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Simple Summary: Indoor air temperature (IAT) and indoor relative humidity (IRH) are the promi-
nent microclimatic variables. Among other livestock animals, pigs are more sensitive to environmen-
tal equilibrium; a lack of favorable environment in barns affects the productivity parameters such as
voluntary feed intake, feed conversion, heat stress, etc. Machine learning (ML) based prediction mod-
els are utilized for solving various nonlinear problems in the current decade. Meanwhile, multiple
linear regression (MLR), multilayered perceptron (MLP), random forest regression (RFR), decision
tree regression (DTR), and support vector regression (SVR) models were utilized for the prediction.
Typically, most of the available IAT and IRH models are limited to feed the animal biological data as
the input. Since the biological factors of the internal animals are challenging to acquire, this study
used accessible factors such as external environmental data to simulate the models. Three different
input datasets named S1 (weather station parameters), S2 (weather station parameters and indoor
attributes), and S3 (Highly correlated values) were used to assess the models. From the results, RFR
models performed better results in both IAT (R2 = 0.9913; RMSE = 0.476; MAE = 0.3535) and IRH
(R2 = 0.9594; RMSE = 2.429; MAE = 1.47) prediction with S3 input datasets. In addition, it has been
proven that selecting the right features from the given input data builds supportive conditions under
which the expected results are available.

Abstract: Indoor air temperature (IAT) and indoor relative humidity (IRH) are the prominent
microclimatic variables; still, potential contributors that influence the homeostasis of livestock animals
reared in closed barns. Further, predicting IAT and IRH encourages farmers to think ahead actively
and to prepare the optimum solutions. Therefore, the primary objective of the current literature is to
build and investigate extensive performance analysis between popular ML models in practice used
for IAT and IRH predictions. Meanwhile, multiple linear regression (MLR), multilayered perceptron
(MLP), random forest regression (RFR), decision tree regression (DTR), and support vector regression
(SVR) models were utilized for the prediction. This study used accessible factors such as external
environmental data to simulate the models. In addition, three different input datasets named S1, S2,
and S3 were used to assess the models. From the results, RFR models performed better results in both
IAT (R2 = 0.9913; RMSE = 0.476; MAE = 0.3535) and IRH (R2 = 0.9594; RMSE = 2.429; MAE = 1.47)
prediction among other models particularly with S3 input datasets. In addition, it has been proven
that selecting the right features from the given input data builds supportive conditions under which
the expected results are available. Overall, the current study demonstrates a better model among
other models to predict IAT and IRH of a naturally ventilated swine building containing animals
with fewer input attributes.

Keywords: indoor air temperature; indoor relative humidity; swine building microclimate; ML
models; smart farming
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1. Introduction
1.1. Research Significance

Climate change has intensified the impacts against agriculture production over the
past few decades that makes bewilderment on the livelihoods of farmers and consumers. In
the current scenario, producing high quality agricultural products using traditional farming
methodologies is becoming arduous for the farmers. In 2030, the world would have to feed
more than 8 billion people, whereas maintaining sustainable farming methodologies is an
enormous challenge for food security [1]. Economic experts estimate the demand for milk
and meat by 2050 could increase by 70 to 80% over current market demand [2]. However,
extreme weather conditions directly affect the livestock sector in several ways, such as
productivity losses, biological changes, and welfare issues [2]. There is a demand to adopt
modern farming methods such as smart livestock farming (SLF), which are alternatives
to conventional farming methods to address these challenges. SLF can provide optimal
control strategy with the help of inexpensive and improved sensors availability, actuators
and microprocessors, high performance computational software, cloud-based ICT systems,
and big data analytics. The significance of well-managed animal welfare is not narrow to
ethical aspects; it is vital to realize an effective action of provoking animal commodities.

Maintaining a favorable environment in livestock building would assist in producing
qualitative and healthier outcomes. The preeminent intention of adopting the SLF is
to regulate the indoor microclimatic parameters like temperature and humidity at the
optimum level [3]. The characteristics of indoor microclimate immensely influence the
livestock production aspects such as animal health and welfare. The pigs are more sensitive
to indoor climatic parameters than all other livestock, so that a constant temperature and
humidity are the essential factors for their routine activities. In general, 16–25 ◦C of indoor
temperature and 60–80% of indoor humidity are considered the optimal environment
for pigs; such an environment is called a thermo-neutral zone (TNZ) [4,5]. The TNZ
provides the welfare of animals, resulting in enhancing the voluntary feed intake and
minimizing thermal and other environmental stress [6]. Maintaining proper temperature
and relative humidity within the pig’s TNZ is the primary function of a microclimate
controlling system [7]. Modelling the microclimate of livestock building by using outdoor
parameters helps to regularize the indoor environment condition; moreover, it may guide
the preparation of precautions from extreme outdoor conditions.

The indoor microclimate dynamics are majorly affected by the outdoor disturbance
generated from either seasonal or daily meteorological changes being outdoor temperature
variations, humidity changes, rainfall fluctuation, etc. Advanced microclimate models
are vital to make microclimate controllers as smart, which may also act as supplementary
to boost the controllers’ strategy. Heretofore researchers developed several models as
dynamic, steady-state models, heat balance equations, computational fluid dynamics to
predict indoor air temperature (IAT), and indoor relative humidity (IRH). Most of the
previous models were developed by using the theoretical relationship between heat and
mass transfer functions, energy-oriented facets, and indoor fluid dynamics [3,8–10]. Such
mechanisms require complex information such as airflow dynamics, animal information,
and fan specifications to derive the equations. Nevertheless, such kinds of models are
limited to quality, quantity, missing values of data while predicting the naturally ventilated
building’s IAT and IRH. Collecting attributes of those variables mentioned earlier are
convoluted; thus, adopting advanced modeling techniques like artificial intelligence (AI) is
key to simulate the microclimate in easier way.

Machine learning (ML) is a subdivision of AI, has reinterpreted the world in diverse
forecasting fields for the past two decades. The rapid advancement of graphics rendering
and computer synchronization combined is the reason for the excessive growth of ML
popularity than other prediction methods [11]. The ML models are capable of adaptive
learning from the data, and it can improve themselves from subsequent training, trends,
and pattern identification. Such inherent characteristics have driven them to handle
complex investigations effectively. Applying such technologies could analyze the large
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data sets more effectively with relative ease than physical or statistical models. Especially
for determining linear and nonlinear variables that follow time-series such as indoor
microclimate modelling field, the ML-based models have proven it outperformed the
statistical models [10]. Several training algorithms are available for the ML framework,
including linear regression (LR), decision trees regression (DTR), random forest regression
(RFR), support vector regression (SVR), etc., have been developed to handle the regression
and classification problems. Previous studies utilized artificial neural network (ANN) and
ML models to predict the variables related to animal studies. For instance, ref. [10] utilized
an ANN model to predict a swine building’s temperature and relative humidity, whereas
the growth performance of swine was analyzed with decision trees and support vector
machines by a previous study [12]. Likewise, ref. [13] predicted the skin temperature of
pigs based on the indoor parameters using an MLP. A previous study [14] employed MLP
and classification and regression trees (CART) algorithms to predict piglets’ core, skin, and
hair-coat temperatures.

1.2. Research Objectives

Through achieved significant certainty, ML models have been utilized to work out dis-
putes such as prediction, classification, clustering, etc. Nevertheless, there is a knowledge
gap in utilizing advanced modelling techniques to simulate the microclimate of a livestock
building [15]. The current study tries to evaluate the performance of usual ML models
while simulating the IAT and IRH of a swine building.

Research on the depth and breadth of the applications and the state of the art of
ML-based predictions of IAT and IRH of pig barn containing animals are scarce. Several
models have been successfully developed and implemented to predict microclimate of
other smart farm buildings like a greenhouse and plant factory. Like the other smart farm,
ML models could be adopted in order to regulate the microclimate of pig buildings after
optimization and calibration. Previous researchers mostly develop a single model and
simulate the attributes and validation; therefore, the model’s robustness becomes a dispute.
For instance, Ref. [10] employed a multilayered perceptron with a backpropagation model
to predict the IAT and IRH of a swine building, and evaluate the model without comparison
with other models. In contrast, refs. [16,17] simulates the indoor microclimate using the
autoregressive integrated moving average (ARIMA) model. A comprehensive comparison
and analysis between the other popular model performances lack such literature; those
studies build a model and validate it quickly. Therefore, the leading intention of the current
study is to build and investigate extensive performance analysis between popular ML
models in practice used for IAT and IRH predictions.

Typically, indoor climatic parameters of any animal buildings are dependent variables
that are subject to significant change by the external environmental parameters. Unlike
mechanically ventilated buildings, naturally ventilated swine buildings indoor IAT and
IRH aerodynamics eminently vulnerable to outdoor climate and biological factors of the
animals present [18]. The outdoor climate data is accessible and ubiquitous, whereas
collecting biological data involves skin temperature, behavioral changes, health aspects,
etc. It is not limited to predicament data acquisition; it also affects the physical equilibrium
and homeostasis of the animals while collecting data [19]. Considering the above factors,
the current research used accessible factors such as external environmental data without
considering the biological factor of the animals to simulate the models.

Determination of input data is the bottom line of any modelling criteria yet crucial
consideration in diagnosing the exquisite functional form of ML models. Choosing the right
input variables involves improving the accuracy of the algorithm; also, it dominates the
calculation speed, training time, training complexity, comprehensibility, and computational
effort of the simulation [20–22]. The present study analyzes the performance of the models
with feature-selected datasets and available datasets; it also suggests the optimal input
selection to feed the models from the available datasets.
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2. Materials and Methods
2.1. Arrangement of Swine Building

The current study was conducted at a model swine building located in Gyeongsang
National University, Jinju-Si, the Republic of Korea, with 2.9 m width × 5.4 m length
× 0.05 m thick roofs as shown in Figure 1. The GPS coordinates for the site was 35◦09′6.26”
N, 128◦05′43.838” E [23]. The heat conduction is diminished by over 40% while utiliz-
ing slatted floors compared to the concrete floors in a naturally ventilated pig barn [24].
The model swine building used polypropylene copolymer slatted floors to decrease heat
transmission, and the total area of the barn was 13.26 m2 (1.32 m2/pig). Ten crossbreeds
(American Yorkshire × Duroc) pigs with an average body weight of 86.4–142.4 kg were
grown in the model swine building throughout the experimental time. The trial building
incorporates an automatic infrared sensor-based feeder (robust military automatic feed
system, South Korea) integrated with the body weight and body temperature estimation
scales. The pigs were offered nutritionally balanced dry feed to meet apparent digestible
energy (DE) 3500 kcal/kg twice a day (09:00 h and 17:00 h). The pigs were provided 1.5–3.2
kg/day/pig of dry feed, as suggested by the Institutional Animal Care and Use Committee
(IACUC) of Gyeongsang national university during the overall experimental time.
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2.2. Sensor Data

A research-grade weather station (model: MetPRO, Producer: Campbell Scientific,
Logan, UT, USA) was installed at 26 m away from the model swine building to collect the
outdoor climatic variable, used as a predictor/independent variables. A digital air tem-
perature and humidity sensor (CS215-L), a wind sentry set with an anemometer (03002-L),
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rain gage with a 6-inch orifice (TE525-L), pyranometer (CS300-L), barometric pressure
Sensor (CS100), and reflectometer (CS655), such customized sensors were comprised to the
weather station for the data reception. A data logger (model: CR1000X), which is capable
of storing the data from the sensors and parallel transportation of data to the computer,
was annexed to the weather station. Indoor microclimatic parameters were recorded by
utilizing a livestock environment management system (LEMS, AgriRoboTech Co., Ltd.,
Gyeonggi, South Korea), which is capable of acquiring data from inside of pig barn and
store the accumulated data. The collected data considered as the response variable for the
current study. However, the weather station and LEMS data were stored in the database
management system for analysis purposes. The complete details of the sensor, sensor
placement, and equipped devices are disclosed in Figures 1b and 2 in a detailed manner.
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Figure 2. Devices used for data acquisition of indoor (LEMS) and outdoor (Campbell scientific
weather station) including sensor extensions; data transmission process during LEMS and CR1000X
data storage to the primary database.

For this study, each computerized sensor data was stored at 10-min intervals according
to the experimental design from 17 September to 5 December 2019. During the experimental
time, pigs were grown in the model swine building. Since the final goal of this research
is to optimize the actuators, the model pig barn was considered as a prototype. Overall,
2 response variables and 10 predictor variables data were used for the analysis. The details
of collected independent and dependent variables with unit, mean, minimum, maximum,
and standard deviation (SD) are explained in Table 1. The indoor microclimate may have
affected by the biological factors of the animals such as body temperature, water drinking,
feed intake, etc. Since the primary objective of the study is modeling the indoor parameter
by considering the outdoor parameters, the current research averts biological factors.
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Table 1. Descriptive statistics and profile information of the outdoor/predictor data collected
from weather station (Campbell scientific weather station) and indoor/response data collected
from LEMS sensors.

S. No Attribute Elements/Predictors (Unit) Mean ± SD SE Min Max

1 WD Wind direction (◦(Azimuth)) 205.0 ± 67.43 0.632 29.4 337.2
2 WS Wind speed (m/s) 0.644 ± 0.379 0.003 0.11 4.55
3 OAT Outdoor air temperature (◦C) 12.858 ± 6.729 0.063 −2.7 31
4 ORH Outdoor relative humidity (%) 72.746 ± 22.082 0.207 13.78 96.9
5 AP Outdoor air pressure (Pa) 1013.916 ± 5.495 0.051 976 1024
6 RFA Rain fall amount (inch) 0.0057 ± 0.059 0.0005 0 1.71
7 SLR Solar irradiance (Wm-2) 124.722 ± 199.280 1.869 0 889
8 SMC Soil moisture content (%) 17.325 ± 1.722 0.016 13.88 29.62
9 ST Outdoor soil temperature (◦C) 13.851 ± 6.229 0.058 2.622 30.26

10 CNR Net radiation (Wm-2) 31.037 ± 149.867 1.406 −161.8 645.1

S. No Attribute Elements/Response (Unit) Mean ± SD SE Min Max

1 IAT Indoor air temperature (◦C) 18.294 ± 5.22 0.048 6.7 34.2
2 IRH Indoor relative humidity (%) 70.122 ± 12.179 0.114 25.5 92.3

2.3. Approach
2.3.1. Multiple Linear Regression Model

Multiple linear regression models (MLR) are commonly used empirical models to
solve nonlinear problems. These models are also popular among the fields such as weather
prediction, electricity load, energy consumption, heat transfer, business forecast, etc. [25–28].
Generally, regression models examine the relative influence of the independent variables
or predictor variables on the dependent variables or response variables. MLR models
are popular among the forecast because of their non-complex structures, calculation inter-
pretability, and the ability to identify outliers or anomalies in given predictor variables. An
MLR model can be expressed by the following equation [25–28],

Y = a0+a1X1+a2X2+ . . . + aiXi + ε (1)

where Y is the response (output) variable; X is the predictor (independent) variable (from X1
to Xi); a is the regression coefficient to predict Y (from a1 to ai); a0 is the intercept/constant
of the model; and the ε is the noise or random error of the model.

2.3.2. Decision Tree Regression Model

Unlike other ML models that are considered as a black-box model while opera-
tion, decision tree regression (DTR) models are own opposite characteristics among the
other models. Compared to the other supervised algorithms, DTR is popular for the
self-explanatory/rule-based by nature; data interpretability for a response subject to the
predictor variables could formulate visually [11]. DTR models were initially developed to
solve the classification problem and manipulated to solve the classification and regression
problem (CAR). The schematic diagram of the DTR model is shown in Figure 3a, where
each node represents features, each branch of the tree represents a rule/decision, and
each leaf of the tree represents regression values. The DTR models predict the output by
calculating the probability of an outcome based on the feature influence. DTR uses the
entropy function and information gain as the relevant metrics of each attribute to determine
the desired output. Entropy/information entropy is used to measure the homogeneity of
an arbitrary collection of samples. The information gain is applied to calculate the amount
of an attribute, which contributes to estimating the classes. The entropy and information
gain can be expressed by the following Equations (2) and (3) [11,29,30],

H =−
CT

∑
c=1

pTi· log2(pTi) (2)
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Information Gain (X, T)= H(T)−
n

∑
i=1

|Ti|
|T| ·H(Ti) (3)

where pTi is the proportion of data points; CT is the total number of classes; Ti is the one
sample among all the n subsets in which the total amount of training data T was divided
due to an attribute X.
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2.3.3. Random Forest Regression Model

The random forest (RF) algorithm is commonly known as an ensemble of random-
ized decision trees (DTs). RF algorithm has a similar operational method of DTs since
RF lain on the same family of algorithms [14,31,32]. Consistently the use of DTs is un-
certain since those are prone to overfitting, not accurate with large datasets, resulting in
poor outputs for an unseen validation set. To mitigate the limitations of DTs, RF was
deployed to determine the CAR interpretations more efficiently. Simply, RF is a collec-
tion of DTs where all the trees depend on a collection of random variables. However,
RF models function as a “black box” since there is a limitation to observe each tree. Un-
like DT, the interpretability of prediction is limited to visualization. In RFR, the output
is predicted by averaging output of each ensemble tree. Subsequently, RFR produces
a threshold for generalization error, which could be helpful to avoid overfitting. The
generalization error of RFR is estimated by the error for training points, which are not
contained in the bootstrap training sets (about one-third of the points are left out in each
bootstrap training set), called out of bags (OOB) error. The process of OOB estimation
is the reason behind their non-overfitting nature since OOB is indistinguishable from
the N-fold cross validation. The RFR has the following essential characteristics [14,31,32],
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• Selecting random features,
• Bootstrap sampling,
• OOB error estimation to overcome stability issues, and
• Full depth decision tree growing.

After all, the predictions of all trees are averaged to produce final predictions. The
mathematical expression of RFR could be expressed as the following equation [14,31,32],

Y =
1
M

M

∑
i=1

H(Ti) where H(Ti) from DTR (4)

where M is the total number of trees, Y is the final prediction; H (Ti) is a sample in training set.

2.3.4. Support Vector Regression Model

In 1992, Vapnik proposed a supervised algorithm named support vector machine
(SVM), which was regarded as a generalized classifier [33]. Initially, the SVM algorithm was
widely used to solve the classification problem in the name of support vector classification
(SVC). Later Druker [33] extended it to solve the nonlinear regression problems with the
name of support vector regression (SVR). A hyperplane that supported by a minimum
margin line and a maximum margin line along with the support vectors were the conception
elements of SVR [31,34,35]. The schematic diagram of the one-dimensional support vector
regression used for regression showed in Figure 3. Let consider the available dataset with
n samples, where x is the input vector, and y is the corresponding response variable of the
dataset. The SVR generates a regression function to predict the y variable. This process can
be expressed [31,33–35] by

y = f(x)= ω·ϕ(x)+b (5)

where x is the input of the datasets;ω and b are the parameter vectors; ϕ(x) is the mapping
function, which is introduced by the SVR. In case of a multidimensional dataset, y can have
unlimited prediction possibilities. So, a limitation for the tolerance introduce to solve the
optimization problem [31,34,35], which could be expressed as

Minimize : 1
2

∣∣∣∣ω2
∣∣∣∣+C

n
∑

i=1
(ξi+ξ

∗
i )

Subject to


yi − (ω·ϕ(x)+b) ≤ ε+ξi
(ω·ϕ(x)+b)− yi ≤ ε+ξ

∗
i

ξi, ξ∗i ≥ 0, i = 1, . . . , n

(6)

where ε is the minimum and maximum margin line/sensitivity zone of the hyperplane;
ξ and ξi* are the slack variables that measure the training errors which subjected to ε;
and C is the positive constant. The slack variables were utilized to minimize the error
between the sensitive zones of hyperplane. The sensitive zones can also be expressed using
Lagrange multipliers, the optimization techniques to solve the dual nonlinear problem can
be rewritten as the following equation [31,34,35],

min : 1
2

n
∑

i=1

n
∑

j=1
(ai − a∗i )

(
aj − a∗j

)
K+ε

n
∑

i=1
(ai+a∗i )−

n
∑

i=1
yi(ai − a∗i )

Subject to


n
∑

i=1
(ai − a∗i )= 0

0 ≤ ai, a∗i ≤ C, i = 1, . . . , n

(7)

where ai and ai* are the Lagrange multipliers which subject to ε; K is the kernel function.
The kernel function use the kernel trick to solve the nonlinear problems using a liner
classifier. Generally, linear, radial basis function (RBF), polynomial, and sigmoid are used
kernel functions of SVR models [31,34,35]. The current study chose RBF as kernel function
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to optimize the SVR during the simulation after a random test of other kernel functions.
The RBF kernel function can be expressed as the following equation,

K(i, j)= exp
(
− G |x i − xj

∣∣∣∣2) (8)

where, G referred as the structural parameter of RBF kernel function. Finally, the decision
function of SVR can be expressed as

f(xi) =
n

∑
i=1

(ai − a∗i )K(xi, xk)+b (9)

2.3.5. Multilayered Perceptron—Backpropagation Model

Multilayered perceptron (MLP) along with the backpropagation (BP) technique is
popular among ANN models [13,27,31]. Many researchers have proven and proposed that
the MLP based model achieved dominant results in climate forecasting. The basic architecture
of MLP is shown in Figure 3d. MLP is a feed-forward network with the three significant
elements called the input layer as the first layer, hidden layer as the middle layer, and output
layers as the final layer; each layer includes several neurons. The input layer represents
the dimension of the input data and the hidden layer has n neurons, which is the fully
connected network to the outputs (IAT and IRH). An MLP with three layers can be expressed
mathematically by a linear combination of the transferred input metrics as [13,27,31]:

yp= f0

[
n

∑
j=1

wkjfh

(
m

∑
j=1

wjixi+wjb

)
+wkb

]
(10)

where yp is the predicted output; f0 is the activation function for the output neuron; n is the
number of output neurons; wkj is the weight for the connecting neuron of hidden and output
layers; fh is the hidden neuron’s activation function; and m is the number of hidden neurons.
wji is the weight for the connecting neuron of input and hidden layers; xi is the input variable;
wjb is the bias for the hidden neuron; and wkb is the bias for the output neuron [13,27,31].

The BP is a training technique, which again train every neuron with the updated
weight and bias. This process involves in reducing the prediction error of the output layer.
The updated weight can be expressed by the following expression

W∗X= WX − a(
∂Error

∂WX

)
(11)

where WX* is the updated weight, WX is the old weight, a is learning rate, ∂Error is the
derivative of error with respect to the weight. The error function for the BP training can be
expressed as

E =
p

∑
p=1

Ep =
p

∑
p=1
·

n

∑
k−1

(
yp − ya

)2
(12)

where E is the error of the input patterns; Ep the square difference between the actual value
and predicted value.

2.4. Choosing Input Datasets

As mentioned in the sensor data part, the outdoor and indoor variables were collected
from the computerized sensors and it is explained along with mean ± standard deviation,
standard error, and minimum and maximum values in Table 1. It has been reported that
recording every meteorological parameter is complicated due to the unavailability or uncer-
tainty of the sensor’s measurements. In this study, three different input datasets named S1,
S2, and S3 were used to assess the models, which are illustrated in Table 2. To achieve the
desired accuracy, it is essential to generate a reference for selecting the parameters that need
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to be recorded. The current study considers the use of different datasets as a useful method
to ascertain the appropriate data that may have fewer variables and significant implications
for predictions indeed [20,21,36,37]. So that the current study adopts the Spearman rank
correlation coefficient approach in order to extract the best features, which is a commonly
followed method to explore the relationships between attributes. Such correlation test
aids to describe whether the relationship between independent and dependent factors are
strong or not. Having a strong relationship, those independent attributes can be considered
as a strong predictor of dependent attributes. The heat correlation results between IAT and
IRH with other independent variables were showed in Figure 4. According to the rank
correlation tests, the high correlated attributes were selected and used as dataset S3. The
current study considers that ±0.5 as the high correlation value to choose as the S3 input set.
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Table 2. Summary of the attributes which were chosen to train the model named S1, S2, and S3
during IAT and IRH predictions.

Model Datasets Description Response

S1 WD, WS, OAT, ORH, AP, RFA,
SLR, SW, ST, CNR

All Collected parameters from weather
station IAT

S2 WD, WS, OAT, ORH, AP, RFA,
SLR, SW, ST, CNR, IRH

All Collected parameters from weather
station including indoor parameters IAT

S3 OAT, ORH, ST, SLR, IRH

Selected feature by using correlation
matrix (Including positive and negative

relationship by using Spearman rank
correlation coefficient approach)

IAT

S1 WD, WS, OAT, ORH, AP, RFA,
SLR, SW, ST, CNR

All Collected parameters from weather
station IRH

S2 WD, WS, OAT, ORH, AP, RFA,
SLR, SW, ST, CNR, IAT

All Collected parameters from weather
station including indoor parameters IRH

S3 ORH, SLR, CNR IAT

Selected feature by using correlation
matrix (Including positive and negative

relationship by using Spearman rank
correlation coefficient approach)

IRH

2.5. Assumptions for Modeling

Throughout the aggregate workflow of this study has been explained systematically
in Figure 5. As a first step, overall data sets were collected and stored at 10 min intervals
from the sensors. At next, the stored data were subjected to the preprocessing methods as
missing data analysis, feature extraction, data normalization and training and testing data
partition. In collected datasets, there was no missing data/false data, so this research does
not consider any techniques such as linear interpolation, k nearest neighbor algorithm, etc.,
for imputing the missing values [38]. The rank correlation test was used to select the right
features from the available information, as mentioned in the input data part. A dataset
with a different range of attributes used as input for any ML model will reduce the model’s
learning efficiency and prediction capabilities. Since our attributes were in different ranges,
the input data was mapped to a specific range to neglect the complications mentioned
earlier. Minimum–maximum normalization is a popular preprocessing technique for ML
modeling, which rescales the input features in the range of −1 to 1 or 0 to 1 [39,40]. The
current study adopted the min-max normalization with the range between −1 (min) to
1 (max) to rescale the data, which could be expressed by the following equation [39–41],

xnor =
2 ∗ (x− x min)

(x max − xmin)
− 1 (13)

where xnor is the normalized data, xmax is the maximum of original data, xmin is the
minimum of original data, and x is the original data. After the normalization applied to
the input data, each attribute was changed to the −1 to 1 range. Though the ML models
have been relatively efficient and popular in recent decades, training methods and the
amount of feeding data have contributed to their success. More often researchers used 70:30
(training:validation), 80:20, or 90:10 partition to simulate the models [11,13,27,42,43]. The
data partition scale for training and testing to be given during the simulation is assumed to
be still unexplained and without any principled reason-based calculation. The current study
utilized 80% of the data for training and 20% of data for testing. Hyper parameters such as
learning rate, hidden layers, number of leaves, etc., are the key phenomenon, which may
directly manipulate the behavior of any machine learning algorithms. Optimization/fine-
tuning is a method to choose proper hyper parameters for desirable outcomes [14,31,44].
The current study adopted the grid search method to select the best parameters to model
the machine learning algorithms. The range of tuned hyper parameters was shown in
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Table 3. The critical hyper parameters of all other ML models except MLR model were fine-
tuned using the grid search method. In the next step, the abovementioned methodologies
were followed before the training, and the training results were documented. During the
testing phase, the IAT and IRH were predicted for 20% of untrained data sets using all ML
algorithms. The results of both non-optimized and optimized models were documented
to observe the performance of the models during the training and testing phase. At the
final step, the model prediction results during the training and testing were evaluated
by using mean absolute error (MAE), root mean square error (RMSE), and coefficient of
determination (R2) methods, which could be expressed by the following equations [11,27,31],

MAE =
∑n

i=1|yi−pi|
n

(14)

RMSE =

√
∑n

i=1 (y i−pi)
2

n
(15)

R2 = 1− ∑n
i=1(yi − pi)

2

∑n
i=1

(
yi −

1
n ∑n

i=1 yi

)2 (16)
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Table 3. The range of critical hyper parameters tuned during the prediction.

Algorithms Hyper Parameters Distribution (Range)

Multiple linear regression (MLR) - -

Multilayered perceptron (MLP)

Number of Hidden layers *Ud (1, 4)
Number of Hidden neurons Ud (1, 250)

Learning rate Adaptive
Solver Adam

Activation function Relu

Decision tree regression (DTR)
Maximum depth Ud (1, 100)

Minimum sample split Ud (2, 10)
Minimum sample leaf Ud (1, 4)
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Table 3. Cont.

Algorithms Hyper Parameters Distribution (Range)

Support vector regression (SVR)

Kernel Radial-basis function
C Ud (1, 100)

Gamma 1
Epsilon 0.1

Random forest regression (RFR)

Number of trees Ud (10, 250)
Minimum number of
observations in a leaf Ud (1, 30)

Number of variables used in
each split Ud (1, 4)

Maximum tree depth Ud (1, 100)
* Ud stands for uniform discrete random distribution from a to b.

All the ML models used for this study were developed using Python platform (Python
version 3.7) and other statistical works were done with BM SPSS Statistics (version 26, IBM,
Armonk, NY, USA).

3. Results

During the training phase and validation phase, the evaluation results were catego-
rized by the input data type, model performance, and model comparison. In part named
input datasets, the results obtained using S1, S2, and S3 datasets were deliberated. The
performance of each model during the training and testing is illustrated in the model
performance part. The percentage difference in all models’ results and the percentage
difference between the models were discussed in the model comparison part.

3.1. Input Datasets

During the IAT predictions, the S3 dataset outperformed S2 and S1 during the testing
phase. As mentioned above, in this part, the performance of models with three input data
and the deviation percentage one among other datasets during the testing phase were
assessed. All ML models outperformed when using S3 data. For instance, MLP obtained
best performance (with S3) (R2 = 0.9913; RMSE = 0.4763; MAE = 0.3582) during the IAT’
testing predictions. Since the MLP performed better than other models during IAT’s testing
results, it has been chosen for inter comparison between S1, S2, and S3. When compared
to S2 and S1 results of MLP’s testing results, S3’s MAE was less by 5.2%, RMSE was less
by 11.2%, and R2 was higher by 0.2%; when compared to S2 and S3 testing results, S3’s
MAE was less by 26.13%, RMSE was less by 33.15%, and R2 was higher by 0.6%. Likewise,
the MLR obtained the least performance among other models during the IAT’s testing
prediction (R2 = 0.9354; RMSE = 1.332; MAE = 1.061). When compared to S2 and S1 testing
results of MLP, S3’s MAE was less by 13.3%, RMSE was less by 14.1%, and R2 was higher
by 2%; when compared to S2 and S3 results, S3’s MAE was less by 1.5%, RMSE was less by
1.7%, and R2 was higher by 0.2%. Overall, both in the training phase and the testing phase,
the results were the same that S3 performed better results during temperature predictions.

As with IAT prediction, IRH prediction also followed the same results for the input
datasets. For instance, RFR obtained best performance (with S3) (R2 = 0.9594; RMSE = 2.429;
MAE = 1.470) during the IRH predictions. When compared to S3 and S1 results of RFR,
S3’s MAE was less by 8.5%, RMSE was less by 7.96%, and R2 was higher by 0.7%; when
compared to S2 and S3 results, S3’s MAE was less by 31.8%, RMSE was less by 27%,
and R2 was higher by 2.6%. Likewise, the MLR obtained the least performance among
other models during the IRH prediction (R2 = 0.780; RMSE = 2.429; MAE = 1.470). When
compared to S3 and S1 results of MLP, S3’s MAE was less by 18.8%, RMSE was less by
16.5%, and R2 was higher by 10%; when compared to S2 and S3 results, S3’s MAE was
less by 7.4%, RMSE was less by 7%, and R2 was higher by 4%. The complete results of
prediction models along with different datasets and different phases during IAT and IRH
predictions were shown in Tables 4 and 5.
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Table 4. The performance assessment of all the models along with S1, S2, and S3 input data set
during IAT predictions.

S1

Models
Training Validation

MAE * RMSE * R2 * MAE RMSE R2

MLR 1.2022 1.5202 0.9159 1.2254 1.558 0.9076
MLP 0.2832 0.3808 0.9947 0.3719 0.5301 0.9893
RFR 0.1271 0.2088 0.9984 0.3574 0.5807 0.9871
DTR 0.1939 0.3351 0.9959 0.4979 0.899 0.9692
SVR 0.6731 0.9865 0.9645 0.7302 1.0878 0.9549

S2

Models
Training Validation

MAE RMSE R2 MAE RMSE R2

MLR 1.0772 1.3557 0.9331 1.087 1.3551 0.9301
MLP 0.3968 0.54 0.9893 0.4459 0.621 0.9853
RFR 0.126 0.2013 0.9985 0.3641 0.5903 0.9867
DTR 0.1933 0.3194 0.9962 0.5003 0.8539 0.9722
SVR 0.5846 0.8204 0.9755 0.6097 0.8613 0.9717

S3

Models
Training Validation

MAE RMSE R2 MAE RMSE R2

MLR 1.061 1.332 0.9354 1.0721 1.3352 0.9321
MLP 0.2628 0.3434 0.9957 0.3535 0.4763 0.9913
RFR 0.1165 0.1833 0.9987 0.3282 0.5283 0.9893
DTR 0.1648 0.2683 0.9973 0.4595 0.8081 0.9751
SVR 0.4936 0.7333 0.9804 0.5331 0.7911 0.9761

* MAE—Mean absolute error; RMSE—Root mean square error, R2—coefficient of determination; Bold
fonts represents top performed results with the corresponding data set.
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Table 5. The performance assessment of all the models along with S1, S2, and S3 input data set
during IRH predictions.

S1

Models
Training Validation

MAE RMSE R2 MAE RMSE R2

MLR 4.9058 6.2697 0.7361 5.1502 6.589 0.7019
MLP 3.3399 4.503 0.8638 3.5312 4.7917 0.8423
RFR 0.5931 0.9607 0.9938 1.5963 2.6222 0.9527
DTR 0.8047 1.3866 0.987 2.0807 3.5936 0.9113
SVR 0.2385 0.6668 0.997 2.4453 4.028 0.8886

S2

Models
Training Validation

MAE RMSE R2 MAE RMSE R2

MLR 4.4651 5.8377 0.7712 4.6572 6.0534 0.7484
MLP 3.238 4.4669 0.866 3.4088 4.7072 0.8478
RFR 0.7206 1.1475 0.9911 1.9392 3.0872 0.9345
DTR 1.6783 2.635 0.9533 2.6972 4.3607 0.8694
SVR 0.8696 1.1269 0.9914 2.1301 3.4244 0.9194

MLR 4.1603 5.4935 0.7974 4.3323 5.653 0.78058
MLP 2.4782 3.5452 0.9156 2.5856 3.7046 0.9057
RFR 0.5494 0.8847 0.9947 1.4708 2.429 0.9594
DTR 0.7985 1.3353 0.988 2.0876 3.6876 0.9066
SVR 0.1671 0.3896 0.9989 2.2302 3.8161 0.9

3.2. Model Performance

In IAT predictions, most of the models performed well during the training time in
RMSE and R2. For instance, the results of all the models RMSE except MLR were less than
1 ◦C during the training phase, but the MLR model produces over 1 ◦C; similar results
were obtained in MAE results. The training accuracy was high in the RFR model with
S3 data than MLP, but in the testing phase, the results were vice versa. In terms of the
percentage difference between RFR’s training and testing, results were 64.5% less in MAE,
65% less in RMSE, and 0.9% less in R2. However, MLP’s training and testing results were
25% less in MAE, 27% less in RMSE, and 0.4% less in R2. Interestingly, the MLR performed
lower results than all other model outputs during training and testing, but the MLR’s
training and testing results were 1% less in MAE, 0.2% less in RMSE, and 0.3% less R2.
Though the differences between training and testing results were less in MLR, it performed
significantly less accurate predictions than other models. The comparison of evaluation
metrics between all the models during the training phase and testing phase is illustrated in
Figure 6, where the MLP and RFR simulated similar results during the testing phase even
though the training results between them were vice versa.

In IRH predictions, the training results followed a similar pattern as IAT predictions.
As like IAT training results, other models than MLR followed by MLP predicted IRH
adequately. The RMSE results of RFR, DTR, and SVR were less than 1.5%, whereas MLP
and MLR, respectively were 3.54 and 5.49, which were considerably high. Likewise, the
MAE results were also high in MLR and MLP while in the training period. From the
reference of Table 5, SVR performed better outcomes during the training phase, and the
testing results were poor (R2 = 0.9; RMSE = 3.8161; MAE = 2.2302). Compared to the
training and testing deviations of RFR, a considerable difference was noticed (92% high in
MAE, 149% high in RMSE, and 10% less in R2). Even though the MLR and MLP performed
poor outcomes, the difference between training and testing accuracy was not significant
(MLR and MLP results followed by 4% and 4.15% was high in MAE; 2.8% and 4.3% was
high in RMSE; 2.16% and 1% was low in R2). The compression of evaluation metrics
between models are clearly illustrated in Figure 7.
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Though the deviation between training and testing results was considerably high in
RFR, the current study considered RFR model performance results during testing was
satisfactory, among other models with the proof of Table 5 and Figure 7 (R2 = 0.9594;
RMSE = 2.429; MAE = 1.47). The difference between training and testing accuracy for RFR
was 62.6% in MAE, 63% in RMSE, and 3.6% in R2. Overall, RFR was considered a better
model than DTR for IRH prediction.

3.3. Model Comparison

From the comparison results of IAT prediction, the MLP model performed better
results during the testing phase. Since the training was supervised learning so that the
testing results were treated as a substantial evaluation. Even though RFR’s training results
and testing MAE were better than MLP. In training RFR results shows that MAE (55% low),
RMSE (46.6% low) and R2 (0.3% higher); in testing, MAE (7% low). In terms of testing
RMSE (10% lower) and R2 (0.2% higher) where MLP overcame RFR. Other than those
models, SVR, DTR, and MLR performed 3rd, 4th, and 5th, respectively. When compared
with MLP results, SVR was 50% higher in MAE, 66% higher in RMSE and 1.5% low in R2;
DTR was 22% higher in MAE, 68% higher in RMSE, and 1.6% lower in R2; MLR was 203%
higher in MAE, 180% higher in RMSE and 6% less in R2. The overall comparison between
actual IAT values and predicted values along with the coefficient of determination values
are illustrated in Figure 8. Likewise, IRH’s evaluation results (refer Table 5) illustrated that
RFR performed better results (R2 = 0.9594; RMSE = 2.429; MAE = 1.4708) during the testing
phase. Unlike IAT prediction performance, the models performed comparably less than the
high-performance model. RFR, DTR, and SVR models produce better results during the
training time, yet testing results are non-reliable except for RFR prediction. For instance,
SVR’s training accuracy was better than RFR (MAE was 69.5% less, RMSE was 56% less,
and R2 was 0.4% high); however, it was lagged to make reliable predictions using test
data. When considering the R2 between SVR and RFR, 6% was still on a colossal scale
to negate. Thus, all models except RFR have created a baffling circumstance to scale the
stability. The performance of MLP models, which was considered the best performer in IAT
predictions, was also turned to contradict during IRH predictions. The overall comparison
between actual IRH values and predicted values along with the coefficient of determination
values are illustrated in Figure 9. The comparison results between actual and simulated
by RFR with S3 for IAT prediction IRH prediction including the zoomed view (randomly
selected) from the simulation results are illustrated in Figure 10. However, according to the
prediction result, DTR, MLP, SVR, MLR retained 2nd, 3rd, 4th, and 5th places, respectively.
Compared to the RFR’s outcomes, DTR was 42% high in MAE, 51.8% high in RMSE, and
5.5% less in R2; MLP was 75.7% high in MAE, 52.5% high in RMSE, and 5.6% less in R2.
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The SVR was 51.6% high in MAE, 57% high in RMSE, and 6% low in R2; MLR was 194.5%
high in MAE, 123% high in RMSE, and 17.8% low in R2. The aforementioned percentage
differences were calculated from the high-performed model.
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4. Discussion
4.1. Model Selection

Modeling is a commonly used mechanism for quantification of swine buildings’
microclimate [16,45,46]. The present study examined the popular ML models to predict IAT
and IRH of a naturally ventilated swine building. According to our results, MLP performed
better during IAT predictions, and RFR performed optimal during IRH prediction. Separate
models can predict individual dependent variables, but IAT and IRH are parallel dependent
variables of indoor microclimate, so those should predict together. Predicting these using
two different models may require more time and computer usage. In addition, predicting
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dependent variables with single models is a straightforward and non-complex approach.
A previous study [11] adopted four advanced ML models to predict the soil temperature
(ST) in different depths, where the extreme learning machine (ELM) model outperformed
in 5, 10, and 50 cm depths. Whereas in 100 cm depth, the MLR model performed better
than the ELM models. That study compromised on the negligible amount of error metrics
while considering the overall prediction performance and concluded that the ELM model
is preferable for the ST predictions [11]. Therefore, when re-examining the results of this
study, the RFR efficiency in the IRH predictions was exceptional indeed. Nevertheless,
MLP and RFR simulated similar outcomes during IAT forecasts. Especially in terms of
R2, 0.2% is a slight difference and could be negligible. Although MLP’s are considered
optimal, their performance during IRH forecasts is not reliable. The performance of RFR
and MLP has a non-consequential divergence during IAT predictions. Compared to MLP,
RFR is versatile, fast during training, and is a less complex approach since it requires less
parameter tuning. Considering the above criteria, the current research contemplates that
RFR models are the optimal solution for predicting the IAT and IRT of a swine building.

As mentioned earlier, models other than MLR were trained and tested without opti-
mization. The models were then optimized, and the appropriate hyper parameters were
selected, re-trained, and tested. Both results were compared, and the best results were
chosen as the best performance of the particular model. The current study observed all the
utilized ML models performed better prediction after the optimization, which is concurring
with previous literature [14,31,44]. Selecting the right hyper parameters has been demon-
strated as the basic mechanism not only in the learning of ML models but also in obtaining
optimum output utilizing the possible capability of the algorithms. Current research has
observed that such over-fitting problems are solved when it is subjected to an optimization
technique. Especially in DTR, the over fitting issue occurred more often if it was not
optimized due to the nature of the algorithm. Choosing the right hyper parameter might
lead to overcoming such training problems and producing a desirable prediction. All the
experiments show that the mathematical model (MLR) is significantly lower than the ML
models. Nevertheless, those are easy to handle and forthright, but it is limited to a scenario
of extrapolating beyond the range of data. In such cases, computational models (ML) have
an advantage over traditional statistical models since they could optimize according to
data deviation.

4.2. Model Accomplishment

Providing optimal indoor environmental conditions provides optimum welfare and
productivity in any livestock [7,12,46]. Pigs are highly sensitive to humidity more than
temperature. However, relative humidity below 40% may contribute to excessive dustiness,
which broadens the mortality rate of pigs [5,7]. Although many researchers have modelled,
thermal conditions in the barn, temperature, and energy consumption, etc., research on
humidity predictions are comparably scarce among livestock research. Current research has
taken a substantial step toward addressing those deficiencies. For instance, [16] proposed
an ARIMA based statistical model to predict the animal-zone temperature in weaned
piglet buildings. The final finding of the indoor air temperature predictions was R2 = 0.134,
which is comparably low than this study (R2 = 0.9913), though the RMSE of that literature
was 0.204 (our proposed model = 0.476). However, the R2 and RMSE are the different
characteristics to compare directly since those metrics are depend upon the data quality,
amount, and deviation of the data. On the other hand, more attributes are given as input
for any model increase the complexity of the model indeed. Previous literature used many
complex predictor variables such as the volume of air extracted, power of ventilation
system, the temperature of the heating plate, area of air outlet through the fan, live weight
of the animal, and time of animal activity to predict IAT. Such parameters are difficult to
collect; also, it requires more human resources. Even though the previous studies used
such attributes, the R2 values prove that the current model could perform better results.
In 2018, [17] used the same ARIMA model to predict animal zone temperature in a swine
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building, and the final R2 for the temperature prediction was in the range of 0.52–0.81,
which is significantly less than the current proposed model. Both of the previous literature
was simulated only the IAT of swine buildings, but the current study proposed both IAT
and IRH predictions since both are essential to control.

In 2007, [3] was build a dynamic computer model for predicting indoor temperature
and humidity of a pig barn. The R2 was 0.91 for IAT and 0.68 for IRH; besides, this
literature validates the model only for two days. Previous author [45] designed a CFD
based model to internal environmental conditions in a full-scale commercial pig house
containing animals. Similar to the previous literature, [45] also used two days for model
validation, and the RMSE was 5.52 for IAT and 17.5 for IRH. Model validation is imperative
for indoor microclimate models to ensure the robustness and performance of the models;
consequently, understand the reliability. When compared with our study, both the accuracy
and validation was limited in the previous studies. Likewise, [10] proposed an ANN-
based MLP model to predict the temperature and relative humidity of a swine building.
The study validates the model by MSE and MAE; the IRH’s RMSE was better than our
proposed model (RMSE = 0.8310), whereas the IAT’s RMSE was inferior (RMSE = 0.8095).
Still, previous literature has no evidence of R2, which is an essential metric to evaluate the
data extrapolation. Overall, the current study evaluated the performance between popular
ML models and a statistical model during the prediction of IAT and IRH of a naturally
ventilated swine building with three different input sets.

5. Conclusions and Application

Despite the advanced technologies at present, providing a comfortable environment
for livestock is still considered a struggling phenomenon. Forecasting models are essential
professionals for improving environmental control in livestock buildings. The current
study successfully predicts IAT and IRH using simple and powerful ML models. In the
end, this literature attempts to conclude with the following key points,

• The RFR models performed the most well among all the forecasting models used in
this research most probably. RFR model has competent results in especially for IRH
predictions compared with others. In addition, model-based control algorithms need
to be developed for the real-time implementation of RFR based prediction integration
in hardware.

• As seen in the results, the ML models used in this study have been more efficient
than the statistical model. The statistical model was unable to make predictions
when the data distribution is beyond the limit. Such models are limited to focus
only on the linear relationship between variables. On the other hand, the ML models
perform better with input variables that are complex and nonlinear due to the self-
adaptive nature. ML models deem to be the optimal solver for the livestock indoor
microclimatic control; since there are high fluctuations in the indoor environment of
pig buildings and are very pervasive in general.

• The present study predicted IAT and IRH from accessible attributes without consider-
ing the animals’ biological factors. However, biological factors may affect the indoor
climate still predictions of RFR have proven to simulate the parameters convincingly.
Using accessible data rather than biological and non-accessible data can be better
able to sustain human resources such as money, human needs, time, and technical
resources such as computer usage, algorithm learning time, and model complexity.

• Selecting the right features from the given input data builds supportive conditions
under which the expected results are available. Proving a greater number of attributes
as input not only stifles the algorithm but also creates a confounding infrastructure
to making the expected decisions. Witnessing the results of this study suggests that
selecting the collect features is the most necessary process when modelling any indoor
microclimate variables.

• The current study considered MLP, RFR, DTR, SVR, and MLR models to predict IAT
and IRH. Recently deep learning (DL) and extreme learning machines (ELM) models
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are also enormously used to solve prediction problems. Such kind of models could
be compared with the ML models in future studies. In addition, current literature
used limited data due to the complication of collect indoor climate data for supervised
learning. So in the future, big data for many cycles will be used to suggest an ultimate
solution for controlling the indoor microclimate of swine buildings.
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