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Simple Summary: Bamei mutton sheep is a Chinese domestic sheep breed developed by crossing
German Mutton Merino sheep and indigenous Mongolian sheep for meat production. There is large
variation in the reproductive abilities of Bamei mutton sheep. After recent artificial selection, the
average lambing rate of the Bamei mutton nucleus group was over 150%. We used the FST (Fixation
Index) and XP-EHH (The Cross-Population Extended Haplotype Homozygosity) statistical approach
to detect the selective sweeps between high- and low-fecundity Bamei mutton sheep groups. JUN
(JUN proto-oncogene, AP-1 transcription factor subunit), ITPR3 (inositol 1,4,5-trisphosphate receptor
type 3, PLCB2 (phospholipase C beta 2), HERC5 (HECT and RLD domain containing E3 ubiquitin
protein ligase 5), and KDM4B (lysine demethylase 4B) were detected that are potential responsible for
litter size. These observations provide a new opportunity to research the genetic variation influencing
fecundity traits within a population evolving under artificial selection.

Abstract: Bamei mutton sheep is a Chinese domestic sheep breed developed by crossing German
Mutton Merino sheep and indigenous Mongolian sheep for meat production. Here, we focused on
detecting candidate genes associated with the increasing of the litter size in this breeds under recent
artificial selection to improve the efficiency of mutton production. We selected five high- and five low-
fecundity Bamei mutton sheep for whole-genome resequencing to identify candidate genes for sheep
prolificacy. We used the FST and XP-EHH statistical approach to detect the selective sweeps between
these two groups. Combining the two selective sweep methods, the reproduction-related genes JUN,
ITPR3, PLCB2, HERC5, and KDM4B were detected. JUN, ITPR3, and PLCB2 play vital roles in GnRH
(gonadotropin-releasing hormone), oxytocin, and estrogen signaling pathway. Moreover, KDM4B,
which had the highest FST value, exhibits demethylase activity. It can affect reproduction by binding
the promoters of estrogen-regulated genes, such as FOXA1 (forkhead box A1) and ESR1 (estrogen
receptor 1). Notably, one nonsynonymous mutation (p.S936A) specific to the high-prolificacy group
was identified at the TUDOR domain of KDM4B. These observations provide a new opportunity
to research the genetic variation influencing fecundity traits within a population evolving under
artificial selection. The identified genomic regions that are responsible for litter size can in turn be
used for further selection.

Keywords: Bamei mutton sheep; whole-genome sequencing; litter size; selection signal analy-
sis; breeding
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1. Introduction

Sheep were the first grazing animals bred for their meat. Mutton still has major
economic value for sheep production. The domestication of sheep was initiated approx-
imately 9000 years ago in Southwest Asia, in present-day also in Iran and Turkey [1].
Sheep husbandry began 5000–5700 years ago in the Mongolian Plateau in China [2]. China
has various sheep resources, including 42 indigenous sheep breeds [3]. These breeds are
well adapted to the local plateau and desert environments [4], but the meat yield of these
Chinese indigenous sheep breeds is so poor that it fails to meet the increasing consumer
demand for mutton.

From the 1960s, in Bayannur of the Inner Mongolia Autonomous Region, German
Mutton Merino sheep were imported and bred with indigenous Mongolian sheep to
improve their meat yield. After 40 years of selection and improvement, in 2007, a novel
breed, Bamei mutton sheep, was created and showed good genetic stability [5]. Under
grazing conditions, Bamei mutton sheep is well adapted to dry and chilly winters in
the Inner Mongolia Autonomous Region. Approximately 57,000 sheep of this type are
raised mainly in this region. The lambs of Bamei mutton sheep grow faster than those of
Small-Tail Han sheep. In terms of the live weight, they can reach about 53 kg at the age
of 8 months and their average daily gain was found to be 199.54 g from 4 to 8 months of
age under intensive feeding patterns [6]. Bamei mutton sheep are an important male breed
in commercial hybrid sheep production in Bayannur [7]. The meat trait performance of
this breed is excellent, but there is large variation in its reproductive abilities. The average
lambing rate of the Bamei mutton nucleus group was over 150% [8]. The maintenance of
high levels of fertility is vital for efficient sheep production [9]. Therefore, improving the
level of fecundity of this new breed is a major focus of breeders.

Litter size has a major impact on desirable economic traits of sheep (e.g., meat, wool,
and milk). Increasing litter size can improve the efficiency of sheep production [9]. The
main factors affecting sheep fecundity include ovulation, uterine capacity, and placental
efficiency. Litter size is a complex trait, but some major genes affecting prolificacy have been
discovered in recent years. The FecB (bone morphogenetic protein 1B receptor, BMPR1B)
gene was the first major gene found to affect prolificacy. Subsequently, many major
genes, such as FecX (bone morphogenetic protein 15, BMP15), FecG (growth differentiation
factor 9, GDF9), FecL (glycosylation enzyme beta-1,4-N-acetyl-galactosaminyltransferase 2,
B4GALNT2), and LEPR (leptin receptor), were also reported [10,11].

As reported in Science, the first high-quality 2.61 Gb reference genomes of domestic
sheep were sequenced and assembled in 2014. They can help in identifying genomic
signatures of domestic traits in sheep [12]. By performing whole-genome resequencing
on phenotypically divergent sheep populations, some selective sweeps were identified
relating to important traits targeted by artificial selection during domestication, such as
horn morphology, [1,13], coat color [14], tail morphology and fat deposition [3,15,16] and
variation of thoracic vertebrae [17].

Regarding reproductive traits, using selection tests in pigs, previous studies demon-
strated some strong selective signals belonging to the TGF-β signaling pathway [18,19]. In
addition, in goats, the genes regulating seasonal reproduction and litter size have been
specifically selected [20,21]. Moreover, some fecundity-related genes revealed a strong
selection signature in sheep from Ethiopia and Europe [22,23].

Against this background, we performed whole-genome resequencing of 10 ewes
selected to have extreme fecundity and sweeping analysis to identify the underlying
variants and genes responsible for the litter size of Bamei mutton sheep under the influence
of artificial selection.

2. Materials and Methods
2.1. Animals and DNA Preparation

In this study, we collected whole-blood samples from the jugular vein of 10 Bamei
mutton sheep at the Xianghe Bamei mutton sheep-breeding park (Bayannur, China). These



Animals 2021, 11, 157 3 of 13

blood samples were placed in EDTA vacutainer tubes for storage. These ewes were about
3 years old and selected from among 500 sheep. Only ewes with litter size data showing
that they had given birth more than three times were sampled. The selected ewes were
grouped into two categories based on the phenotype of litter size (monotocous sheep giving
birth to only one lamb in three consecutive parities and polytocous sheep giving birth to
more than two lambs in two consecutive parities). Then, genomic DNA was extracted from
200 µL of sheep blood using a QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany), in
accordance with the manufacturer’s instructions. DNA quality and integrity were assessed
by spectrophotometry (OD260/280) and 1.0% gel electrophoresis.

2.2. Genome Sequencing

High-quality DNA for Illumina sequencing library construction was randomly sheared
into small pieces (300–400 bp). After end-repair, “A”-tailing and ligating to Illumina
sequencing adapters, 400–500 bp ligated products were amplified by ligation-mediated
PCR (LM-PCR). Then, 2 × 100 bp paired-end sequencing was carried out on an Illumina
HiSeq 2500 sequencer and the original data were analyzed by Illumina HiSeq Control
Software (Illumina, San Diego, CA, USA).

2.3. Read Processing and Variant Calling

NGS QC Toolkit v2.3.3 was used for quality control of the raw reads following three
steps [24]. First, reads with >70% low-quality bases (score < 20) in the FASTQ files were
filtered out. Second, reads containing N residues were filtered out. Third, low-quality
ends (scores < 20) were trimmed. After this trimming, if the read length was <35, the
read was removed. After this quality control, the reads of each sheep were mapped to the
sheep genome assembly v3.1 (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_00029873
5.1_Oar_v3.1/GCA_000298735.1_Oar_v3.1_genomic.fna.gz) using BWA v0.6.2 [25]. The
.bam file was sorted by chromosome and duplicated reads were removed using SAMtools
v0.1.19 [26].

Mapped reads of all samples were pooled for variant calling using SAMtools, with the
parameters “mpileup–u–C50–DS–q20.” The .vcf file was generated by bcftools view with
the parameter “-evcgN.” Then, vcfutils.pl with minimum depth “-d 20” and maximum
depth “-D 300” was used to filter raw variants. Finally, the variants were annotated
by ANNOVAR [27] version 2014-11-12, in accordance with Ensembl gene annotation
(Oar_v3.1).

2.4. Population Genetics Analysis

The samples were separated into two groups (five monotocous individuals, five polyto-
cous individuals). The SNP densities, minor allele frequencies, and Tajima’s D of each group
were calculated by VCFtools v0.1.12b (https://vcftools.github.io/index.html) [28]. Only
SNPs in autosomes were preserved for the phylogenetic analysis. A phylogenetic tree of
all samples was generated using SNPhylo [29] version 20160204 (http://chibba.pgml.uga.
edu/snphylo/), based on the maximum likelihood method. A total of 500,000 SNPs were
randomly selected for calculating the linkage disequilibrium (LD) r2 using Haploview [30]
with parameters set as follows: “–missingCutoff 0.2 –dprime –minMAF 0.1.” The SNP
pairs were clustered based on the physical distances of these genes. The average LD (e.g.,
0–1 kb) of each group was represented by the mean r2.

2.5. Selective Sweep Analysis

The pooled heterozygosity Hp was calculated over 10 kb windows using the formula:

Hp = 2 × ∑ nMAJ × ∑ nMIN(
∑ nMAJ + ∑ nMIN

)2

where ∑ nMAJ denotes the sum of major allele frequencies in a selected window and
∑ nMIN denotes the sum of minor allele frequencies [31].

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000298735.1_Oar_v3.1/GCA_000298735.1_Oar_v3.1_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000298735.1_Oar_v3.1/GCA_000298735.1_Oar_v3.1_genomic.fna.gz
https://vcftools.github.io/index.html
http://chibba.pgml.uga.edu/snphylo/
http://chibba.pgml.uga.edu/snphylo/
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FST values were calculated between monotocous individuals and polytocous individ-
uals for single SNPs using a method that adjusts for a small sample size [32]. We averaged
FST values over 50 kb sliding windows along the genome with the Bio::PopGen::PopStats
Package in BioPerl [33] and Z-transformed the resultant distribution. Putative selection
targets were extracted from the extreme tail of the distribution by applying a Z(FST) > 5
cut-off [34].

fastPHASE v1.4.0 was used to phase the genotypes of all samples with the parameters
“-T10 –K8” [35]. Then, the phased data were used to calculate the cross-population extended
haplotype homozygosity (XP-EHH) value by XP-EHH [36]. XP-EHH values were averaged
over 50 kb sliding windows. These scores approximately followed a normal distribution;
the threshold to locate putatively selected regions was two times the XP-EHH distribution
standard deviation (|XP-EHH| > 2). Manhattan plots for FST and XP-EHH were generated
with the R package gap [37].

A phylogenetic tree was generated using all variants located in these regions. Candi-
date genes targeted by positive selection were defined as genes overlapping with sweep
regions (ZFST > 5 and |XP-EHH| > 2). GO (gene ontology) and KEGG (kyoto encyclo-
pedia of genes and genomes) enrichment analyses for candidate genes were performed
by DAVID 6.8 [38], and p values were corrected using the Benjamini–Hochberg method.
Protein-altering mutations in these genes were listed and ranked by their single-site FST
value. The protein-altering mutations of the candidate sweep gene KDM4B were localized
to regions that are evolutionarily conserved among mammalian species.

2.6. Sanger Sequencing Validation

To confirm the SNPs detected in exons of the genes selected by sweep analysis, we
selected eight SNPs from six genes and designed primers for their Sanger sequencing
(Supplementary Table S1). Then, we outsourced the amplification and screening of SNPs in
15 monotocous and 14 polytocous sheep of this group to GENENODE (Wuhan, China).

3. Results
3.1. Sequencing and Mapping of the Sheep

We sequenced five monotocous and five polytocous sheep using an Illumina HiSeq2500
sequencer, generating a total of 627.16 million raw read pairs, comprising 180.16 Gb of raw
data. After filtering out the low-quality reads, each sheep was mapped to the sheep refer-
ence genome, with an average alignment rate of 93.76% (92.79–94.34%). The percentages
of reads sequenced at least once per bp varied from 87.38% to 94.55%. The percentage of
reads sequenced at least four times per bp was >61.82% (Supplementary Table S3).

3.2. Identification of the Variation of the Sheep

We obtained about 21.39 million SNPs and 2.04 million insertions and deletions (in-
dels) for all sheep in the two groups. Most SNPs (~71.7%) were located within intergenic
regions, while only a few (~0.6%) were located within coding regions. The exonic SNPs
were identified (Supplementary Table S4). There were 45,775 vs. 48,265 SNPs involving
nonsynonymous mutations, 742 vs. 785 involving stop-gain variation, and 45 vs. 52 involv-
ing stop-loss nonsense variation in the polytocous and monotocous sheep, respectively. The
rates of heterozygosity of the polytocous and monotocous groups were 30.02% and 30.07%,
respectively. The transition-to-transversion ratios (ts/tv) were almost identical between
the two groups (2.4346 for the polytocous population versus 2.4352 for the monotocous
population) (Supplementary Table S5).

3.3. Population Structure Analysis

The levels of genome-wide genetic diversity, Tajima’s D, and the minor allele fre-
quency (MAF) distribution indicated that high-frequency minor alleles constitute a small
proportion of the total but are slightly more abundant in polytocous sheep than in mono-
tocous ones (Supplemental Figure S1). Additionally, haplotype analysis indicated that
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the polytocous sheep have slower decay of pairwise correlation coefficient (r2) and higher
integrated haplotype homozygosity (iHH) than the monotocous sheep (Supplemental
Figure S2).

To determine the phylogenetic relationship between monotocous and polytocous
sheep, a neighbor-joining tree was constructed using high-quality SNPs. When the tree
was generated using the SNPs for the whole genome, monotocous and polytocous sheep
formed a mixed clade (Figure 1A). This indicated that the pairwise distances within each
group were larger than those between the groups and there was no significant distinction
between the two groups. However, in the phylogenetic tree constructed using SNP data
selected based on FST score, the monotocous and polytocous sheep were classified into
two genetically different groups (Figure 1B). The results of the two trees show that the
population genetic structure was not associated with the litter size and that the breeding
time of high-fecundity Bamei mutton sheep was relatively short.
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neighbor-joining phylogenetic tree constructed using SNP data selected based on FST score.

3.4. Analysis of the Selected Loci and Candidate Genes

To find selection signals associated with high prolificacy, the average FST values were
calculated for nonoverlapping 50 kb windows on the autosomes and X chromosome. After
Z-transforming the values, we selected the windows with Z(FST) > 5 across the genome, as



Animals 2021, 11, 157 6 of 13

in previous studies [34]. In total, we identified 85 unique autosomal regions and two X-
chromosome regions containing 81 candidate genes. The region with the strongest selective
signal (FST = 0.6639187, ZFST = 10.65708746) between the monotocous and polytocous
sheep was located on chromosome 5 (16750000–16800000 bp), which contains KDM4B
(lysine demethylase 4B) (Figure 2A, Supplementary Table S6).
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Figure 2. Selective sweep analysis of the monotocous and polytocous sheep. (A) Manhattan plot of
FST among the monotocous and polytocous sheep. The FST was calculated for each 50 kb autosomal
and X-chromosome window. The dashed line denotes a threshold of Z(FST) = 5; (B) Manhattan plot of
XP-EHH among the monotocous and polytocous sheep. The XP-EHH value was calculated for each
50 kb autosomal and X-chromosome window. The dashed line denotes a threshold of |XP-EHH| > 2.

We also estimated the XP-EHH statistic for the monotocous and polytocous groups
using monotocous sheep as a control. An XP-EHH value greater than zero indicates that
these sites have been selected in the monotocous population, while a value less than zero
indicates that selection has occurred in the polytocous population. We scanned the regions
using the threshold |XP-EHH| > 2 as candidate regions. A total of 198 regions including
162 genes were found to have undergone positive selection in the XP-EHH analysis, with
155 regions having undergone selection in the polytocous population. A region of chromo-
some 6 (36,200,000–36,250,000 bp) associated with strong selection was found to have the
largest |XP-EHH| value (XP-EHH = −3.963) (Figure 2B, Supplementary Table S7).

We combined the genes obtained by the two methods described above. A total of 221
genes were found to have been selected in total. Overall, 14 genes were positively selected
across both of the two methods (Supplementary Table S8).

Gene Ontology and KEGG pathway analyses were performed to further study the
functions of the selected genes identified by the two methods. The enriched GO terms
(p-value < 0.1) and KEGG pathways (p-value < 0.5) are shown in Supplementary Tables S9
and S10. By the Functional Annotation Clustering tool of DAVID 6.8, we identified two
annotation clusters (classification stringency: Medium). Annotation cluster 2 contained the
GnRH signaling pathway, estrogen signaling pathway, and oxytocin signaling pathway.
The reproductive hormones in these pathways are involved in regulating sheep estrus,
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follicle development, and ovulation. JUN (JUN proto-oncogene, AP-1 transcription factor
subunit), ITPR3 (inositol 1,4,5-trisphosphate receptor type 3), and PLCB2 (phospholipase C
beta 2) were enriched in all three pathways (Table 1).

Table 1. The functional annotation clusters of similar biological meanings sharing common gene
members enriched by DAVID.

Annotation Cluster 1 Enrichment Score: 1.95

Category Term Count Genes p-Value

KEGG_PATHWAY oas04660:T cell receptor
signaling pathway 8

CD3D CD3E
CD3G JUN

MALT1 CARD11
MAP3K14 PAK6

1.35 × 10−5

KEGG_PATHWAY
oas05142:Chagas disease

(American
trypanosomiasis)

5
CD3D CD3E
CD3G JUN

PLCB2
0.013

KEGG_PATHWAY oas05166:HTLV-I infection 6
ATM CD3D
CD3E CD3G

JUN MAP3K14
0.072

KEGG_PATHWAY oas05162:Measles 4 CD3D CD3E
CD3G ADAR 0.094

KEGG_PATHWAY oas04640:Hematopoietic
cell lineage 3 CD3D CD3E

CD3G 0.157

Annotation Cluster 2 Enrichment Score: 0.67

Category Term Count Genes p-Value

KEGG_PATHWAY oas04912:GnRH signaling
pathway 3 JUN ITPR3

PLCB2 0.151

KEGG_PATHWAY oas04915:Estrogen
signaling pathway 3 JUN ITPR3

PLCB2 0.188

KEGG_PATHWAY oas04921:Oxytocin
signaling pathway 3 JUN ITPR3

PLCB2 0.340

3.5. Mutations in the KDM4B Gene

KDM4B is located in the highly differentiated region with the highest FST value
between the monotocous and polytocous groups. A selected mutation that goes to fixation
tends to reduce variation in linked sites in the process of a selective sweep [39]. Therefore,
we determined the Hp value of the window (chr 5: 16,750,000–16,800,000 bp) around
KDM4B. The Hp value of the polytocous group (Hp = 0.0818) decreased in the KDM4B
region and was the lower than in the monotocous group (Hp = 0.22923) (Figure 3A).

To identify SNVs subjected to selection, we screened the exonic mutations of the
KDM4B gene in both monotocous and polytocous groups. SNVs that can alter protein
translation, structure, and even function may contribute to rapid evolution in domestic
animals [40]. Here, 13 synonymous SNVs, 3 nonsynonymous SNVs, and 1 frameshift
deletion were identified. All of the three nonsynonymous SNVs cause amino acid sequence
changes p.S570G (FST = 0.11), p.S924L (FST = 0), and p.S936A (FST = 0.45) in the translated
protein (in accordance with Ensembl gene annotation) (Supplementary Table S11).

We compared the FST values of the three nonsynonymous SNVs; only mutation
p.S936A had high divergence of allele frequency within our population: monotocous sheep
50% (n = 5) and polytocous sheep 90% (n = 5). To confirm these frequencies based on
Illumina sequencing, alleles of additional samples were genotyped by Sanger sequencing.
The frequency of mutant allele of KDM4B gene genotyped by Sanger sequencing showed
a slight decrease in polytocous group 60% (n = 14), compared with the result in whole
genome sequencing. The mean of individual litters variants in polytocous sheep may affect
the distribution of the genotype when increasing number of samples. The frequency of
the mutant homozygote in polytocous sheep was higher than that in monotocous sheep.
Moreover, the distribution of KDM4B p.S936A genotype contained significant differeces
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between polytocous and monotocous sheep population genotyped by Sanger sequencing
(p-value = 0.041). (Figure 3B). This indicates that the nonsynonymous mutations may be
associated with the selective sweep at KDM4B.
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acid variant. The protein coordinates are based on Ensembl ID ENSOARP00000009005.1. The up-
per panel shows the domains of the protein. The orthologous protein sequences from 11 verte-
brates are aligned with the mutant residues shown in red. The NJ tree derived from the multiple 
alignment is shown in the lower panel. 

To identify SNVs subjected to selection, we screened the exonic mutations of the 
KDM4B gene in both monotocous and polytocous groups. SNVs that can alter protein 
translation, structure, and even function may contribute to rapid evolution in domestic 
animals [40]. Here, 13 synonymous SNVs, 3 nonsynonymous SNVs, and 1 frameshift de-
letion were identified. All of the three nonsynonymous SNVs cause amino acid sequence 
changes p.S570G (FST = 0.11), p.S924L (FST = 0), and p.S936A (FST = 0.45) in the translated 
protein (in accordance with Ensembl gene annotation) (Supplementary Table S11). 

We compared the FST values of the three nonsynonymous SNVs; only mutation 
p.S936A had high divergence of allele frequency within our population: monotocous 
sheep 50% (n = 5) and polytocous sheep 90% (n = 5). To confirm these frequencies based 
on Illumina sequencing, alleles of additional samples were genotyped by Sanger sequenc-
ing. The frequency of mutant allele of KDM4B gene genotyped by Sanger sequencing 

Figure 3. KDM4B mutation in the coding region. (A) Hp value around the KDM4B loci. Hp was calculated for each 10 kb
window of the monotocous and polytocous sheep. The gene coordinates are based on Ensembl ID ENSOARG00000008388;
(B) Percentages of homozygotes and heterozygotes in the monotocous and polytocous sheep. The reference and mutant
alleles are represented by “+” and “−,” respectively. Besides the 10 sheep sequenced with Illumina technology, additional
samples were genotyped by Sanger sequencing; (C) Evolutionary analysis of the p.S936A amino acid variant. The protein
coordinates are based on Ensembl ID ENSOARP00000009005.1. The upper panel shows the domains of the protein. The
orthologous protein sequences from 11 vertebrates are aligned with the mutant residues shown in red. The NJ tree derived
from the multiple alignment is shown in the lower panel.

p.S936A affected the TUDOR domain (Figure 3C). This domain can bind to specific
lysine methylation marks on histone proteins (H3-K4me3, H3-K23me3, and H4-K20me3).
It plays a vital role in chromatin localization and the regulation of enzymatic function [41].
Thus, we aligned the KDM4B protein mutant with its ortholog in diverse vertebrates to
evaluate the functional effects of the variants. The results reveal that p.S936A is quite well
conserved, being invariant among all of the other mammals that we used (Figure 3C). All of
the results indicate that p.S936A is an important mutation for the reproduction-related
KDM4B sweep.
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4. Discussion

Continuous artificial selection in production-oriented breeding has left selective sig-
natures and genomic variability in domesticated sheep. In this study, we performed
whole-genome sequencing of 10 Bamei mutton sheep with different litter sizes from the
same population. In this population, reproductive traits have undergone intensive selec-
tion via the breeding strategy. In this research, numerous mutations were selected in the
population after screening, but the rates of heterozygosity did not differ between the two
populations. When a neighbor-joining tree was constructed using SNPs selected based on
FST score, these two groups were differentiated into two genetic clusters. Most quantitative
traits are known to respond quickly to artificial selection, and this population subjected to
selection of litter size might have evolved in opposite directions with soft sweeps [42,43].

Selective sweeps can identify important genomic regions that have been swept in
the recent past. Some genes associated with complex, economically important traits have
been identified with the help of selected sweep analysis by whole-genome sequencing.
We used the XP-EHH test to detect alleles near fixation within a Bamei mutton sheep
population. Upon undergoing recent selection, the selected allele generally reaches a high
frequency or fixation in one group, but remains polymorphic in the whole population [44].
In this research, we discovered 155 regions selected for in the polytocous population,
which was greater than the 43 regions screened in the monotocous population. Using fixed
window selection of FST and XP-EHH, 221 candidate genes were found to be associated
with the prolificacy trait. In a previous study using a segregated flock based on QTL
and GWAS mapping, some mutations (FecB, FecX, and FecG) were identified to affect
ovulation in sheep [11]. However, here we did not identify any mutations previously
reported to increase the number of ovulations in sheep. The litter size per breeding ewe
is not only influenced by ovulation, but also affected by a number of factors including
fertilization rate and pregnancy loss (in the embryonic and fetal development period).
Recently, the LEPR gene, estrogen receptor 1 (ESR1) gene, and prolactin (PRL) gene were
found to be associated with fecundity, as revealed by a selective sweep analysis in European
commercial and semi-feral breeds and a Chinese indigenous breed distributed in different
ecoregions [23,45,46].

JUN, ITPR3, and PLCB2 in the selected region were enriched in gonadotrophin re-
leasing hormone (GnRH), oxytocin, and estrogen signaling pathway associated with the
complex process from estrus to lambing. This process is organized by complex commu-
nication among the hypothalamus, pituitary, ovary, and uterus. GnRH, secreted by the
hypothalamus, regulates the synthesis and release of gonadotrophins, follicle-stimulating
hormone (FSH), and luteinizing hormone (LH) from the pituitary [47]. FSH and LH sup-
port the growth and maturation of follicles. Estradiol and progesterone secreted by the
corpus luteum inhibit GnRH release by feedback modulation. During the follicular phase,
following luteolysis, estradiol reaches a critical threshold and stimulates the preovulatory
gonadotrophin surge, appearing to help the ovulation of mature follicles [11].

PLCB is involved in a wide range of signals of reproductive processes, being regulated
by many hormones (FSH, LH, GnRH, oxytocin). PLCB2 as a member of the PLCB subfamily
is activated by G-protein-linked receptors and can hydrolyze phosphatidylinositol 4,5-
bisphosphate to form inositol-1,3,4-trisphosphate (IP3) and diacylglycerol (DAG), which
stimulate Ca2+ release and protein kinase C activity, respectively [48]. ITPR3 is a member of
the IP3 receptor family. IP3, as an intracellular secondary messenger, mobilizes Ca2+ from
endoplasmic reticulum stores, which transduces several calcium-dependent cascades. IP3
receptor downregulation induced by GnRH can suppress the secretion of LH/FSH [49,50].

JUN is one of three JUN members [JUN (c-JUN), JUNB, and JUND] constituting the
AP-1 family of heterodimeric transcription factors by combining with four FOS members
[FOS (c-Fos), FOSB, FRA1, and FRA2]. GnRH can stimulate the expression of JUN by
rapidly and transiently binding to the AP1 site in the FSHB promoter and then stimulating
FSHB transcription [50]. Conditional knockout of JUN in mice resulted in subfertility
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in both sexes, such as impaired spermatogenesis in males, diminished corpora lutea in
females, and lower gonadal steroid (GnRH and LH) levels [51].

The nonsynonymous mutation p.S936A at KDM4B was discovered and confirmed in
monotocous and polytocous sheep; it may be the reason for the signal of a selective sweep at
the KDM4B locus. KDM4B belonging to the KDM4/JMJD2 family of histone demethylases
contains a JmjN domain, JmjC domain, tandem plant homeodomains (PHD), and tandem
Tudor domains. KDM4B catalyzes the demethylation of H3K9me3 and H3K9me2 at or
near regulated promoters to promote expression of the downstream pathway induced by
multiple different extracellular stimuli [52]. KDM4B plays a central role in regulating the
Estrogen Receptor (ER) signaling cascade by controlling expression of the ER and FOXA1
genes. These two important genes can maintain the estrogen-dependent phenotype [53].
In the developing ovarian follicle, granulosa cells are the main producers of estrogen.
KDM4B is expressed in granulosa cells at early stages of folliculogenesis and its level is
correlated with pregnancy failure in IVF patients [54]. KDM4B expression in the uterus is
also associated with recurrent pregnancy loss in women [55]. The identified intersection
between steroid hormones and KDM4B in the ovary and uterus sheds new light on the
regulation of reproduction.

5. Conclusions

Following high-throughput sequencing, SNPs and indels were identified from two
sheep populations. The sequencing data revealed the genetic diversity and population
differentiation of the Bamei mutton sheep population experiencing selection for litter size.
The genomic selection scan detected some interesting candidate genes and pathways under
artificial selection, which might have increased litter size. This genome-wide research
provides valuable information for future whole-genome selection for fecundity in this
sheep breed.
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