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Simple Summary: Interest in selection for milk yield and thermotolerance in cattle has grown,
since heat stress has caused great losses in milk yield. However, few studies on how to carry out
concurrent selection are available. Milk yield was analyzed by traditional methods, including heat
stress indicators, in genetic evaluation. The results showed that the best sires for milk yield are not
the best for heat tolerance, and only a small proportion of individuals have the aptitude for joint
selection. Despite a small population fraction allowed for joint selection, sufficient genetic variability
for selecting more resilient sires was found, which promoted concomitant genetic gains in milk yield
and thermotolerance.

Abstract: Intense selection for milk yield has increased environmental sensitivity in animals, and
currently, heat stress is an expensive problem in dairy farming. The objectives were to identify the best
model for characterizing environmental sensitivity in Holstein cattle, using the test-day milk yield
(TDMY) combined with the temperature–humidity index (THI), and identify sires genetically superior
for heat-stress (HS) tolerance and milk yield, through random regression. The data comprised 94,549
TDMYs of 11,294 first-parity Holstein cows in Brazil, collected from 1997 to 2013. The yield data were
fitted to Legendre orthogonal polynomials, linear splines and the Wilmink function. The THI (the
average of two days before the dairy control) was used as an environmental gradient. An animal
model that fitted production using a Legendre polynomials of quartic order for the days in milk
and quadratic equations for the THI presented a better quality of fit (Akaike’s information criterion
(AIC) and Bayesian information criterion (BIC)). The Spearman correlation coefficient of greatest
impact was 0.54, between the top 1% for TDMY and top 1% for HS. Only 9% of the sires showed
plasticity and an aptitude for joint selection. Thus, despite the small population fraction allowed
for joint selection, sufficient genetic variability for selecting more resilient sires was found, which
promoted concomitant genetic gains in milk yield and thermotolerance.

Keywords: animal resilience; genotype-by-environment interaction; longitudinal data

1. Introduction

Dairy breeding programs have traditionally focused on selection for milk yield. This
intense selection has increased sensitivity to environmental changes in animals. Climate
and variability in climate have negatively affect milk yield due to impacts on metabolic
efficiency and immune responses [1]. Currently, heat stress is an expensive problem in
dairy farming.

Garcia et al. [2] observed a 21% milk yield loss in a commercial herd of Holstein cows
in southern Brazil caused by heat stress. According to Pegorer et al. [3], approximately
60% of dairy farms in the world are in heat-stress environments. Heat stress decreases milk
yield by 30% to 40% [4], which represents approximately 600 to 900 kg of milk per lactation
per cow [5], and can exceed 1300 kg of milk per cow [6]. The impact of heat stress on the
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dairy cattle industry resulted in an economic loss of USD 900 million in 2012 [4], and the
estimated loss in 2014 was USD 1.2 billion for the US dairy sector [7].

According to Sigdel et al. [8] and Ansari-Mahyari et al. [9], a possible strategy for
reducing the effects of heat stress on dairy cattle is the selection of genetically more
thermotolerant animals. However, it requires methodology that allows for the identification
and subsequent selection of animals according to specific regions and climates.

Brazil has a diverse climate, from warm and dry/humid to cold and humid climates,
due to a wide variation in longitude, latitude, and altitude in its territory and the effects of
coastal, continental vegetation [10]. In addition, it is affected by seasonal factors, which
influence the management of herds. In warmer conditions, animals tend to be kept on
pasture (to use the grass cycle), while in colder periods, animals are semi-confined and
supplemented with silage [11]. Thus, each region of the country is more suitable and
productive for specific dairy cattle genotypes, which requires a combined selection for heat
tolerance and milk yield for each region.

Different thermotolerances are found between and within dairy cattle breeds. The
selection of animals within a breed is an alternative when crossbreeding is not feasible.
Physical sizes, metabolic rates and productive levels have been associated with thermotol-
erance [12].

Ravagnolo and Misztal [13] described a method to identify the most resilient ani-
mals regarding heat tolerance, proposing a random regression method that quantifies
the heat stress level based on climate information (the temperature–humidity index) on
the test day. This methodology allows for the detection of the presence of genotype-by-
environment interactions (G × Es), and the modeling of animal performance as a function
of the environmental gradient.

The evaluation of decreases in milk yield per THI-unit increase from a determined
threshold is a method for predicting the relationship between production and climate
conditions [5]. The THI is a bioclimatic index commonly used to determine heat stress in
cattle [14]. Diurnal temperature variation (DTV) also has potential for use as an environ-
mental indicator of heat stress [15].

Several hypothetical models and fitting equations have been proposed to estimate
the effect of heat stress. A combination of methods allows the identification of the best
methodology for explaining the variation in genetic and non-genetic components within
an environmental gradient. This enables critical genetic analysis and the reduction of
the negative effects of heat stress on dairy cattle performance and impacts the dairy
production chain.

In this context, the objective of this study was to identify the best model for char-
acterizing environmental sensitivity in Holstein cattle in Brazil, using the test-day milk
yield combined with temperature–humidity index data from public weather stations, and
identify sires genetically superior in terms of heat tolerance and milk yield through random
regression models.

2. Materials and Methods
2.1. Climate Data

Bioclimatic data from 18 weather stations (representing 86 municipalities) were ob-
tained from the Instituto Nacional de Meteorologia. The stations were located within 60 km
of the evaluated farms. The temperature–humidity index (THI) was calculated according
to the equation described by the National Research Council—NRC [16]:

THI = [(1.8 × DBT + 32) − (0.55 − (0.0055 × RH) × (1.8 × DBT − 26))] (1)

where DBT is the dry bulb temperature (◦C) and RH is the relative humidity (%). The THI
was found to range from 50 to 95.

The diurnal temperature variation (DTV) was calculated by the difference between the
daily maximum and minimum temperatures (◦C). The DTV was found to range from 2 to
25. The numbers of test-day milk yield records by the THI and DTV are shown in Figure 1.
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Figure 1. Number of records (n) and means of test-day milk yield (TDMY) per temperature–humidity index (THI) (a) and
diurnal temperature variation (DTV) (b) in Brazilian Holstein cattle.

The THI and DTV daily averages used were calculated based on averages of two days
(one and two days before the test-day milk yield records), as described by Negri et al. [17].

2.2. Data

The test-day milk yield (TDMY) data, provided by the Associação de Criadores de
Gado Holandês de Minas Gerais (ACGHMG), consisted of records of Holstein cows at first
lactation in the state of Minas Gerais, Brazil (19◦55′ S–43◦57′ W), from 1996 to 2015.

Records of animals with ages at calving <18 or >48 months, days in milk (DIM) <5 or
>305 days, and milk yields <4 or >44.8 kg were excluded from the data set. Only healthy
animals with at least four TDMY records during lactation were used for analysis. The
minimum size of each contemporary group (CG; based on the herd, years and months
of the TDMY records) was three animals. Records of daughters of sires with at least one
daughter in at least three herds were included in evaluation.

Considering these criteria, a total of 94,549 TDMY records from 11,294 first lactations
of Holstein cows, with a mean test-day milk yield of 25.81 kg, from 129 herds, collected
from 1997 to 2013, were analyzed. This database was fitted to all the evaluated models. The
pedigree file included 32,409 animals. The structure of the dataset after editing is shown in
Table 1.

Table 1. Overall traits of first-parity Brazilian Holstein cattle (SD in parentheses).

Item Statistics

Number of test-day records 94,549
Number of animals with records 11,294

Number of animals in pedigree file 32,409
Number of dams in pedigree file 8639
Number of sires in pedigree file 641

Number of contemporary groups 5257
Number of herds 129

Mean test-day milk (kg) 25.81 (7.21)
Mean records/animal 8.37

2.3. Models

Five models (M1 to M5) and three fitting equations were used to analyze the TDMY
records: the Wilmink parametric function (WL) [18], linear splines (LS) [19], and Legen-
dre orthogonal polynomial (LP) [20]. Additive genetic and permanent environmental
(co)variance functions were regressed to the THI, DTV and DIM, according to the models
described below.
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Model 1 (M1): The contemporary group, milking frequency (two and three times a
day), variable t (described below the models), and DIM with 60 classes (every five units of
DIM was considered a class: DIM 5 to 10 = class 1, DIM 11 to 15 = class 2 . . . DIM 300 and
305 = class 60) were fixed effects. The fixed curve (described below the models), additive
genetic and permanent environmental functions were regressed to the THI, using the LP
(4th order), LS (4 knots) and WL.

Model 2 (M2): The contemporary group, milking frequency and variable t were fixed
effects. The fixed curve, additive genetic and permanent environmental functions were
regressed: the DIM using the LP (4th order), and to the THI using the LP (2nd order); to
the DIM using LS (4 knots) and to the THI using LS (3 knots); to the DIM and THI using
the WL.

Model 3 (M3): The contemporary group, milking frequency and variable t were fixed
effects. The fixed curve, additive genetic and permanent environmental functions were
regressed: to the DIM using the LP (4th order), and to the THI and DTV using the LP (2nd
order); to the DIM using LS (4 knots), and to the THI and DTV using LS (3 knots); to the
DIM, THI and DTV using the WL.

Model 4 (M4): The contemporary group, milking frequency, variable t and DTV (with
5 classes: DTV 2 to 6 = class 1, DTV 7 to 11 = class 2 . . . DTV 22 to 25 = class 5) were fixed
effects. The fixed curve, additive genetic and permanent environmental functions were
regressed: to the DIM using the LP (4th order), and to the THI using the LP (2nd order); to
the DIM using LS (4 knots), and to the THI using LS (3 knots); to the DIM and THI using
the WL.

Model 5 (M5): The contemporary group, milking frequency, variable t and DIM with
60 classes (every five units of DIM was considered a class: DIM 5 to 10 = class 1, DIM 11 to
15 = class 2 . . . DIM 300 and 305 = class 60) were fixed effects. The fixed curve, additive
genetic and permanent environmental functions were regressed: to the THI and DTV using
the LP (2nd order); to the THI and DTV using LS (3 knots); to the THI and DTV using
the WL.

A dummy variable t was defined to estimate the decreases in milk yield caused by heat
stress (HS). The threshold for HS used was a THI of 74, based on Negri et al. [17]. Therefore,

if THI ≤ 74, t = 0 (no heat stress); else if THI > 74 then t = THI − 74. (2)

The fixed curves considered in all the models were defined by the age classes—1 (18 to
25 months), 2 (26 to 27 months), 3 (28 to 29 months) and 4 (30 to 48 months)—combined with
calving season subclasses—1 (rainy: October to March) and 2 (dry: April to September)—
totaling eight fixed curves. The residual variance was considered homogeneous in all the
models (Table 2).
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Table 2. Model layout.

Models

Fixed Effects Regressor

Contemporary
Group

Milking
Frequency Variable t DIM DTV DIM THI DTV

M1
* * * * - - #### -
* * * * - - + + + + -
* * * * - - ♦ ♦ ♦ -

M2
* * * - - #### ## -
* * * - - + + + + + + + -
* * * - - ♦ ♦ ♦ ♦ ♦ ♦ -

M3
* * * - - #### ## ##
* * * - - + + + + + + + + + +
* * * - - ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

M4
* * * - * #### ## -
* * * - * + + + + + + + -
* * * - * ♦ ♦ ♦ ♦ ♦ ♦ -

M5
* * * * - - ## ##
* * * * - - + + + + + +
* * * * - - ♦ ♦ ♦ ♦ ♦ ♦

DIM: Days in milk; DTV: Diurnal temperature variation; THI: Temperature–humidity index; * Considered; - not considered; ## Legendre
orthogonal polynomial LP (2nd order); #### LP (4th order); + + + Linear splines LS (3 knots); + + + + LS (4 knots); ♦♦♦ Wilmink
parametric function WL.

2.4. Analysis of Models

Random regression models (RRM) were used for analysis. Henderson’s mixed model
equations [21] for RRM can be described as follows: X′R−1X X′R−1Z X′R−1W

Z′R−1X Z′R−1Z + A−1 ⊗G−1
0 Z′R−1W

W′R−1X W′R−1Z W′R−1W + I⊗ P−1
0

 b̂
â
p̂

 =

 X′R−1y
Z′R−1y
W′R−1y

 (3)

where y is the vector of observations; X, Z and W are the incidence matrices for the fixed
effects(b), additive genetic random regression coefficients (a), and permanent environmen-
tal random regression coefficients (p), respectively; A is the additive genetic numerator
relationship matrix based on pedigree information; and I is an identity matrix. G0 and P0
are the (co)variance matrices of the additive genetic and permanent environmental random
regression coefficients, respectively, and R is the (co)variance matrix of the residual.

All the genetic analyses were performed with an animal model, using the REMLF90
program [22]. Considering the REML estimation method, the model assumptions can be
described as:

y
a
p
e

 ∼ N




Xβ
0
0
0

;


ZGZ′ + WPW′ + R ZG WP R

A⊗G0 φ φ
I⊗ P0 φ

Sim. R


 (4)

where e is the vector of the residuals, and all the other terms were previously defined. The
genetic (Σ) and environmental (Φ) (co)variance matrices for time points can be obtained as
follows (assuming the same function for factors):

Σ = TG0T′ and Φ = TP0T′ (5)

where T is a matrix of independent covariates for all time points (DIM, THI or DTV)
associated with the model and function used.
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The quality of fit was evaluated considering non-nested models and penalties, accord-
ing to the number of parameters to be estimated. The following criteria were used: the max-
imum likelihood estimation (−2logL), Akaike’s information criterion (AIC = −2logL + 2p,
where p is the number of parameters in the model), and Schwarz’s Bayesian information
criterion (BIC = −2logL + p log (λ), where log (λ) is the natural logarithm of the sample
size (or dimension of y) and p is the number of parameters in the model). The BIC is more
rigid than AIC. The model with the lowest value for both criteria was the one with the
best fit.

The estimated breeding value (EBV) of an animal i obtained with M4 was computed
using DIM (EBV_TDMY) and environmental gradient (THI values, EBV_HS) information,
according to the equation

EBV j,k
l = φ(j)k â′i (6)

where â′i is the vector of the estimated additive genetic values for the orthogonal regression
coefficients of animal i (coefficients corresponding to DIM and THI) and φ(j)k is a vector of
the orthogonal coefficients evaluated in THI j and DIM k.

The top 1% and 5% dairy Holstein sires (with at least 20 daughters) for EBV_TDMY
and EBV_HS were sampled to represent the resilience of the animals, considering the DIM
and THI scale (i.e., reaction norms).

3. Results
3.1. Loss in Milk Yield and Adjustment of Models

Considering only the THI, approximately 31% of all the TDMY records were obtained
under heat-comfort conditions (<THI 74) and 69% were under HS conditions. The data
show that the milk yield tended to decrease as the THI was increasing. The mean and
standard deviation of the TDMY were 28.57 ± 1.8 kg for THI < 74, and 23.95 ± 1.9 kg for
THI > 74.

Approximately 46% of all the TDMY records were obtained at DTV within heat
comfort conditions (<DTV 13), and 54% were in HS conditions. The mean and standard
deviation of the TDMY records were 27.33 ± 1.3 kg for DTV < 13 and 24.94 ± 0.4 kg for
DTV > 13. The phenotypic value tended to decrease as the DTV increased. However, slope
is more representative for assessing the THI effect.

Five models that used the LP to fit fixed and random curves showed better quality
of fit (Figure 2). The best model according to the information criteria (AIC and BIC) was
M4, with AIC = 508,170 and BIC = 508,264, which regresses data to the DIM and THI,
and included the DTV as a fixed effect. Thus, in addition to the model minimizing the
Kullback–Leibler divergence (related to missing information), the probability of fit of the
true model is maximized.

Figure 2. Estimates of maximum of likelihood function (−2logL), Akaike’s information criterion (AIC) and Schwarz’s
Bayesian information criterion (BIC) according to evaluation model and random effects adjustment equation of test-day
milk yield (TDMY) in Brazilian Holsteins.
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AIC includes the complexity and predicted ability of the data to fit the model, and is
linked to the BIC due to the probability function. However, the BIC penalizes models more
because of the number of parameters. Thus, the quality of fit (AIC and BIC) indicates the
same model, confirming that the chosen model is the most appropriate.

3.2. Heritability

The overall heritability estimate for the TDMY regressed to the THI ranged from 0.15
to 0.21 when using the LP equation (Figure 3), while for the WL, it ranged from 0.11 to 0.19,
and when using LS, it varied from 0.07 to 0.22.

Figure 3. Estimated average heritability for test-day milk yield (TDMY) according to temperature–
humidity index (THI) according to model and using Legendre polynomials (LP), linear splines (LS)
and Wilmink (WL) in Brazilian Holsteins.

The heritability estimated as a function of lactation in M4 using the LP (best fit)
weighted by the THI and DIM, after the THI threshold (THI = 74), showed a decrease
(Figure 4). The environmental variation increased, and the additive genetic variation
decreased, directly interfering with the heritability of the trait. Thus, the highest selection
responses can be expected for the thermal-comfort range. The extrapolation of estimates
close to the beginning (DIM 5) and end (DIM 305) of lactation was due to the low number
of registered TDMYs.

Figure 4. Estimated heritability for test-day milk yield, TDMY, according to temperature–humidity
index (THI) and days in milk (DIM) according to model 4 (M4) using Legendre polynomials.

3.3. Genotype-by-Environment Interaction

The fixed effects solution (BLUE) for DTV shows that an increase in the variation
temperature is reflected in a decrease in milk yield (Figure 5). The fixed effect considered in
model that regresses to the DIM and THI (M4) better explains the behavior of the lactation
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curve, since the temperature variation needs to be nested at some thermal reference point
in order to define the magnitude and importance of its effect. Thus, the use of DTV should
always be nested in a heat-stress indicator, in order to anchor the inferred heat comfort.

Figure 5. Solution of fixed effect (BLUE) of temperature variation (DTV) according to classes consid-
ered in the model 4 (M4) model using Legendre polynomials.

Classes: DTV 2 to 6 = class 1; DTV 7 to 11 = class 2; DTV 12 to 16 = class 3; DTV 17 to
21 = class 4; DTV 22 to 25 = class 5.

The existence of additive genetic variability for the slope of the environmental gradient
indicated the presence of G×E interaction (Figure 6). Some of the best sires (EBV_TDMY)
(Figure 6a,b) had interesting EBV_HS (Figure 6c,d).

1 
 

 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

1 
 

 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

 
Figure 6. Estimated breeding value gradient (i.e., reaction norm model) for best sires: top 1% (a) and top 5% (b) for test-day
milk yield (EBV_TDMY) and for tolerance to heat stress (EBV_HS) of the same sires (c,d).
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Approximately 9% of the sires were resilient to changes in the THI, considering their
EBV for TDMY and HS tolerance; however, approximately 30% showed probable plasticity.
This allows the selection and formation of a resilient lineage with good productivity.

The reranking of sires was confirmed by the Spearman rank correlation coefficients,
comparing the genetic evaluation for TDMY and thermotolerance (Figure 7). Therefore,
the Holstein sires with the best EBV_TDMY records in favorable environments may not be
the best under EBV_HS conditions. Moreover, the impact of reranking is higher when the
selection pressure is the strongest (Top 1%).

Figure 7. Spearman rank correlation coefficients for top 1%, top 5%, top 10% and top 20% best
sires (estimated breeding values—EBVs) regarding test-day milk yield (TDMY) and heat stress (HS),
according to model 4 (M4) using Legendre polynomials. The colors inside the squares indicate the
magnitudes and directions of the associations.

The database, in which 90% of the records were measured under heat-stress conditions,
showed that the traditional model (which does not consider heat stress) is inefficient for
estimating the EBV when animals are under heat stress. Thus, considering two situations,
when sires are considered equally in heat comfort (THI = 74) and in heat stress (THI = 84),
sires with less than 40 daughters are the most penalized, and their EBVs are underestimated
(Table 3).

Table 3. Efficiency in estimating breeding value for test-day milk yield (EBV_TDMY) of Brazilian
Holstein cattle under conditions of homeostasis and heat stress.

N Daughters Sires
EBV_TDMY

THI 74 THI 84

>101 13 100% 91%
51 to 100 43 100% 84%
41 to 50 12 100% 84%
31 to 40 23 100% 75%
21 to 30 59 100% 74%
11 to 20 127 100% 73%

<10 364 100% 71%

The effect of the genotype-by-environment interaction is minimized and the traditional
methodology is not biased when a sire has more than 101 daughters in several herds.
However, some breeders intensively use high EBV_TDMY, and others use them less often.
This unequal contribution to adaptive values makes the estimates biased.
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4. Discussion

Most dairy cows in Brazil are kept in open barns and in grazing systems [23–25].
Minas Gerais has three predominant climate types—subtropical at altitude, subtropical
with dry winters, and tropical with dry winters—according to the Köppen—Geiger classifi-
cation. Thus, environmental factors such as the THI and DTV have a direct impact on cow
productivity. Lactating dairy cows must be in favorable environments because stresses
negatively affect cow maintenance, milk yield, growth, the preservation of body condition
(health) and reproduction.

Climate changes may increase heat-stress levels in dairy cows; thus, these environmen-
tal phenomena, which frequently cause droughts, heat waves, storms and floods, should
be considered [26]. Increases in climate variability have negatively impacted livestock
production, especially dairy farming [15,27]. Temperatures in tropical regions increased
by 0.1 to 0.3 ◦C per decade between 1951 and 2000 because of increases in greenhouse
gases [26], and the variations in temperatures have increased by 0.7 to 0.8 ◦C because of
the El Niño Southern Oscillation (ENSO) over the past century [28]. However, the selection
of animals for milk yield has not considered animals’ tolerance to heat stress, as shown in
the present study.

These changes justify and foster research that evaluates the effects of climate variables
on animal production, mainly regarding genetic breeding, in which the effects are cumu-
lative and long term. In addition, the use of heat stress indicators collected from public
weather stations, rather than directly from farms, has been widely explored for inclusion in
genetic evaluation. According to Lee et al. [29], the evaluation should not be affected by
this substitution, because the use of contemporary groups compensates for effects at the
farm, management, nutrition and technological levels.

Legendre polynomials are more widely used for these evaluations [30–33]. Despite
the complexity of these assessments, better results can be obtained when considering the
two-day average of climate variables for test-day milk yield, including the DTV as a fixed
effect in the model and regressing data to the THI and DIM.

A low number of observations of extremes of lactation may affect the prediction
coefficients of functions fitted through random regression [34]. The same database was
fitted to LP, WL and LS functions, and the LP was the more robust model, considering
possible biases caused by the low number of observations at the ends of the gradient.

The sooner HS is detected, the greater the chances of keeping more resilient animals
in production and, consequently, the more productive they are in different heat conditions.
According to Aguilar et al. [35], the genetic variance of heat stress for milk yield increases
significantly from the first lactation. Thus, cows become more sensitive to heat stress as
the number of parities is increased. Thus, detecting susceptibility to heat stress in the first
lactation allows the prediction of losses in subsequent lactations.

Brügemann et al. [36] emphasize that the effect of heat stress can suppress the expres-
sion of animals’ genetic potential, and reported that a random regression model showed a
trend of higher heritability in the THI range corresponding to the comfort zone of cows,
as found in the present study. Thus, the selection of these superior environments can
contribute to accurate genetic differentiation among candidates for selection.

The use of random regression to detect G × E fits a variance–covariance structure of
repeated measures along a gradient for traits such as the TDMY [37]. Similarly, the model
proposed by Kolmodin et al. [34], using covariance functions, is a good G × E indicator.

Selecting sires only by EBV_TDMY, disregarding the herd rearing system, technologi-
cal level and bioclimatic conditions of a region, may compromise the genetic gain of herds.
Moreover, investments in high-merit genetic material from animals evaluated in highly
technological environments should not be recommended for farmers in environments with
low technological investments.

An ideal curve would be a high and constant EBV_TDMY under different THIs;
however, few animals presented this desired profile. Thus, considering the needs for
breeding of each herd is important for more quicky increasing the TDMY or tolerance to HS.
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Each sire has a thermotolerance slope limit, as shown by the difference between the curves,
which allows the better targeting of sires for different uses, according to farmers’ demands.

The results shown in Figure 6 denote the possibility of using individual random slopes
as a selection criterion for resilience (animals that withstand variations that can cause heat
stress). Animals with a subtle slope are less sensitive to environmental variation. The
results indicate high genetic variations in sires within different environments.

This high variability indicates that the apparent genetic merit of sires for milk yield
may change depending on the environment, generating great concern about genetic eval-
uation and the choice of sires, which can be affected by this dependence. Phenotypic
and genetic parameters are dependent on the population and environment, and can have
different magnitudes, resulting in heterogenous variations. Thus, changes in variances
and the covariance would promote changes in important parameters, such as heritability,
repeatability and correlations, which may result in incorrect choices of selection methods
adopted in a breeding program.

According to Santana et al. [31], the flattening of the slope is particularly important
for countries with a hot climate when focusing on selecting animals with high production
levels and tolerant to heat stress. In tropical climate regions, the effects of environmental
variations can be addressed by different methods of genetic evaluation. Thus, some
applicable options can be used to simultaneously select animals for TDMY and HS in loco:
the creation of a selection index for the simultaneous selection and targeting of mating
to develop a tolerant lineage. However, it requires attention to avoid estimation biases.
Negri et al. [17] pointed out the importance of correcting test-day milk yield data using
heat-stress indicators and reported significant increases in estimates of repeatability and
the reranking of sires, especially for sires with fewer daughters.

5. Conclusions

The existence of genetic variation for sensitivity to heat stress allows for the selection
of genetically resilient animals.

The most adequate selection methodology for improving heat tolerance without de-
creasing productivity includes diurnal temperature variation as a fixed effect and regresses
data to the temperature–humidity index and days in milk.

Legendre polynomials should be used to ensure better predictions of the estimated
breeding value and determine the genetic effect of heat stress through random regres-
sion models.

Antagonism between the test-day milk yield and heat stress was confirmed, and
enabled the use of heat tolerance as a selection criterion for improving animal thermotol-
erance and productivity simultaneously. The development of selection indexes weighted
by technological levels or sire summaries that include information on the environmental
gradient could be viable solutions. The selection and development of more thermotolerant
lineages is a more attractive option than the development of selection indexes.
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