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Simple Summary: This study investigated the effects of the Laetiporus sulphureus fermented product
(FL) as a feed supplement on antioxidant activities, intestinal Tight Junction (TJ) mRNA expression,
and the intestinal morphology of broiler chickens. FL supplementation could potentially enhance
the feed conversion ratio in broilers by improving their antioxidative status, TJ mRNA expression,
and intestinal morphology. Broilers supplemented with 5% FL exhibited the best overall results on
improving antioxidant status, TJ mRNA expression, and intestinal morphology.

Abstract: The Laetiporus sp. is a fungal species that is traditionally used for medicinal purposes.
This study investigated the effects of the Laetiporus sulphureus fermented product (FL) as a feed
supplementation on the antioxidant activities, the intestinal Tight Junction (TJ) mRNA expression,
and the intestinal morphology of broiler chickens. Four-hundred one-day-old male broilers (Ross
308) were randomly allocated to five experimental diets: (1) a corn-soybean meal basal diet (control),
(2) a basal diet replaced with 5% Wheat Bran (5% WB), (3) a basal diet replaced with 10% WB (10%
WB), (4) a basal diet replaced with 5% FL (5% FL), and (5) a basal diet replaced with 10% FL (10% FL).
The FL-supplemented groups exhibited a better feed conversion ratio in the overall experimental
period compared to the WB and control groups. The serum antioxidant profiles of 35-day-old broilers
showed that, compared to the control and 10% WB groups, the 5% FL supplementation group had a
significantly increased superoxide dismutase activity, while it down-regulated the concentration of
malondialdehyde in the serum (p < 0.05). The assessment of selected antioxidant gene expression
showed that the 5% FL group significantly elevated heme oxygenase-1 and nuclear factor erythroid
2–related factor 2 expression, compared to the control and WB groups (p < 0.05). Furthermore, both
of the FL supplemented groups had a significantly higher expression of glutathione peroxidase and
catalase, compared to that of the WB and control groups in the jejunum (p < 0.05). The TJ mRNA
expression in the jejunum showed that 5% FL significantly elevated the zonula occludens-1, claudin-1,
and mucin-2 expression (p < 0.05), while 5% and 10% FL supplementation significantly improved
OCLN expression in both the jejunum and ileum, compared to control group (p < 0.05). The intestinal
morphology of 35-day-old broilers showed that a 5% FL supplementation significantly increased
the villus height in the ileum and jejunum, compared to the WB and control groups (p < 0.05).
Moreover, the 5% and 10% FL supplementation groups had a significantly higher villi:crypt ratio
in the ileum, compared to the WB and control groups (p < 0.05). To conclude, FL supplementation
improved the antioxidative status, the TJ mRNA expression, and the intestinal morphology, and it
was accompanied by a lowered feed conversion ratio in broilers. Finally, 5% supplementation had
the overall best results in improving the antioxidant status, TJ mRNA expression, and intestinal
morphology of broilers.
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1. Introduction

Oxidative damage is a critical problem in the poultry industry. It occurs when
exogenously- and/or endogenously-produced Reactive Oxygen Species (ROS) exceed
the antioxidant capacity of cells and extracellular spaces, causing the disruption of the
normal cellular function by influencing the gene expression and signal transduction [1].
World poultry populations are mainly located in tropical and subtropical regions, where
heat stress is a main concern, as it negatively influences the antioxidant status, which is
reflected by the increased serum lipid peroxidation and reduced plasma concentrations of
antioxidants [2]. These stress factors affect the health status of poultry and the safety of
poultry products, while they adversely influence the intestinal oxidative status and disrupt
the normal function of enterocytes, causing an abnormality in nutrient absorption and
diseases [3]. As a consequence of suppressed nutrient absorption, the production indexes
(such as feed efficiency and survival rate) are impaired, leading to heavy economic losses
to the poultry industry [4].

Tight Junctions (TJs) are intercellular junctional complexes that maintain epithelial
cells adherent to each other and guarantee the paracellular transportation of nutrients,
forming a barrier between the lumen and host to prevent bacterial translocation [3]. The dis-
ruption of TJ impaired the normal intestinal function causing leaky gut that compromises
the absorption of luminal substances into the bloodstream and could lead to chronic in-
flammation with impairment of animal health and growth performances [5]. Furthermore,
the increased intestinal permeability could induce bacterial translocation, and a systemic
bacterial infection might also occur [6]. Therefore, protecting the intestinal tract from exces-
sive oxidative damage and maintaining the integrity of the TJ could be major factors that
positively influence the performance of birds in the intensive poultry industry [4,7].

Agricultural by-products, such as Wheat Bran (WB), contain Non-Starch Polysaccha-
rides (NSPs) that act as anti-nutritional compounds in monogastric animals, which tend
to inhibit digestibility and promote pathogen proliferation in the gastrointestinal tract,
and eventually lead to gut inflammation and worsen the performance of the animals [8,9].
Solid-State Fermentation (SSF) could represent a valuable method to use agricultural by-
products as substrates for NSP-degrading microorganisms, converting them into alternative
feed ingredients [10,11]. In addition, filamentous fungi were reported as being a suitable
inoculant for SSF due to their ability to withstand low humidity environments [11,12]. WB,
a solid-state that is fermented by the Trichoderma sp., has been shown to exhibit antioxi-
dant properties and to improve the nutrition value of WB, which could potentially be a
low-cost feedstuff candidate [13,14]. Solid-state WB fermented by Antrodia cinnamomea
was found to be suitable for producing bioactive compounds, such as phenolics, triter-
penoids, and polysaccharides, as well as for growth promotion and its antioxidative and
anti-inflammatory effects in broiler feeding trials [11,15]. According to these studies, the use
of fungal SSF in agricultural by-products is viable for producing functional feedstuffs that
contain bioactive compounds.

The Laetiporus sp. is a fungal species with medical properties, and it was traditionally
used by Europeans to cure gastric cancer, rheumatism, pyretic diseases, and coughs [16].
In our previous studies, we showed that L. sulphureus fermented WB and potentially en-
hanced the growth performance of broilers by modifying their intestinal microflora and
their immune status [17]. Furthermore, submerged mycelial cultures of L. sulphureus pro-
duce functional polysaccharides [18,19], as well as mycophenolic acids [20], and are able
to dampen the excessive immune response of the selected cells without causing cytotoxic-
ity [21,22]. Petrović et al. [23] reported that the aqueous extracts of wild L. sulphureus exert
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, which correlates with
its total phenolic content. Our previous study also indicated the potential of L. sulphureus
to produce various bioactive compounds, such as crude phenolics, crude triterpenoids,
polysaccharides, and ergosterol. The same study also showed that ethanol extracts of
L. sulphureus fermented WB significantly attenuated the DNA damage induced by
2,2′-Azobis (2-amidinopropane) dihydrochloride (AAPH) in peripheral blood mononu-
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clear cells of chickens, while exerting an in vitro antioxidant effect, including DPPH radical
scavenging activity and reducing power [24]. However, the effects of L. sulphureus on the
antioxidative status and TJ modulation in the gastrointestinal tracts of broilers has rarely
been studied.

In order to evaluate the in vivo antioxidant properties of L. sulphureus solid-state
fermented product (FL) in broiler chickens, nuclear factor erythroid 2–related factor 2 (Nrf2)
and its downstream pathway was evaluated. Nrf2 is a redox-sensitive transcription factor
that could be triggered by ROS, leading to the production of detoxification and antioxidant
enzymes such as heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase (CAT),
and glutathione peroxidase (GPx) [2]. Therefore, this study was performed in order to
evaluate if the in vitro antioxidant activity of FL could be used in vivo to improve the
antioxidant status of broiler chickens and further investigated the effect of FL on broilers
and the interaction between the antioxidation capacity and the expression of intestinal
TJ mRNA.

2. Materials and Methods
2.1. Laetiporus sulphureus Culture, Inoculum Preparation, and Solid-State Fermentation

Methods for culturing L. sulphureus (Bull.) Murril and preparing FL were performed
according to [17]. The L. sulphureus (Bull.) Murril used in this study was purchased from
the Bioresource Collection and Research Center (BCRC, Hsinchu, Taiwan). The fungus was
cultured on Malt Extract Agar (MEA) plates and incubated in a temperature-controlled
incubator (PHCbi, Tokyo, Japan) at 25 ◦C, with a routine sub-cultivation (at a frequency of
once per week). A solid-state fermentation inoculum was cultured in Erlenmeyer flasks
containing 100 mL sterilized Malt Extract Broth (MEB). Five pieces of round-shaped agar
(about 1 cm in diameter) were punched out from an L. sulphureus MEA plate and transferred
to flasks containing 100 mL MEB. These flasks were incubated by a rotary shaker incubator
(PHCbi, Tokyo, Japan) at 25 ◦C, at 120 rpm for five days (d). The malt extract broth that was
grown with L. sulphureus filaments was put in a sterilized plastic bag and homogenized
with a Seward Stomacher (Seward Laboratory Systems Inc., NY, USA) for the preparation
of the inoculum. Solid-state fermentation was performed by adjusting 50 g of WB to 50%
moisture content by adding distilled water and contained in a plastic bag. After autoclaved
at 121 ± 1 ◦C for 30 min, the plastic bags containing sterilized WB were added with 10 mL
of inoculants and fermented aerobically at 25 ◦C for 12 days. The fermented products were
collected and dried at 40 ◦C for 2 days before being ground in a mill for the subsequent
preparation of experimental broiler feed.

2.2. Experimental Birds and Housing

The animal experiment was authorized by the Animal Care and Use Committee of
the National Chung Hsing University, Taiwan (IACUC No. 105-140). Four-hundred one-
day-old male broilers (Ross 308) were randomly allocated into the five experimental diets:
(1) corn-soybean meal (control), (2) a basal diet replaced with 5% WB (5% WB), (3) a basal
diet replaced with 10% WB (10% WB), (4) a basal diet replaced with 5% FL (5% FL), and (5)
a basal diet replaced with 10% FL (10% FL), with four replicates (pen)/diet and 20 birds
per pen (a total of 80 birds/treatment). The replacement of WB or FL in the basal diet
means the feed formula had 5% or 10% of the experimental ingredients, and the nutrient
value of feeds in each control and treatment groups were adjusted to meet the nutrient
requirements of broilers, as recommended by the National Research Council (NRC) [25],
while each group had the same amount of ME and crude protein contents (Tables 1 and 2).
The experimental period included two phases: the starter phase (1–21 days) and the finisher
phase (22–35 days), and provided to broilers without any anticoccidial or antibacterial
supplements. The approximate composition, including crude protein, dry matter, and crude
fat, was analyzed by following the method of the Association of Official Analytical Chemists
(AOAC) [26] and demonstrated in our previous study [17] and shown in Table S1. At the
start of the experiment, the average body weight of the birds was adjusted to make it
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uniform for all pens. The birds were kept in floor pens (2.5 × 4.0 m) with concrete floors
and rice hull. The chicks were vaccinated against infectious bronchitis and Newcastle
disease immediately after birth. The broilers had free access to feed and water during the
whole experimental period. On day 35, the performance of the broilers was assessed by
recording their Body Weight Gains (BWG), Body Weight (BW), Feed Intake (FI), and Feed
Conversion Ratio (FCR; feed intake/body weight gain). The data of growth performances
were demonstrated in Table 3 of our previous publication [17].

2.3. Collection of Serum, Intestinal Content, and Organs

On day 35, a total of six birds were randomly selected from a total of 80 birds per control
or treatment group for sampling. Five mL blood samples were collected from the brachial vein
and centrifuged at 2000× g for 10 min in order to collect the serum samples. Subsequently,
the chickens were euthanized by exsanguination, and the organs (liver, jejunum, and ileum)
were harvested and submerged in RNA shieldTM (ZYMO, Irvine, CA, USA) for mRNA
isolation. All samples were stored at −80 ◦C until further analysis.

Table 1. Ingredients of the experimental diets for broilers at the starter phase (days 1–21).

Ingredients Starter Phase (Days 1–21)

Control 5% WB 5% FL 10% WB 10% FL

g/kg

Corn 524.9 458.7 458.4 392.5 391.9
WB 0 50.0 0 100.0 0
FL 0 0 50.0 0 100.0

Soybean meal, CP 44% 320.0 167.3 167.3 14.8 14.7
Fish meal, CP 60% 50.0 50.0 50.0 50.0 50.0

Full fat soybean meal 41.4 209.8 210.1 377.9 378.7
Soybean oil 30.0 30.0 30.0 30.0 30.0
Limestone 11.6 11.6 11.6 11.5 11.5

Monocalcium phosphate 11.2 11.2 11.2 11.2 11.2
DL-Methionine 3.4 3.7 3.7 4.1 4.1

Sodium chloride 2.9 2.8 2.8 2.8 2.8
L-Lysine HCl 1.8 2.1 2.1 2.4 2.3

Choline-Cl (60%) 0.8 0.8 0.8 0.8 0.8
Vitamin premix 1 1.0 1.0 1.0 1.0 1.0
Mineral premix 2 1.0 1.0 1.0 1.0 1.0

Total 1000.0 1000.0 1000.0 1000.0 1000.0

Calculated nutrient value

ME, kcal/kg 3050.0 3050.0 3050.0 3050.0 3050.0
Dry matter, % 88.28 88.85 89.11 89.42 89.95

Crude protein, % 23.0 23.0 23.0 23.0 23.0
Crude fat, % 6.04 8.86 8.64 11.68 11.25
Calcium, % 1.05 1.05 1.05 1.05 1.05

Total phosphorus, % 0.73 0.73 0.73 0.72 0.72
Available phosphorus, % 0.50 0.50 0.50 0.50 0.50

Lysine, % 1.43 1.43 1.43 1.43 1.43
Methionine, % 0.73 0.74 0.74 0.76 0.76

Cysteine, % 0.34 0.32 0.32 0.31 0.31

WB: wheat bran; FL: Laetiporus sulphureus fermented wheat bran. 1 Supplied per kg of diet: Vit. A, 15000 U; Vit.
D3, 3000 U; Vit. E, 30 mg; Vit. K3, 4 mg; Riboflavin, 8 mg; Pyridoxine, 5 mg; Vit. B12, 25 µg; Ca-pantothenate,
19 mg; Niacin, 50 mg; Folic acid, 1.5 mg; Biotin, 60 µg. 2 Supplied per kg of diet: Co (CoCO3), 0.255 mg; Cu
(CuSO4·5 H2O), 10.8 mg; Fe (FeSO4·H2O), 90 mg; Zn (ZnO), 68.4 mg; Mn (MnSO4·H2O), 90mg; Se (Na2SeO3),
0.18 mg.
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Table 2. Ingredients of the experimental diets for broilers at the finisher phase (days 22–35).

Ingredients
Finisher Phase (Days 22–35)

Control 5% WB 5% FL 10% WB 10% FL

g/kg

Corn 549.5 482.9 482.9 416.3 416.3
WB 0 50.0 0 100.0 0
FL 0 0 50.0 0 100.0

Soybean meal, CP 44% 16.6 185.6 185.6 354.4 354.4
Fish meal, CP 60% 320.6 167.8 167.8 15.1 15.1

Full fat soybean meal 30.0 30.0 30.0 30.0 30.0
Soybean oil 10.6 10.6 10.6 10.6 10.6
Limestone 12.2 12.2 12.2 12.2 12.2

Monocalcium phosphate 3.4 3.3 3.3 3.2 3.2
DL-Methionine 50.0 50.0 50.0 50.0 50.0

Sodium chloride 1.3 1.5 1.5 1.8 1.8
L-Lysine HCl 3.0 3.3 3.3 3.6 3.6

Choline-Cl (60%) 0.8 0.8 0.8 0.8 0.8
Vitamin premix 1 1.0 1.0 1.0 1.0 1.0
Mineral premix 2 1.0 1.0 1.0 1.0 1.0

Total 1000.0 1000.0 1000.0 1000.0 1000.0

Calculated nutrient value
ME, kcal/kg 3175.0 3175.0 3175.0 3175.0 3175.0

Dry matter, % 88.31 88.88 89.15 89.45 89.98
Crude protein, % 21.0 21.0 21.0 21.0 21.0

Crude fat, % 7.56 10.39 10.17 13.22 12.78
Calcium, % 0.90 0.90 0.90 0.90 0.90

Total phosphorus, % 0.68 0.67 0.67 0.67 0.67
Available phosphorus, % 0.45 0.45 0.45 0.45 0.45

Lysine, % 1.25 1.25 1.25 1.25 1.25
Methionine, % 0.65 0.66 0.66 0.67 0.67

Cysteine, % 0.31 0.30 0.30 0.29 0.29

WB: wheat bran; FL: Laetiporus sulphureus fermented product. 1Supplied per kg of diet: Vit. A, 15000 U; Vit.
D3, 3000 U; Vit. E, 30 mg; Vit. K3, 4 mg; Riboflavin, 8 mg; Pyridoxine, 5 mg; Vit. B12, 25 µg; Ca-pantothenate,
19 mg; Niacin, 50 mg; Folic acid, 1.5 mg; Biotin, 60 µg. 2Supplied per kg of diet: Co (CoCO3), 0.255 mg; Cu
(CuSO4·5 H2O), 10.8 mg; Fe (FeSO4·H2O), 90 mg; Zn (ZnO), 68.4 mg; Mn (MnSO4·H2O), 90mg; Se (Na2SeO3),
0.18 mg.

2.4. Determination of Serum Antioxidant Indexes

The collected serum from each treatment group was analyzed for the antioxidant
indexes, including the CAT, superoxide dismutase (SOD), GPx activity, and glutathione
(GSH), glutathione disulfide (GSSG), and malondialdehyde (MDA) levels. The serum CAT
activity was determined by using the Cayman Chemical Catalase Assay Kit (Cayman
Co, Ann Arbor, MI, USA, item No. 707002), based on the method of Wheeler et al. [27].
The SOD activity was detected by modifying the method of Wheeler et al. [27], using
the Superoxide Dismutase Assay Kit (Cayman Co, USA, item No. 706002). The MDA
concentration was tested according to the method described by Yagi [28] by using the
2-thiobarbituric acid reacting substances (TBARS) Assay Kit (Cayman Co, Ann Arbor, MI,
USA, item No. 10009055). The Glutathione Peroxidase Assay Kit (Cayman Co, Ann Arbor,
MI, USA, item No. 703102) was used for the examination of GPx activity, according to the
method of Paglia et al. [29]. The serum levels of GSH and GSSG in 35-day-old chickens
were assayed by using the glutathione kit (Cayman Co, Ann Arbor, MI, USA, item No.
703002), based on the method of Baker et al. [30].

2.5. RNA Extraction and Quantitative Reverse Transcription-Polymerase Chain Reaction

Organ samples submerged in the RNA shield TM (ZYMO, USA) were processed to ex-
tract RNA, by following the commercial kit manual (AllBio Science, Inc., Taichung, Taiwan).
After the extraction, the concentrations of RNA samples were determined spectrophoto-
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metrically and diluted to 50 ng/µL. A quantitative real-time polymerase chain reaction
(RT-qPCR) analysis was conducted by using the StepOnePlus ™ Real-Time PCR System
(Roche Diagnostics Ltd., Taipei, Taiwan), according to the method of Lin et al. [31]. The
primers that were applied in the experiment are provided in Table 3, based on the genes of
Gallus gallus. The data of the gene expressions from the same treatment were normalized to
β-actin (housekeeping gene). The means and Standard Deviation (SD) were calculated.

Table 3. Characteristrics and performance data of the primers used for RT-qPCR analysis.

Genes
Forward Primer (from 5′ to 3′)

NCBI GenBankReverse Primer (from 5′ to 3′)

β-actin CTGGCACCTAGCACAATGAA X00182.1
ACATCTGCTGGAAGGTGGAC

HO-1
AGCTTCGCACAAGGAGTGTT X56201.1
GGAGAGGTGGTCAGCATGTC

SOD
GCCACCTACGTGAACAACCT NM_204211.1
AGTCACGTTTGATGGCTTCC

Nrf2 GGAAGAAGGTGCTTTTCGGAGC NM_205117.1
GGGCAAGGCAGATCTCTTCCAA

CAT
CCACGTGGACCTCTTCTTGT NM_001031215.1
AAACACTTTCGCCTTGCAGT

GPx
CAGCAAGAACCAGACACCAA NM_001163245.1

CCAGGTTGGTTCTTCTCCAG

ZO-1
AGGTGAAGTGTTTCGGGTTG XM_015278975.1
CCTCCTGCTGTCTTTGGAAG

CLDN-1
GGAGGATGACCAGGTGAAGA NM_001013611.2
TCTGGTGTTAACGGGTGTGA

MUC-2
GCTACAGGATCTGCCTTTGC NM_001318434.1
AATGGGCCCTCTGAGTTTTT

OCLN
GTCTGTGGGTTCCTCATCGT NM_205128.1
GTTCTTCACCCACTCCTCCA

RT-qPCR: real-time quantitative polymerase chain reaction; NCBI: National Center for Biotechnology Information;
HO-1: Heme oxygenase -1; SOD: Superoxide dismutase, mitochondrial; Nrf2: Nuclear factor (erythroid-derived
2)-like 2; CAT: catalase; GPx: Glutathione peroxidase; ZO-1: Zonula occludens-1; CLDN-1: Claudin-1: MUC-2:
Mucin 2; OCLN: Occludin.

2.6. Intestinal Morphology Evaluation

The jejunum (from the pancreatic loop to Meckel’s diverticulum) and ileum (from
Meckel’s diverticulum to the ileo-caeco-colic junction) samples from each bird (approxi-
mately 3 cm) were collected and fixed in 10% formalin. After washing them in a phosphate
buffer saline solution and including them in paraffin wax, samples were cut at a thickness
of 3 µm and stained with hematoxylin and eosin. The Motic image plus 2.0 (Motic Inc.,
Schertz, TX, USA), combined with light microscopy, was applied for the measurement
of the villus height and crypt depth. Twenty spots of villi and crypt from the intestinal
samples from six birds in each control and treatment groups were measured and calculated
for the ratio of the villus height to the crypt depth.

2.7. Statistical Analysis

Data were subjected to analysis of variance (ANOVA) as a completely randomized
design by using the generalized linear model (GLM) function in the SAS software (SAS
9.4, 2018). Normality of data distribution was checked, significant statistical differences
were determined among the various treatment group means, using Tukey’s honest signif-
icant difference test. The effects of the experimental diet on the response variables were
considered to be significant at p < 0.05.



Animals 2021, 11, 149 7 of 15

3. Results
3.1. Growth Performance

The growth performances of one- to 35-day-old broilers were demonstrated in Table 3
of our previous publication [17]. No significant difference was observed in the body weight,
body weight gain, and feed intake of each group of 1–35 day-old broilers and 1–21 day-old
broilers (p > 0.05). While 5% FL group had significantly higher BW than the control group
and 10% WB group during 22–35 d. The FCR of 5% and 10% FL supplemented groups (both
1.41) were significantly lower than that in the control group (1.47), as well as in the 5% and
10% WB groups (1.45 and 1.46, respectively) (p < 0.05).

3.2. Serum Antioxidant Profiles

The serum antioxidant profiles of 35-day-old broilers supplemented with FL are pre-
sented in Table 4. Compared to the control group, 5% and 10% WB group, the 5% FL
supplementation significantly improved SOD activity, while the concentration of MDA in
the serum was down-regulated (p < 0.05). However, there was no significant difference in
the indexes, including the CAT activity, GPx activity, GSH concentration, GSSG concentra-
tion, and GSH:GSSG (p > 0.05).

Table 4. Effects of FL supplementation on serum antioxidant profiles in 35-day-old broilers 1.

Items
Treatments

SEM p-Values
Control 5% WB 10% WB 5% FL 10% FL

SOD (U/mL) 9.18 bc 9.36 b 8.96 c 9.82 a 9.40 b 0.05 0.001
CAT (U/mL) 15.35 15.82 15.57 15.81 15.53 0.11 0.86
MDA (µM) 28.52 a 25.76 b 29.66 a 23.53 c 24.17 bc 0.21 <0.0001

GPx (U/mL) 146.42 ab 148.14 a 141.51 b 151.66 a 151.13 a 0.84 0.005
GSH (mg/mL) 2.01 2.17 2.13 2.21 2.19 0.04 0.71
GSSG (mg/mL) 0.11 0.12 0.14 0.13 0.11 0.005 0.72

GSH:GSSG 20.65 19.14 16.52 21.08 21.71 0.65 0.51
1 The results are expressed as the means of six replicates in each control and treatment group. SEM: Standard
Error of the Mean. WB: Wheat Bran; FL: Laetiporus sulphureus fermented product; SOD: Superoxide dismutase;
CAT: catalase; MDA: malondialdehyde; GPx: glutathionine peroxidase; GSH: Glutathione; GSSG: oxidized
glutathione. a–c Means within the same rows, but without the same superscript letter, are significantly different
(p < 0.05).

3.3. Expression of Selected Antioxidant Genes

The expression profile of selected antioxidant genes in the liver, jejunum, and ileum
are displayed in Figure 1. Both FL groups had a significantly elevated HO-1 and SOD ex-
pression in the liver, jejunum, and ileum, compared to those in the control group (p < 0.05).
Furthermore, the 5% FL group had a significantly elevated HO-1 and Nrf2 expression in
the liver and jejunum, compared to those in WB and control groups (p < 0.05). In addition,
the 5% FL supplementation group had a significantly elevated expression of Nrf2 in the
jejunum, compared to the control and WB groups (p < 0.05). In the liver, there was no
significant change in the CAT and GPx mRNA expression of each group (p > 0.05), while no
significant differences between 10% FL vs. 5% WB and 10% WB as well as 5% FL vs. 10%
FL in the relative mRNA expression of HO-1. The FL groups had a significantly better
expression of GPx and CAT, compared to those in the jejunum of the WB and control groups
(p < 0.05). However, there was no significant difference among each group for Nrf2, GPx,
and CAT expression in the ileum, while mRNA expression of HO-1 in both FL groups was
not significantly different from the 5% WB group (p > 0.05). Both FL groups showed no
significant difference in the mRNA expression of SOD compared to the WB groups in the
ileum (p > 0.05).
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Figure 1. Effects of FL supplementation on mRNA expression levels of the selected genes related to
antioxidant-status in (A) liver, (B) jejunum, and (C) ileum of 35-day-old broilers. Values are expressed
as the mean± standard deviation (n = 6). a–c Means among groups without the same letter, within the
same sampling day, are significantly different (p < 0.05). WB: Wheat Bran; FL: Laetiporus sulphureus
fermented product.
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3.4. Selected Tight Junction (TJ) Gene Expression

The effects of FL on selected TJ mRNA expressions are presented in Figure 2. Wheat
bran supplementation in broilers had no significant effect on the expression of selected TJ
mRNA in both the jejunum and the ileum (p > 0.05). Tight junction mRNA expressions in
the jejunum showed that the 5% FL group had significantly elevated CLDN-1 expression,
compared to the control and WB groups, while both FL supplementations significantly
improved the expression of OCLN in the jejunum and ileum (p < 0.05). A significantly
higher MUC-2 expression in the jejunum and ileum was observed only in the 5% FL
supplemented group, compared to that in the control group (p < 0.05). In addition, 5% and
10% FL supplementation significantly improved the expression of ZO-1 in jejunum and
ileum, compared to that in the 5% and 10% WB groups (p < 0.05). However, there were
no significant differences among the groups in terms of the ileal expression of CLDN-1
(p > 0.05).

Figure 2. The effects of FL supplementation on ZO-1 (A), CLDN-1 (B), MUC-2 (C), and OCLN (D) mRNA expression
in the jejunum and ileum of 35-d-old broiler chickens. Values are expressed as the mean ± standard deviation (n = 6).
a–c Means within the same rows, without the same superscript letter, are significantly different (p < 0.05). WB: Wheat
Bran; FL: Laetiporus sulphureus fermented product; ZO-1: Zonula occludens-1; CLDN-1: Claudin-1: MUC-2: Mucin-2;
OCLN: Occludin.

3.5. Intestinal Morphology

The changes in intestinal morphology of 35-day-old broilers in each control and treat-
ment group are listed in Table 5. The results show that 5% FL supplementation significantly
increased the villus height in the ileum and jejunum, compared to those in the WB and
control groups, while both FL supplementation groups had significantly higher villus
in the jejunum, compared to the 10% WB group (p < 0.05). Furthermore, the jejunal and
ileal crypt depth in the 10% FL group was significantly reduced compared to that of the
control group (p < 0.05). A significantly higher villi:crypt ratio in the ileum was observed
in the FL groups, compared to that in the WB and control groups (p < 0.05). However, the
villi:crypt ratio in the jejunum of both FL groups was not significantly different from that
in the control and WB groups (p > 0.05). The microscopic images of the jejunum and ileum
sections are displayed in Figure 3.
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Table 5. Effects of FL supplementation on intestinal morphology in 35-day-old broilers 1.

Items
Treatments

SEM p-Values
Control 5% WB 10% WB 5% FL 10% FL

Jejunum

Villus height (µm) 1210.72 bc 1207.34 bc 1157.55 c 1325.91 a 1255.74 ab 10.29 0.001
Crypt depth 270.72 a 203.38 c 216.52 bc 244.50 ab 212.41 bc 5.28 0.002

Villi:crypt ratio 5.10 5.98 5.52 5.78 5.96 0.12 0.16

Ileum

Villus height 1058.68 b 1118.71 b 1032.24 b 1126.53 a 113047 a 8.10 0.04
Crypt depth 198.27 a 190.01 ab 188.03 ab 178.80 ab 170.71 b 2.23 0.04

Villi:crypt ratio 5.98 b 5.99 b 5.51 b 6.50 a 6.24 a 0.07 0.03
1 The results are presented as the means of twenty spots corresponding to six birds each for the control and treatment groups. WB: Wheat
Bran; FL: Laetiporus sulphureus fermented product; SEM: standard error of the mean. a–c Means within the same rows, without the same
superscript letter, are significantly different (p < 0.05).

Figure 3. Photomicrography of the jejunum and ileum of 35-day-old broiler fed with control diet and Laetiporus sulphureus
fermented product. (A)–(E)—the jejunum of 35-day-old broilers representing the control, 5% WB, 10% WB, 5% FL,
and 10% FL groups, respectively. (F)–(J)—the ileum of 35-day-old broilers representing the control, 5% WB, 10% WB, 5% FL,
and 10% FL groups, respectively. Haematoxylin and eosin stain (40×).

4. Discussion

In order to evaluate the in vivo antioxidant properties of FL in broiler chickens,
we focused on Nrf2 and its downstream pathway. In this study, the expression of Nrf2,
HO-1, and SOD mRNAs in FL supplemented groups were up-regulated in the liver and
jejunum, compared to those in the control group, which indicates the antioxidant role of FL
in broilers. Nrf2 is a redox-sensitive transcription factor that is localized in the cytoplasm
and binds with Kelch-like ECH-associated protein 1 (Keap 1), an actin-binding protein,
under normal conditions [32]. Upon activation by ROS, Nrf2 dissociates from Keap 1, inter-
acts with the antioxidant response elements, and regulates the expression of downstream
antioxidant genes to activate the antioxidant and detoxifying effects [2]. The induction
of HO-1 is an important cellular process for dealing with oxidative stress by degrading
the intracellular levels of pro-oxidant heme and by producing biliverdin (a precursor of



Animals 2021, 11, 149 11 of 15

bilirubin) [33]. The elevated antioxidative status of FL supplemented groups could be
due to the bioactive phenolic compounds within FL. The phenolic compounds derived
from fungus have been reported to activate the Nrf2-Keap1 pathway in a suppressed Nrf2
diabetic rat model [34]. Furthermore, A. cinnamomea, a brown-rot fungus that exerted
medicinal effects similar to those of L. sulphureus, reported the enhanced expression of
Nrf2, HO-1, and SOD mRNAs in the liver of 35-day-old chickens fed upon its fermented
feedstuff, as well as a further increase in SOD activity in the serum [11,15]. Therefore, it can
be validated that FL, as a medicinal fungus fermented products, may have also improved
the antioxidative status of broilers via a similar mechanism as reported by above mentioned
previous studies.

Non-enzymatic and enzymatic antioxidant systems are two strategies that are used
in cells to inhibit the potential ROS toxicity. Enzymatic antioxidants are endogenously
synthesized and regulated, which is a crucial indicator for evaluating the oxidative status
of animal tissues [11,15]. SOD is an endogenous antioxidant enzyme that catalyzes the
dismutation of O2- to H2O2 and O2. In our study, the elevated SOD activity in the 5% FL
supplemented group indicated an increase in the extracellular antioxidant enzymatic activ-
ity. Similarly, Lin et al. [35] observed that the dietary supplementation of mulberry leaves
improved the serum SOD levels and showed that these outcomes were due to the presence
of abundant phenolic compounds in the tested product, which was in common with FL
that consisted of phenolic compounds that exerted antioxidant ability. The development of
oxidative injury could be indicated by the serum concentration of MDA because it is one of
the end products of lipid peroxidation [36]. In this study, the FL-supplemented groups had
a higher SOD activity and a lower MDA concentration. The elevated expression of serum
SOD and HO-1 mRNA enhanced the capacity of broilers to catalyze the harmful radicals
and encounter potential oxidative damage, which further led to the reduction of MDA in
the serum, which represents a total decline in the lipid oxidation in animals. Likewise,
Lee et al. [11] reported that the A. cinnamomea-fermented product supported the antioxi-
dant status of broiler chickens by improving the SOD activities. Furthermore, the enzyme
powder fermented by Trichoderma pseudokoningii was also found to exert an antioxidant
effect on broiler chickens, which increased the serum SOD activities and reduced the MDA
concentration [14]. Interestingly, FL seemed to have a less-pronounced effect on the ileum,
which might be due to the direct absorbance of a simple-structured polyphenol in the
jejunum, while the remaining complicated polyphenols are more likely to be fermented in
the hindgut by cecal microbiota and to exert their bio-functional effects [37].

According to the results of this study, the increased mRNA expression of transmem-
brane proteins claudin-1 (CLDN-1), occludin (OCLN), and mRNA of peripheral membrane
protein zonula occluden-1 (ZO-1) may be caused by the enhancement of the antioxidative
status in the jejunum of the FL-supplemented groups. By improving the function of TJ
and eliminating the deleterious effects of oxidative stress, the increase in MUC-2 mRNA
expression could lead to the improved health condition of intestinal goblet cells. The
integrity of epithelial cells and the normal function of the intestine in broiler chickens
is maintained by the TJs, which consist of several crucial elements, including occludin,
claudins, and ZOs. OCLN translates to occludin that forms the TJs, and its sealing property
is involved in the hurdle functions of the epithelial barrier [38]. Claudins (translated from
CLDN) are another family of integral membrane proteins that collaborate with occludin to
maintain the integrity of the TJs [5]. ZO-1 and ZO-2 bind directly to the COOH terminus
of the intracellular domain of occludin, which contributes to the normal structure of the
epithelial barrier function [6]. In addition, the MUC-2 gene is expressed by goblet cells,
which produce a mucus layer that helps in blocking pathogens invasion along with TJs [39].
The TJs could be disturbed when animals encounter heat stress and oxidative damage
due to excessive free radicals, which could lead to leaky gut and onset of inflammatory
response with poor animal health and impaired growth performances as a consequence.
Moreover, MUC-2 deficiency in mice causes spontaneous inflammation and allows the
colonization of unusual commensal bacteria [40]. The interaction of the antioxidant sta-
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tus and TJ integrity has also been proven in several studies by using various animals
and cell models. Chen et al. [9] reported that riboflavin deprivation decreased the an-
tioxidant enzyme activities, such as SOD, GPx, and glutathione reductase activities in
young grass carp, which further reduced the expression of TJ mRNA, OCLN, and ZO-1.
Zhao et al. [41] reported that the MUC-2 function could be interrupted by bisphenol A,
which induces mitochondrial dysfunction and oxidative stress. Exogenous antioxidants,
including polyphenols and polysaccharides, help to scavenge the excessive free radicals
and prevent oxidative damage to the intestinal cells and proteins [42]. In an H2O2-induced
oxidative damaged Caco-2 cell model, a phytogenic called red-osier dogwood, which con-
tained abundant phenolic compounds, was introduced to enhance the expression of HO-1,
SOD, GPx genes, and the Nrf2 protein, while improving the cell-integrity by increasing the
expression of ZO-1 and claudin-3 that were damaged by H2O2. In addition, Sun et al. [43]
demonstrated that the essential oil cinnamaldehyde exerted an antioxidant activity and ele-
vated the protein expression of claudin-4, occluding, and ZO-1. Chitosan oligosaccharide,
an antioxidant and an immunomodulatory substance, has been proven to improve OCLN
mRNA expression in the jejunum of broilers, while an increase in antioxidant enzymes
and reduced levels of proinflammatory cytokine IL-6 were also observed [44]. Quercetin,
an antioxidant flavonoid, was demonstrated to increase MUC-2 gene expression in human
intestinal goblet cell-like LS174T [45]. Therefore, the improvement of the MUC-2 status in
broilers supplemented with FL could result in the elevation of TJ integrity.

The villus height and crypt depth, with respect to the morphologies of the jejunum
and ileum of broilers, are always used as an indicator of intestinal health. The villus
height represents nutrient absorption efficiency, and a low crypt depth is favored, due
to the reduced intestinal cell turnover rate, to save energy and achieve a better growth
performance [46,47]. In our previous study, lignocellulose enzymes (laccase and xylanase),
which are capable of degrading the deleterious effects of NSP-rich WB, were produced dur-
ing L. sulphureus fermentation [17]. The improved morphologies of the jejunum and ileum
in broilers could be due to the lignocellulose in FL. Similar results were also demonstrated
by Chu et al. [13], who observed a positive impact of Trichoderma fermented wheat bran on
the intestinal morphology of broilers, while Lin et al. [14] showed that the T. pseudokoningii
fermented enzyme powder that contains NSPase improved the intestinal morphology
of broilers. Furthermore, FL was found to be rich in phenolic compounds and capable
of exerting an antioxidant effect, thus preventing oxidative stress. In the lumen of the
intestine, stressors, including pathogens and pro-oxidants, can cause dynamic changes in
the intestinal mucosa due to the close proximity of the mucosal surface and the intestinal
contents [1]. According to the outcomes of TJ and intestinal morphology, the antioxidant
effect of FL could potentially protect the intestinal mucosa, as well as the integrity of
epithelial cells, from oxidative damage. Similar results were shown by Viveros et al. [48],
who suggested that the dietary grape pomace concentrate (60 g/kg in feed) that are rich
in polyphenols could improve the ratio of villus height and crypt depth (villus height:
crypt depth) and increased the feed efficiency of broilers. Likewise, Lai et al. [8] reported
that fermentation of soybean hulls containing phenolic-rich residues of Pleurotus eryngii
stalk increased the villus height/crypt depth in the ileum. In this study, FL improved
the villi:crypt ratio in the ileum compared to the control and WB groups, while higher
villi and less shallow crypts were discovered in both jejunum and ileum of 5% FL group
compared to the WB and control groups. These improvements in intestinal morphology
could be possibly caused by the antioxidant effect along with the potential existence of
NSP enzymes.

5. Conclusions

In conclusion, FL is capable of improving the FCR in broilers by improving the
antioxidative status of broilers while and enhancing intestinal TJ mRNA expression while
minimizing the negative effects of dietary NSP. In addition, 5% FL supplementation had the
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best overall results in enhancing the serum SOD activity and antioxidant gene expression
in the liver, jejunum, and ileum while improving the intestinal TJ mRNA expression.
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