rest of the
non-related population (right; colored in blue); Table S1: Allele microsatellite frequencies. This
table summarizes the length and frequency of each microsatellite allele included in this study in the
analyzed population. The allele length is expressed in base pairs (length(bp):frequency); Table S2:
Imputation performance summary in the 19 window sizes considered. This table summarizes the
average of the imputation metrics (concordance, genotype dosage, and allelic dosage) obtained in
the 19 window scenarios considered in this study; Table S3: Number of SNPs located in the different
window sizes surrounding the microsatellites. Number of SNPs located in the surroundings of the
microsatellite markers for the different window sizes during the imputation process in this study;
Table S4: Set of SNPs located in the 2-Mb surrounding of the microsatellites. Worksheet providing
the information of the SNPs located at the 2-Mb window distance of the 19 microsatellites included
in this study.
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