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Simple Summary: Colistin has been used as a growth promotant in livestock feed for many years.
To date, there are few reports about the prevalence and molecular characteristics of fecal Escherichia
coli bearing mcr-1 in the meat ducks. In this study, among 120 fecal Escherichia coli strains isolated
from healthy meat ducks, a total of nine mcr-1-containing E. coli strains were identified and two were
identified as extra-intestinal pathogenic E. coli. The 9 mcr-1-bearing E. coli isolates were clonally
unrelated, carried two different genetic contexts of mcr-1, and the colistin-resistant phenotype of them
was successfully transferred to the recipient strains. These results highlight that healthy meat duck is
a potential reservoir for multidrug resistant mcr-1-containing E. coli strains.

Abstract: Colistin has been used as a growth promotant in livestock feed for many years. In China,
mcr-1-positive Escherichia coli strains have been isolated from humans, chickens, and pigs. To date,
there are few reports about the prevalence and molecular characteristics of fecal E. coli bearing mcr-1
in the meat ducks. In this study, the prevalence of mcr-1 gene was investigated among 120 fecal E. coli
strains isolated from healthy meat ducks in Shandong province of China between October 2017 and
February 2018. A total of nine mcr-1-containing E. coli strains were identified and two were identified
as extra-intestinal pathogenic E. coli (ExPEC) among them. The clonal relationship of the nine E. coli
strains was determined by multilocus sequencing typing (MLST) and pulsed field gel electrophoresis
(PFGE), and the results indicated that all mcr-1-carrying isolates were clonally unrelated. Two different
genetic contexts of mcr-1 were identified among these isolates. Colistin-resistant phenotype of all the
isolates was successfully transferred to the recipient strains by conjugation experiments and seven
transconjugants carried a single plasmid. The mcr-1 was located on three replicon plasmids: IncI2
(n = 4), IncFII (n = 2) and IncN (n = 1). Complete sequence analysis of a representative plasmid pTA9
revealed that it was strikingly similar with plasmid pMCR1-IncI2 of E. coli, plasmid pHNSHP45 of
E. coli, and plasmid pWF-5-19C of Cronobacter sakazakii, implying that pTA9-like plasmids may be
epidemic plasmids that mediate the spread of mcr-1 among Enterobacteriaceae. These results highlight
that healthy meat duck is a potential reservoir for multidrug resistant mcr-1-containing E. coli strains.
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1. Introduction

Avian pathogenic Escherichia coli (APEC), a subgroup of extra-intestinal pathogenic E. coli (ExPEC),
can cause severe disease characterized by perihepatitis, pericarditis, and airsacculitis, which results
in economic and welfare costs in the poultry industry worldwide [1]. There are similar virulence
genes between APEC strains and the ExPEC strains in humans [2]. Via the food chain, the multidrug
resistant (MDR) APEC strains can transfer from poultry to man, which not only increases the difficulty
of treating animal diseases, but also poses a serious threat to human health [3].

As a polymyxin antibacterial agent, colistin is considered as the last-resort drug with excellent
bactericidal activity against multidrug-resistant Gram-negative pathogens in humans [4]. However,
the recent emergence of mcr-like genes (mcr-1 to mcr-10) potentially threatens the clinical effectiveness
of colistin [5–7]. These mcr genes have been disseminated to more than 40 countries across at
least five continents in multiple ecosystems and traced to more than 11 bacterial species [8,9].
The worldwide distribution of mcr-1 gene strongly indicates a potential food-chain-based spread
route [10]. Many studies showed that the prevalent dissemination of the mcr-1 gene relied on transfer
by conjugative plasmids such as pHNSHP45, pECJS-B65–33, and pECJS-61–63 [8,9,11].

The intestinal flora of the food animals and humans is a reservoir for antibiotic resistance genes,
and the resistant genes can spread from food animals to humans by commensal flora [12,13]. In China,
mcr-1-positive E. coli strains have been isolated from humans, chickens, and pigs [14]. To date,
prevalence and molecular characteristics of many viral and bacterial pathogens has been identified in
Chinese duck flocks [15–21], but there are few reports about the prevalence and molecular characteristics
of fecal E. coli bearing mcr-1 from the meat ducks [22–24]. In this study, we isolated E. coli strains from
the feces of healthy meat ducks in Shandong province of China, and investigated the occurrence and
molecular characteristics of the mcr-1-positive E. coli strains.

2. Materials and Methods

2.1. Bacterial Isolate

From October 2017 to February 2018, a total of 120 cloacal swabs were collected from healthy meat
ducks from 12 duck farms in Shandong province, China. The cloacal swabs were immediately put
into Luria-Bertani (LB) broth and incubated for 24 h at 37 ◦C. All samples were seeded on selective
MacConkey agar plates. Bright pink, round, and smooth surface E. coli colonies were picked on
selective plates for further analysis. The E. coli isolates were identified through 16S rDNA sequence
analysis, and the 16S rDNA primers were designed in this study (Table 1).

Table 1. The primers used in this study.

Detected Genes Primer Sequence (5′–3′) Size/Bp

16S rDNA
agagtttgatcctggctcag

1505ggttaccttgttacgactt

Resistance gene rmtB
atgaacatcaacgatgccctc

756ttatccattcttttttatcaagtatat

Genetic context of the mcr-1 gene
nikB

gatgaacttgatcatcgtgttgt
705gtaattctgacgaaaaagacga

top gagttcgcaccgctgacagac
330atcaaacaccgacttcagggcatc

2.2. Antimicrobial Susceptibility Testing

The minimum inhibitory concentrations (MICs) of tetracycline, fosfomycin, colistin, gentamicin,
imipenem, ciprofloxacin, cefotaxime, amikacin, and florfenicol for the E. coli isolates picked on the
plates and transconjugants were tested by the broth dilution method and interpreted according to
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the Clinical and Laboratory Standards Institute [25,26]. The colistin breakpoint (≥2 µg/mL) was used
according to the European Committee on Antimicrobial Susceptibility Testing guidelines [27]. E. coli
ATCC 25,922 was used as the quality-control strain.

2.3. Molecular Detection

All colistin resistant E. coli strains and their transconjugants were screened for mcr-1 gene by
polymerase chain reaction (PCR) assays [14]. According to the surrounding structure of pTA9,
the primers of nikB and top gene were designed to determine the genetic environment of the mcr-1 gene
(Table 1). The resistance genes (floR, tet(A), β-Lactamase, rmtB, and fosA3) and virulence-associated
genes were analyzed for the mcr-1-containing E. coli strains and their transconjugants by PCR
(Table S1) [28–31]. The strains were classified as ExPEC if they carried at least two of five key virulence
genes: papA and/or papC (pyelonephritis-associated pili A/C, counted as 1: P fimbriae), sfa/foc (S/F1C
fimbriae), afa/dra (Afimbrial/Dr-binding adhesins), iutA (aerobactin system), and kpsM II (group 2
capsules) [32].

2.4. Molecular Typing

XbaI-PFGE was performed as described previously [33] using the CHEF-MAPPER System (Bio-Rad
Laboratories, Hercules, CA, USA). Phylogenetic analysis of PFGE patterns was performed using the
PyElph software version 1.4 [34]. The UPGMA method was used for clustering. Mcr-1-positive
strains were studied by multilocus sequence typing (MLST) as previously described [35]. Phylogenetic
classification was performed using a triplex PCR reaction [36].

2.5. Conjugation Assays

Conjugation experiments were performed using azide resistant E. coli J53 as the recipient [37].
Transconjugants were selected on agar containing 200 mg/L azide and 2 mg/L colistin and confirmed
by enterobacterial repetitive intergenic consensus (ERIC)-PCR method [38].

2.6. Plasmid Characterization

Mcr-1-containing plasmids were sized by the S1 nuclease pulsed field gel electrophoresis
(S1-PFGE) [33]. A single plasmid carried by transconjugants was used for plasmid analysis. The replicon
types of plasmids were determined by PCR-based replicon typing (PBRT) [39]. A representative
mcr-1-harboring plasmid, pTA9, was extracted using the Qiagen Large Construct kit (Qiagen, Hilden,
Germany) and sequenced using the Illumina MisSeq system using prepared paired-end 2 × 300 bp
libraries. The coverage of the plasmid is 200×. Raw data was assembled using the SPAdes Genome
Assembler (http://cab.spbu.ru/software/spades/) and SSPACE (version 3.0). Gap was closed with PCR
and Sanger sequencing. The plasmid was annotated using the RAST tool (http://rast.nmpdr.org/).

2.7. Ethics Statement

All animal experiments were carried out in accordance with guidelines issued by the Shandong
Agricultural University Animal Care and Use Committee (approval number, SDAUA-2017-043).

3. Results and Discussion

3.1. Identification of Mcr-1-Carrying E. coli Isolates

In this study, a total of 120 fecal E. coli strains were isolated from healthy meat ducks from October
2017 to February 2018. Among them, only nine isolates (7.5%, 9/120) were resistant to colistin and
identified as positive for mcr-1 gene by PCR amplification and sequencing. In China, high mcr-1 gene
carriage rates (about 15% to 30%) were observed in E. coli isolates collected from poultry and pigs
between 2011 to 2016 [14,40,41]. Colistin had been commonly used as a growth promotant in livestock
feed for many years and had been banned from April 2017 in China. However, the samples in the

http://cab.spbu.ru/software/spades/
http://rast.nmpdr.org/
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above-mentioned studies were collected before the ban was issued [14,40,41]. The samples in this study
were collected after the ban was issued. So, we speculated that the ban of colistin in animal feed might
be the main reason why the low frequency of mcr-1 gene was found in fecal E. coli isolates in this study.

3.2. Antimicrobial Resistance Patterns and Resistance Genes

In this study, all of the 9 mcr-1-bearing E. coli isolates were MDR strains (resistance to antibiotics
of at least three classes). Among them, 9, 8, 8, and 7 isolates were resistant to tetracycline, cefotaxime,
ciprofloxacin, and florfenicol respectively, but all were susceptible to imipenem (Table 2). Mcr-1 is
usually found to coexist with other resistance genes (extended-spectrum β-lactam, floR, and tet(A))
in bacteria [42–44]. In this study, 6, 5, 5, and 2 of the nine mcr-1-bearing E. coli isolates harbored floR,
blaCTX-M, blaTEM-1, and tet(A) genes, respectively (Table 2). The association with other resistance genes
is likely to favor the dissemination of mcr-1 by co-selection, since cephalosporins, florfenicol, and
tetracycline are used extensively in animal husbandry in China.

Table 2. Molecular characteristics of the 9 mcr-1-positive E. coli strains isolated from healthy meat
ducks in this study.

Strains Farm MLST Groups Virulence Genes Resistance Genes Resistant Pattern

TA9 * 1 ST457 A iutA, papC floR, fosA3 CL/CIP/TET/FFC/FOS 1

TA15 2 ST69 A iutA blaTEM-1, fosA3 CL/CTX/CIP/TET/FOS/AK
TA20 2 ST2973 A iutA blaCTX-M-55, blaTEM-1, floR, fosA3 CL/CTX/CIP/TET/FFC/FOS
TA32 3 ST469 B1 iutA blaCTX-M-55, rmtB CL/CTX/CIP/TET/AK
TA59 6 ST10 A papC blaCTX-M-55, floR, tet(A) CL/CTX/TET/FFC/AK/GN
TA78 8 ST354 A papA blaTEM-1, floR, tet(A) CL/CTX/CIP/TET/FFC/GN
TA95 10 ST3170 A kpsMT II blaTEM-1 CL/CTX/CIP/TET/FFC

TA103 * 11 ST345 D iutA, papC blaCTX-M-55, floR CL/CTX/CIP/TET/FFC
TA114 12 ST410 A iutA blaCTX-M-55, blaTEM-1, floR, rmtB CL/CTX/CIP/TET/FFC/AK

* The ExPEC strains. 1 CL, colistin; FOS, fosfomycin; TET, tetracycline; FFC, florfenicol; CTX, cefotaxime;
GN, gentamicin; CIP, ciprofloxacin; AK, amikacin.

3.3. Phylogenetic Groups and Virulence Genes

All of the nine mcr-1-bearing E. coli isolates contained virulence genes, and the iutA (aerobactin
acquisition) gene was identified in 6 ones (Table 2). Two of the nine E. coli isolates, namely TA9 and
TA103 carrying both iutA and papC genes were identified as ExPEC according to the standard [32]
(Table 2). The presence of mcr-1-harboring ExPEC isolates in healthy meat ducks posed a serious health
threat to consumers. Fortunately, no virulence gene was co-transferred with mcr-1 gene to the recipient
(Table 3). To the best of our knowledge, this is the first report about mcr-1-positive ExPEC isolates
identified from healthy meat animals.

Table 3. Characterization of some plasmids carrying mcr-1 of transconjugants.

Strains
Co-Transfer of

Other Resistance
Gene

Co-Transfer
of Virulence

Gene

Resistant
Patterns

Contest of
Mcr-1

Conjugation
Efficiency

Mcr-1-Carrying Plasmids

Size (kb) Replicon
Type

TA9 * / / CL 1 I 1.13 × 10−2 ≈65 I2
TA15 / / CL I 6.64 × 10−4 ≈65 I2
TA20 / / CL II 7.56 × 10−2 ≈65 I2
TA32 / / CL I 2.17 × 10−3 ≈65 I2
TA59 blaCTX-M-55 / CL/CTX I 2.98 × 10−6 ≈102 FII
TA78 / / CL I 1.85 × 10−5 ≈95 N
TA95 / / CL I 9.93 × 10−5 ≈102 FII

TA103 * blaCTX-M-55, floR / CL/CTX/FFC II 4.35 × 10−7 / /

TA114 floR / CL/FFC I 3.19 × 10−6 / /

* The ExPEC strains. 1 CL, colistin; CTX, cefotaxime; FFC, florfenicol.
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Phylogenetic group analysis revealed that seven (77.8%) of the nine mcr-1-bearing E. coli isolates
belonged to group A and the other two isolates were classed into group D and B1, respectively (Table 2).
Similar results were found in the fecal E. coli isolates from chickens in Australia, which were classed
into group A, D, B1, and B2, and group A was dominant [45]. The two ExPEC isolates (TA9 and TA103)
respectively belonged to groups A and D, which was similar to the result that ExPEC isolates from
retail chicken meat products and eggs belonged mainly to group A and D [46].

3.4. Molecular Typing

Based on XbaI-PFGE analysis, we found that the nine mcr-1-bearing E. coli isolates were highly
diverse (Figure 1). These data suggested that the spread of mcr-1 gene among E. coli isolates was not
due to clonally expansion. MLST analysis result showed that the nine mcr-1-bearing E. coli isolates
belonged to nine STs: ST457, ST69, ST2973, ST469, ST10, ST354, ST3170, ST345, and ST410 (Table 2),
which also revealed the high genetic diversity among the nine mcr-1-bearing E. coli isolates. As the
most common mcr-1-containing E. coli, ST10 was often found in China [47,48]. The E. coli ST410 was
widely disseminated in the environment, food animals, humans, and wildlife [49]. The high genetic
diversity of the mcr-1-bearing E. coli isolates in this study indicates that the molecular type of E. coli
isolates from healthy meat ducks is very complicated.
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Figure 1. XbaI-PFGE dendrograms showing the genetic relationships of the 9 mcr-1-positive E. coli
strains isolated in this study.

3.5. Genetic Environment of Mcr-1 Gene

Two different genetic contexts of mcr-1 (0 or 1 copy of ISApl1 was present beside mcr-1) were
identified among the nine mcr-1 positive E. coli strains (Figure 2 and Table 3). The type I genetic context
of mcr-1 (one copy of ISApl1 was present beside mcr-1) was identified in seven mcr-1-containing E. coli
isolates. The type II genetic context of mcr-1 (ISApI1 was absent) was found in two mcr-1-bearing E. coli
strains. All mcr-1 positive E. coli strains included the conserved mcr-1-pap2 segment, which might
be horizontally transferred into various plasmids [50]. An ISApl1 element was located upstream of
the mcr-1 gene on seven mcr-1-positive isolates. The absence of ISApl1 in mcr-1-bearing plasmids
could be explained by the mobilization of an ISApl1 composite transposon to conjugative plasmids,
which subsequently lost ISApl1 copies [51].
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Figure 2. Schematic representation of sequences flanking mcr-1 gene. Genes and their corresponding
transcriptional orientations are indicated by horizontal broad arrows. (I) One copy of ISApl1 was
present beside mcr-1; (II) no ISApl1 was present beside mcr-1.

3.6. Plasmids Analysis

Conjugation experiments and ERIC-PCR analysis results showed that the colistin-resistant
phenotype was successfully transferred from donors to azide-resistant E. coli J53 at conjugation
frequencies 1.13 × 10−2–4.35 × 10−7 (transconjugants/recipients) (Table 3). The mcr-1 gene was
identified in 9 transconjugants. S1-PFGE analysis showed that seven transconjugants carried a single
plasmid used for plasmid analysis (Figure 3). Transconjugant harbored a single mcr-1-associated
plasmid, which ranged in size between 65 and 102 kb and was assigned to IncI2 (n = 4), IncFII (n = 2)
and IncN (n = 1) replicon types (Table 3), which have been reported by recent studies to be associated
with mcr-1 [14,52,53]. Resistant gene blaCTX-M-55 was co-transferred with mcr-1 on pTA59 plasmid,
while no other resistant gene was found to coexist with mcr-1 on the other six plasmids. In this
study, two IncI2 plasmids were obtained from the same farm, whereas the other five plasmids were
respectively recovered from different farms. As a common mcr-disseminator, IncI2 plasmid was
identified in isolates from animals, vegetables, and humans [49,54,55]. These results suggest that
diversified conjugative plasmids, especially IncI2 plasmid, may be the key vectors that mediate the
dissemination of the mcr-1 among Enterobacteriaceae [56].
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The nucleotide sequence of plasmid pTA9 from strain TA9 has been deposited in GenBank with
accession number MN106912. The plasmid size of pTA9 was 66.603 kb, whose GC% was 41.3%,
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encoding 72 ORFs (Figure 4). The plasmid pTA9 featured an IncI2 plasmid backbone encoding
plasmid transfer, stability, and replication. Two conjugative genes (pil and tra) were predicted on pTA9,
which were responsible for the transfer of plasmid between intra- and interspecies bacteria. BLASTn
analysis showed that pTA9 was highly similar (the query coverage of 85–97% and the identities
99%) with other mcr-1-bearing plasmids, such as pMCR1-IncI2 of E. coli (isolated from human in
Jiangsu province of China, KU761326.1) [50], pWF-5-19C of Cronobacter sakazakii (isolated from chicken
in Shandong province of China, KX505142.1) [57], and the first identified mcr-1-bearing plasmid
pHNSHP45 of E. coli (isolated from pig in Shanghai of China, KX505142.1) [14] (Figure 5). TnpA and
tnpB were identified in pTA9, pMCR1-IncI2, and pWF-5-19C. In addition, ISApl1 was identified in
pTA9, pWF-5-19C, and pHNSHP45. An mcr-1-pap2 element was identified in pTA9 and pMCR1-IncI2.
This suggests that pTA9-like plasmids may be epidemic plasmids that mediate mcr-1 dissemination
between distinct host bacteria in China.
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In this study, pTA9 could be transferred to E. coli J53 isolates in vitro. This suggests that the
mcr-1 gene present in gut flora of meat duck can be horizontally transferred by bacterial conjugation
among distinct bacterial hosts. Similar scenarios have already been observed in the human intestinal
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flora [58,59]. So mcr-1-bearing fecal E. coli in healthy meat ducks could be a source for the transfer of
mcr-1 through contaminated food to humans.

4. Conclusions

This study revealed the carriage rate of mcr-1 among fecal E. coli isolates obtained from healthy
meat ducks in China. PFGE and MLST results indicated that mcr-1-bearing E. coli isolates were clonally
unrelated. This suggested that the horizontal transfer of plasmids was the main mechanism for the
dissemination of mcr-1 gene in meat duck farms. The pTA9-like plasmids have been isolated from
different bacterial hosts across distinct regions of China, implying that pTA9-like plasmids are likely to
be the epidemic mcr-1-bearing plasmids that mediate the dissemination of mcr-1 in China. Since China
is the biggest exporter of meat duck products in the world, the spread of pTA9-like conjugative plasmids
across other regions and countries should attract attention. In addition, the mcr-1-bearing E. coli usually
carry blaCTX-M and floR, conferring resistance to cephalosporins and florfenicol, which made coselection
possible when these drugs were used. Restrictive/rational use of antibiotics in animal husbandry,
especially in food animals in China may help to limit the spread of mcr-1 gene.
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