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Simple Summary: To detect changes in migrating bird populations that are usually gradual, regular
counts of the flocks should be carried out. This is vital for giving more precise management decisions
and taking preventive actions when necessary. Traditional counting methods are widely used.
However, these methods can be expensive, time-consuming, and highly dependent on the mental and
physical status of the observer and environmental factors. Taking these uncertainties into account,
we aimed at taking the advantage of the advances in the artificial intelligence (AI) field for a more
standardized counting action. The study has been practically initiated 10 years ago by beginning
to take photos on a yearly basis in predefined regions of Turkey. After a large collection of bird
photos had been gathered, we predicted the bird counts in photo locations from images by making
strong use of AI. Finally, we used these counts to produce several bird distribution maps for further
analysis. Our results showed the potential of learning computers in support of real-world bird
monitoring applications.

Abstract: A challenging problem in the field of avian ecology is deriving information on bird
population movement trends. This necessitates the regular counting of birds which is usually not an
easily-achievable task. A promising attempt towards solving the bird counting problem in a more
consistent and fast way is to predict the number of birds in different regions from their photos. For this
purpose, we exploit the ability of computers to learn from past data through deep learning which has
been a leading sub-field of AI for image understanding. Our data source is a collection of on-ground
photos taken during our long run of birding activity. We employ several state-of-the-art generic
object-detection algorithms to learn to detect birds, each being a member of one of the 38 identified
species, in natural scenes. The experiments revealed that computer-aided counting outperformed the
manual counting with respect to both accuracy and time. As a real-world application of image-based
bird counting, we prepared the spatial bird order distribution and species diversity maps of Turkey
by utilizing the geographic information system (GIS) technology. Our results suggested that deep
learning can assist humans in bird monitoring activities and increase citizen scientists’ participation
in large-scale bird surveys.

Keywords: computer vision; machine learning; deep learning; bird detection; bird counting; bird
monitoring; bird population mapping; bird diversity; GIS; citizen science
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1. Introduction

Birds are excellent ecosystem service providers that can pollinate flowers, scavenge carrion,
disperse seeds, devour pests, cycle nutrients and qualify the environment in benefit of other species
and humans [1,2]. In this manner, birds play critical ecological roles for the health and consistency
of many ecosystems as important elements [3]. Birds are also very sensitive to changes in habitat
structure and composition and are good indicators of habitat quality and biodiversity [4–7]. However,
recent studies indicate that likewise the most of the global biodiversity components, birds are declining
in the recent years due to human-related activities [8–11]. In general, raptors are more threatened than
birds—52% of global raptors populations have declined and 18% are threatened with extinction [12].

The conservation and management of bird species require both actual spatial and temporal
data [13,14]. In other words, occurrence, distribution, density, status, habitat relationships, responses to
environmental change and human-related activities, population trend of birds, and species composition
of particular areas need to be known using bird counting and monitoring methods. This fact brings us
to developing effective wildlife management plans and conservation strategies [15,16]. The spatial data
on bird richness and activity is vital for these conservation activities at species, taxonomy and ecosystem
level. For this purpose, the usage of GISs in bird observation has received attention in the animal
ecology literature. Nandipati and Abdi [17] investigated the diversity of birds counted with a manual
investigation over an area of Portugal with the use of GIS techniques. The paper mainly discusses the
capability of interpolation methods that are available in the ArcGIS software package for the modeling
of bird species richness overlaid on CORINE-based land cover classes. Butler et al. [18] plotted the
number of Waterfowl species at each observation position and created a density map accordingly with
the use of GIS software. Grenzdörffer [19] used UAV imagery to detect and count birds over the region
of the Baltic sea using image classification and GIS-based post-processing methods. The method takes
advantage of good contrast of the gulf and its surroundings compared to the birds which ease the
detection progress and by no means can be generalized as the author mentions. Turner [20] presented
a paper about a volunteer-based bird monitoring project. The outcome of the project is a GIS-based
report which shows the bird species density over in and around the Tucson, Arizona, United States
area. The data collection was performed with a visual investigation for each Spring period between
15 April and 15 May. Volunteered bird counting and implementation of bird tracking using GISs
is also a good example of citizen science (i.e., public participation in scientific research). There is
another project called Audobon The Christmas Bird Count where any person can join in the community
to provide the number of birds reported from any location and the results are visualized over an
online viewer [21]. Sauer et al. [22] reviewed bird map preparation methods from point count data.
Gottschalk et al. [23] modeled a large-scale ecology with bird survey data, terrestrial measurements of
vegetation, and creation of a habitat map with the processing of Landsat satellite imagery.

Since the counting of birds is essential in almost all bird monitoring studies, various counting
techniques have been used to count landbirds over the years by ornithologists and others, including
point counts, line transects, mist-netting, playback call, etc. [24]. However, the point count is the
most commonly used method for on-ground landbird counting, specifically for soaring migrant
birds such as storks, pelicans, and raptors [25]. The fixed point count method is widely used in
monitoring avian communities and bird migration on ground [26,27]. Accordingly, the observer
detects and counts birds with a binocular or telescope, waiting at suitable points where bird migration
can be easily monitored [25]. However, this method is time-consuming and often needs more
than one experienced observer [28]. Especially, in the migration bottlenecks where bird migrations
occur intensively in specific periods, the observer has to detect and count birds and keep records.
Furthermore, the success of point counts is much obliged to the human census and affected by the
observer’s ability and experience, environmental and topographic variables and birds’ detectability [27].
The observer’s previous experiences on bird detection, counting, and species identification are very
crucial [29]. The observer’s performance is also influenced by physical health, age, and mental and
cognitive abilities such as motivation, hearing acuity, eyesight, and fatigue level of an observer [30,31].
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Environmental variables are affected by both observer’s efficiency and bird behavior [32]. Detection of
birds in bad weather conditions such as intense cloud cover, rainy and foggy weather, and low light
intensity might not be possible [33]. Birds might also be hidden from observers in an undetectable
level due to vegetation and topographic features [34]. Another issue is that the detectability of birds
can be different according to their physical and behavioral attributes [35]. As mentioned above, though
conventional point count is still one of the best methods for bird detection and counting, it is expensive,
logistically difficult, time–consuming and needs experienced persons.

However, taking pictures with telephoto lens digital cameras (i.e., photographic count) makes
observations relatively easy and may help to overcome some uncertainties [36]. Photographs can
be taken when the bird is seen and/or during mass migration events, then they can be processed
manually on a computer, and species, numbers, sex and offspring/adult information are more easily
identified. Even so, this process not only takes a lot of time and effort but also needs experienced
observers. Furthermore, in bad weather conditions (e.g., in the presence of heavy cloudiness and fog),
both the quality of observation and photographing decrease and may cause errors. Since accurate
detection and counting is crucial for the monitoring and management plans, the manual process may
cause disruptions in the completion of the plans in time [37].

Rapidly developing machine-learning-based computer vision and image recognition methods
may provide us with better solutions to overcome these problems [38–40]. A machine-learning system
generally requires domain expertise to transform the raw pixel values of an image into a suitable feature
vector for identifying objects of interest. Unlike traditional machine learning approaches, deep learning
does not use hand-crafted image features that are possibly not well-suited to the problem. Rather,
deep neural networks take raw pixel values and bounding boxes of objects of interest as input and
automatically learns hidden image features most relevant to the application [41]. Hence, this automatic
detection and counting methods are also feasible for non-experts. Chabot and Francis [42] provide a
comprehensive review of bird detection and counting in high-resolution aerial images. The methods
applied in the discussed papers vary from traditional image analysis techniques including thresholding
and template matching to segmentation and supervised/unsupervised classification, but still, no deep
learning method is mentioned. Even though papers related to machine learning applications on
unmanned aerial vehicle- (UAV) or satellite-derived images have been published so far [43–47],
the studies focusing on on-ground photography are limited [48,49]. At the same time, digital
photography has entered a new era with the availability of cloud-storage and location-aware cameras
and smart-phones that enable the sharing of photographs on a truly massive scale. Our work is based
on the idea of exploring large collections of geo-tagged bird scene photographs purposing to monitor
their population. Briefly, we focus on image-based bird population counting and mapping using
on-ground digital photographs that we have collected. As such, the aim of this paper is to assess
higher volumes of geospatial bird data with less errors and automate the related map generation.
This aim is met by our main contributions that are threefold. First, we publish a new collection of wild
bird photographs that have been taken in various environments on a regular basis and may lead to
the construction of machine-learning models for birds. Second, we employ object detection models
utilizing deep neural networks to help automate the process of bird counting that may encourage the
avian science community for more efficient ways of evaluating the local bird ecosystem. Lastly, we use
the model outputs to provide a spatial mapping of birds over the last decade as a step towards more
rapid and reliable bird population mapping.

2. Materials and Methods

Deep learning models need training data to learn how to use image pixel values to convert
to the target output [41]. Hence, the input to the training procedure is a set of bird-scene images
and the bounding boxes enclosing the birds inside. The output is a deep neural network trained by
optimizing various parameters that minimize the loss function between the network’s output and
the corresponding training bounding boxes. After the training phase is complete, the neural network
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is fixed and ready to blindly predict the birds’ locations and sizes in new input images that are not
necessarily from the same scenes that the network has been trained on. Finally, we use this predictive
power to map local birds’ diversity distribution. An overview of our approach is shown in Figure 1.
The rest of this section is organized in the same processing order.

Figure 1. (Left) General workflow of the study including model determination and data collection,
model training, bird counting, and map preparation. (Right) Typical flowchart for the deep neural
network training process in which the network adjusts its parameters to match the input image
bounding box predictions to the ground-truth boxes using a given loss function. The details of all steps
are presented in the following sections.

2.1. Data Collection

We have photographed 3436 natural bird scenes for the purpose of researching a comprehensive
bird data collection that contains a large number of species with high within-species and low
between-species variance. All photos also hold GPS coordinates as metadata. The full photo
collection [50] can be downloaded from the Kaggle data repository https://www.kaggle.com/dsv/
1193435. There can be from several to thousands of birds per photo summing up to more than
110,000 birds in all photos. The photos were taken at 21 different observation points (OPs) in
12 different cities in Turkey where the majority are migration bottlenecks (i.e., Tekirdağ–Kıyıköy
(OP1), Vize (OP2), Balabanlı (OP3), Yalova–Çakıl (OP4), Armutlu (OP11), Afyonkarahisar–Dinar(OP6),
Ankara–Sırçasaray barrage OP(21), İstanbul–İstanbul garbage dump (OP7), Çataltepe (OP16), Ömerli
wind energy power plant (OP19), Balıkesir–Marmara Island (OP8), Keltepe (OP18), Poyraz Lake
(OP20), Çanakkale–Gelibolu-Saros (OP9), Bursa–Harmanlık (OP10), Hatay–Belen (OP13), Şenköy
(OP14), Atik (OP15), Mersin–Mut (OP5), Sivas–Kangal-Mağara (OP12), Kırşehir–Geycek (OP17) and
at arbitrary times in Spring and Autumn seasons during 10 years period from 2010 to 2019 using
ground-based methods. The properties of the camera mostly used in this study are given in Table 1.

Table 1. Typical camera settings used in photographing birds.

Imaging camera Canon 7D Mark II body + Canon EF 100–400 mm f/4.5–5.6 L IS II USM telephoto zoom lens
Resolution 5184 × 3456 pixels
Focal length 200 mm
Sensor size 22.4 mm × 15 mm
Shutter Speed 1

1000 s

Photos have been captured at different resolutions and from different viewpoints. In case it was
impossible to photograph all birds in an area with a single shot, multiple photos were taken to span
the entire flock of birds while keeping as little overlap as possible across those photos. There exist
different backgrounds depending on observation environments, such as the vicinity of water surfaces,
beaches, forests and farmlands, hosting various bird habitats, bird activities (e.g., flying birds lead
to flat sky backgrounds) and weather conditions. Bird poses may also differ according to lateral or
frontal directions and actions such as flying, standing straight and bending. Example images from our

https://www.kaggle.com/dsv/1193435
https://www.kaggle.com/dsv/1193435
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bird scene photo collection are shown in Figure 2a. Moreover, each bird might be belonging to one of
the following 38 identified species under 11 different orders as shown in Figure 2b.

Sturnus vulgaris Ciconia Ciconia Pelecanus onocrotalus

Ciconia Ciconia Emberiza calandra Columba palumbus
(a)

(b)
Figure 2. (a) Example 3456 × 5184 geo-tagged photos. Species of the birds inside each image are given.
(b) Example images of 38 observed species grouped by their order names. Common and scientific
names of each species are given in bold and italics, respectively. Close shots of several species could
not be taken owing to their flying habits. Best viewed in zoom and color.
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2.2. Automated Bird Detection

Having photos containing bird populations as well as their location and time-stamp information
at hand, our goal is to examine different machine learning methodologies for detecting birds in these
photos. Here, we provide an overview of how deep neural networks can be used to detect every
bird inside an image. Examples of similar techniques have been for detection of marine birds from
videos [51], tracking of Serengeti wild animals in camera-trap images [52], detection of wild birds
using UAV imagery [53], detection of Interior Least Tern in uncontrolled outdoor videos [54]. A deep
neural network represents a relatively complex hypothesis function that maps features (e.g., image
pixels) to the desired output (e.g., pixel class labels for classification, bounding boxes for detection) by
computations in multiple layers. A network takes an input image as its input layer (i.e., each pixel is a
neuron) and passes information from one neural network layer to the next until the last layer which
corresponds to the hypothesis function output [41].

Deep neural networks can be made of several different types of layers, each of which is made up
of a fixed number of artificial neurons that jointly act as input to the next layer neurons [55]. Typically,
types of hidden layers (i.e., layers except the input and output layers) used for image analysis include
(Figure 3)

• convolutional layers each of which convolves the previous layer’s neuron outputs by different
convolution filters (i.e., each filter is a linear combination of neighboring neurons inside a fixed-size
window) and then apply a non-linear function,

• max-pooling layers each of which outputs the maximum of input neuron values in each grid
when the input neurons are partitioned into non-overlapping rectangular grids,

• fully connected (FC) layers where each neuron’s output is computed as a non-linear function
applied to a linear combination of outputs of all neurons in the previous layer.

Figure 3. A basic neural network with three hidden layers for image analysis—a.k.a. convolutional
neural network (CNN). Input layer neurons correspond to the pixels in red, green and blue bands of the
original image taken in İstanbul garbage dump. Each pixel in the convolution layer corresponds to a
neuron output which is computed by one of the learned convolution filters applied to the neighborhood
of that pixel in the previous layer. Rectangular images in max-pooling layer contain pixels (a.k.a.
neurons) each of which is the maximum of its neighborhood in the previous layer. Information flows
bottom-up from lower-level features to more abstract ones. Fully-connected layer neurons collect
information from all neurons from the max-pooling layer and output layer neurons are expected to
give the desired output values.
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Each convolutional layer produces feature maps as separate feature images based on the previous
layer [56]. The last feature map is generally assumed to have relevant and meaningful information
regarding the input object-of-interest. Pooling layers down-sample the previous layer keeping the most
important pixels. Finally, fully connected layers produce the final hypothesis output. Image pixels form
the input layer (i.e., convolutional layer) neurons and the output layer (i.e., a fully-connected layer)
neurons are the desired values such as the location and the size of a bird. Given a set of training images
with the true bounding boxes, learning the weight and bias parameters that are used in computing
linear combinations at each layer are posed as a regression problem that is solved through a stochastic
gradient-descent (SGD) based optimization algorithm called error back-propagation [55]. The training
flow is illustrated in Figure 1. The goal is to find a set of network parameters that give a local minimum
of an arbitrary loss function such as cross-entropy loss for binary outputs and mean-square error for
continuous outputs. The loss function compares the output of the current network with the expected
outcome. After initialization, the network parameters are updated in the reverse direction of the
gradient of the loss function until the loss converges.

In our study, the so-called Faster R-CNN architecture [57]—a variant of CNN designed for
generic object detection—was used to map image pixels to the corresponding output bounding boxes
containing birds. Readers are referred to the original paper for more technical details.

2.2.1. Faster R-CNN Network Architecture

Faster R-CNN consists of a feature extraction network (i.e., convolutional layers) followed by two
sub-networks that are called Regional Proposal Network (RPN) and Fast R-CNN detector. The feature
extraction network extracts a feature representation of the image through a series of image convolutions.
The RPN is used to generate regions of interest (ROIs) from this feature map where objects are likely to
exist. These ROIs serve as candidate object proposals that are classified into their actual classes by the
Fast R-CNN detector. The architecture is illustrated in Figure 4.

Figure 4. Faster R-CNN architecture. The input to the algorithm is a bird scene image. Firstly, a CNN
generates a context-aware feature image on which the Regional Proposal Network (RPN) generates
candidate regions of interest (ROIs). Inside each candidate, a Fast R-CNN is run to decide whether that
ROI contains a bird and if so, adjust its coordinates and scale. The species of the birds inside the image
is Ciconia ciconia.
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Feature Extraction Network

The feature extraction network is a fully convolutional neural network (CNN) to extract a feature
map of an input image through a series of image convolutions that have been trained to enhance
different bird features [56]. The learned convolutional filters provide hierarchical levels of abstraction
of the input birds. Figure 5 illustrates example layers of the feature extraction network whose filters
are trained with our data set. Lower network layers caught the general features such as edges and
blobs and then, upper layers captured more specific features such as wings, legs, median body and
beak and finally, more semantic features such as the whole body.

Figure 5. Visualization of the network layers. Each row represents a separate example image. Bird
species are Pelecanus onocrotalus (up) and Phoenicopterus roseus (bottom). From left to right: input
image with detected birds, example feature map images from 1st, 2nd, 2nd and 3rd convolution layers.
Feature maps are scaled according to their original sizes.

Region Proposal Networks

A Region Proposal Network (RPN) takes as input the last convolutional feature map from the
feature extraction network and generates as outputs a set of rectangular object proposals, each with
an objectness score, through a series of FC and max-pooling layers [57]. A spatial window was slid
over the feature map and at each sliding position of the feature map, k boxes (anchors) at different
scales and aspect ratios are used as candidate object proposals. These anchors may or may not contain
objects of interest. For each anchor, the RPN predicts a likelihood of containing an object of interest
as well as two offsets and a scale factor which refines the object’s position. The refined anchors are
sorted by their likelihoods, subjected to a non-maximum suppression and the ones having the highest
likelihoods are fed into the Fast R-CNN detector as object proposals.

Fast-RCNN Detector

After RPN, the Fast R-CNN detector takes anchors with different sizes and extracts a fixed-length
feature vector for each anchor through an RoI pooling layer [58]. This enables the use of CNN feature
maps of the same size for all anchors. Each feature vector is then fed into consecutive FC layers.
The final outputs of the detector are the final binary class label for indicating the existence of a bird
and final regressed bounding box coordinates.



Animals 2020, 10, 1207 9 of 24

2.2.2. Data Augmentation

Despite its success in image recognition, deep learning models need lots of images to be trained in
many problems, especially when the network size and data variability are large [59]. Limited training
data may cause the over-fitting problem [55] in a neural network especially when the network has to
generalize across a diverse set of samples such as birds. In that case, significantly more data is required
to learn a reliable set of network parameters. To overcome this problem, the feature extraction network
can be pre-trained using another available big data set, with possibly different object categories, so that
the training can continue from those learned parameters rather than random values using our smaller
data set of bird images. This technique for compensating the negative effect of limited training data is
called transfer learning [60]. Other solutions that we applied to help improve the performance were
to augment the image data set by flipping the images horizontally [55] and drop-out regularization
which refers to deactivating randomly chosen neurons during training [61].

2.2.3. Performance Evaluation

The first set of experiments was performed to evaluate the accuracy of the automatic bird
detection algorithm. In this section, we describe the experimental settings and present quantitative
and qualitative results.

Data Set

First, a subset of the collected bird scene images in Section 2.1 was chosen. Then, we tagged every
bird inside every image in this subset by an enclosing bounding box to create a new bird detection
data set. For the experiments, the resulting data set was divided into two subsets: training set (i.e.,
to train a detection model) and test set (i.e., to evaluate the trained model). The resulting training and
test sets consisted of 3283 birds in 491 images and 1602 birds in 156 images, respectively. It can be seen
in Figure 2b that there exist large intra- and inter-species variations in terms of appearance, pose, scale,
and the number of birds across images making this data set challenging. The data set can be accessed
through the following private link: https://www.kaggle.com/dsv/1193435.

Experimental Protocol

In order to fit images in GPU memory, we divided them into overlapping tiles such that their
height is 600 pixels and their width is the original image width. If a cropped sub-image had a height
shorter than 600 pixels, zero-padding was applied. The number of RPN proposals per image was set
to 300. To deal with varying ranges of bird sizes and shapes, we considered k = 18 anchor boxes for
each pixel using six scales with box side lengths of 16, 32, 64, 128, 256 and 512 pixels and three aspect
ratios of 1:1, 1:2, and 2:1. A deep learning image recognition application usually requires thousands of
images to train the model, as well as a graphics processing unit (GPU) to rapidly process this huge
amount of data. The experiments were conducted on a system with an NVIDIA GeForce GTX-1050
GPU, Intel Core i7-7700, 3.60 GHz CPU and 8 GB RAM.

Baselines for Comparison

We compare the Faster R-CNN approach against two baseline methods: bag-of-words (BOW) [62]
and single-shot-detector (SSD) [63]. The former is a traditional object recognition method that utilizes
a support vector machine classifier with Scale Invariant Feature Transform (SIFT) features [64].
On each image patch obtained from running sliding windows of predetermined sizes and aspect
ratios on the input image, a histogram of K-means quantized SIFT features is constructed which
is then fed to a support vector machine (SVM) for classifying the patch into bird or background
classes. The latter is a more recent approach that uses the same convolutional layers as Faster R-CNN
but then, does not undergo the RPN step and each anchor directly predicts the existence of a bird.
However, SSD predictions are computed across multiple feature maps (i.e., convolutional layers)

https://www.kaggle.com/dsv/1193435
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instead of using only the last convolutional layer. For both Faster R-CNN and SSD architectures, we
utilized Tensorflow Object Detection API [65] in Python available at https://github.com/tensorflow/
models/tree/da903e07aea0887d59ebf612557243351ddfb4e6/research/object_detection. The scripts to
replicate the Faster R-CNN experiments using the published data set can be found at https://github.
com/melihoz/AUBIRDSTEST. The already existing feature extraction network Inception-v2 [66]
which has 13 convolutional layers and pre-trained with the Oxford-IIIT pet data set [67] was
utilized for transfer learning. For the BoW model, the C++ implementation available at https:
//github.com/royshil/FoodcamClassifier was utilized.

Evaluation Criteria

Quantitative evaluation was performed in the test set by comparing the binary detection
maps, obtained by applying a uniformly sampled range of thresholds on detection scores, to the
validation bounding boxes. Each detection for a particular threshold is considered to be positive if its
intersection-over-union (IoU) ratio with a ground-truth annotation is greater than 0.5. By setting each
threshold for detection scores, a set of true positives and false positives can be generated to calculate
precision and recall that have been commonly used in the literature to measure how well the detected
objects correspond to the ground truth objects. Precision is computed as the ratio of the number of
correctly detected birds to the number of all detected birds while recall is computed as the ratio of the
number of correctly detected birds to the number of all birds in the validation data. We also found the
F-measure which combines precision and recall as their harmonic mean.

2.3. Bird Counting

In this section, we present a bird counting test in order to see the effectiveness and usability
of automated counting over the traditional manual method. We used 45 of our collection of
photographs for the experiments. The photographs were selected so that the sample would be
as much representative as possible in terms of different bird species, flock size, and environmental
conditions of the photo (e.g., presence of fog and obstacles such as trees). We compared the bird
counting performances of the following three methods:

• Manual: Two experts, Exp1 and Exp2, that have PhDs in ornithology and at least five-year field
experiences on bird counting, separately counted the photographs in random order on a computer
monitor. In this method, experts usually count birds by grouping them (i.e., not one by one, but
five by five or ten by ten). The maximum allowed duration of effort for each photo was fixed at
3 min.

• Automated: This method corresponds to the Faster R-CNN model output.
• Computer-assisted: We also evaluated the performances of the two experts’ manual countings

with the aid of the model outputs. Each expert was shown on the screen the automated detection
result image of each photo and asked to improve the overall count by adding and subtracting
uncounted and over-counted birds, respectively. Counting processes were held in the same
conditions with the manual method two weeks after the manual count.

Three different evaluation metrics were recorded for each method and photo: bird count, duration
of counting effort and count error. The count error for each photo was calculated as the ratio of
the absolute difference of the correct number of birds and the resulting count to the correct number.
For instance, if an expert and/or the model counted 80 birds out of 100 correct number of birds, then
the error rate would be 20% or 0.20. On the other hand, if 125 birds were counted, the success rate
would be 0.25. Q-Q plots were used to check whether the observations of each metric were normally
distributed or not. Since the bird count metric was not normally distributed, correlations between
the correct number of birds and manual, automated and computer-assisted counts were examined
with non-parametric Spearman’s rank test. We also used the Kruskal–Wallis rank sum test for testing
whether bird count, duration and count error values of the three considered methods originated from

https://github.com/tensorflow/models/tree/da903e07aea0887d59ebf612557243351ddfb4e6/research/object_detection
https://github.com/tensorflow/models/tree/da903e07aea0887d59ebf612557243351ddfb4e6/research/object_detection
https://github.com/melihoz/AUBIRDSTEST
https://github.com/melihoz/AUBIRDSTEST
https://github.com/royshil/FoodcamClassifier
https://github.com/royshil/FoodcamClassifier
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the same distribution [68]. For post-hoc comparisons, the Dunn test was used. Epsilon square ε2 was
computed as an estimate of effect size [69]. We used the Wilcoxon signed-rank test on paired samples
to test the difference between manual and computer-assisted counting efforts with respect to each
metric. The Wilcoxon effect size (r) was calculated as an estimate of effect size. All statistical tests
were performed using R v. 4.0 [70] and the additional packages rstatix v0.5.0 [71], FSA v0.8.30 [72],
rcompanion v2.3.25 [73], the tidyverse v1.3.0 [74].

2.4. Geospatial Bird Mapping

As a case-study, we prepared two different spatial bird maps: one shows the distribution of the
observed bird orders and the other to shows the diversity of the observed bird species at the OPs.
For this aim, we used the corrected model outputs to gather spatial data on bird diversity and bird
abundance on each OP. To summarize, the model output photos were checked to correct the bird counts
and birds’ species and orders were determined by an expert in ornithology. Photos were assigned
to the OPs according to their geo-locations. For the order distribution map, we grouped the bird
species into 11 different orders and approximated the total number of birds belonging to each order
at all seasons between the years 2010 and 2019 by summing up the semi-automated photo counts.
The OP coordinates were set as the point features and the total count for each order at each point was
assigned as one of the attributes for that OP. The bird order categories are shown in Figure 2b. As well,
a presence-only species diversity map was established to see how many different species showed up
at each OP during the last 10 years.

3. Results

3.1. Automated Bird Detection Results

Figure 6 shows the precision-recall curves for the above-mentioned algorithms as well as a table
summarizing the accuracies giving the best F-scores and computational times. We further demonstrate
qualitative detection results in Figure 7. Additionally, we analyzed different sources of errors in Faster
R-CNN detections (Figure 8) that also caused count errors.

(a) PR curves.

Method Prec. Rec. F Train Time Test Time

BoW 0.86 0.66 0.74 22 h 8.5 s
SSD 0.88 0.95 0.91 12 h 2.1 s
Faster R-CNN 0.94 0.95 0.95 16 h 8.7 s

(b) Accuracy and time.

Figure 6. Summary of detection results for BoW [62], SSD [63], and Faster R-CNN [57] (best viewed
in color).
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Ciconia ciconia (83) Larus cachinnans (109) Ciconia ciconia (62)

Ciconia ciconia (228) Ciconia ciconia (896) Ciconia ciconia (11)

P. roseus, T. ferruginea, L. cachinnans,
P. roseus (183)

A. cinerea, A. alba, F. atra, F. naumanni
(33)

Ciconia ciconia (272)

Anas platyrhynchos (35) Anas platyrhynchos (3) Ciconia ciconia (301)

Ciconia ciconia (126) Ciconia ciconia (567) Ciconia ciconia (876)

Ciconia ciconia (146) Ciconia ciconia (385) C. ciconia, C. nigra, A. cinerea, E.
garzetta, A. platyrhynchos (85)

Figure 7. Example bird detection results with the species and the number (in parentheses) of detected
birds (best viewed in zoom and color). Zoomed areas illustrate the local details for different bird
appearances and arrangements.
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Merops apiaster Larus ridibundus Larus cachinnans, Larus ridibundus

Pelecanus onocrotalus, Phalacrocorax
carbo, Larus ridibundus, Fulica atra

Ciconia ciconia Larus ridibundus

Figure 8. Example erroneous detection scenarios with the species of detected birds (best viewed in
zoom and color). Upper left: False detections due to shape similarity. Upper middle: Misdetections
due to small bird sizes. Upper right: Misdetections due to occlusion by trees. Lower left: Mis- and
false detections due to background clutter. Lower middle: Mis- and false detections due to complex
background texture. Lower right: Mis-, false and over-detections due to high level of overlap.

3.2. Bird Counting Results

Figure 9 demonstrates examples for manual, automated and computer-assisted counting methods.
Experts mostly grouped birds, as if they were doing a point count in photos, while counting with the
manual and computer-assisted methods. However, proceeding from the automated detection results
gave them more time to catch the individuals that might have been missed by the point count.

Both experts’ and model’s counts were positively correlated with the actual bird counts (Figure 10).
We found no difference in bird count (p = 0.98, x2 = 0.36, ε2 = 0.01) but significant differences in
count duration (p = 0.001, x2 = 170.94, ε2 = 0.76) and count error (p = 0.001%, x2 = 81.56, ε2 = 0.36).
Additionally, paired comparison of the results of manual and computer-assisted methods revealed
no significant difference in bird count metric (p = 0.11, V = 341, r = 0.24). On the other
hand, significant differences in count duration (p = 0.001, V = 0.1, r = 0.87) and count error
(p = 0.001, V = 40, r = 0.76) were observed.

Corresponding box plots for all metrics are shown in Figure 11. All of the descriptive statistics for
test variables are given in Table 2.

We also investigated the effect of the scale of the birds in the image on counting performances
(Figure 12). The scale of a bird corresponds to the number of pixels it occupies and depends on the
camera settings, size of the bird and camera shot distance.
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A = 305, C = 270, D = 77 A = 305, C =284, D = 6 A = 305, C = 295, D = 6 + 17

A = 1947, C = 2422, D = 122 A = 1947, C = 1643, D = 8 A = 1947, C = 1876, D = 8 + 33

Figure 9. Counting examples (best viewed in zoom and color). Each row represents a different image.
Bird species are Larus cachinnans (up) and Ciconia ciconia (bottom). Left: Original image and manual
counting stats in sub-caption. A, C and D denote the correct number of birds, the resulting count, and
the duration in seconds, respectively. Middle: Automated detection and counting stats in sub-caption.
Right: Computer-assisted counting and stats in sub-caption. Yellow circles correspond to manual
additions to the automated count (radius of each circle is proportional to the number of group count by
the expert in that area) and blue circles correspond to manual subtractions from the automated count.

(a) Computer (b) Computer-assisted Exp1 (c) Computer-assisted Exp2

(d) Exp1 (e) Exp2

Figure 10. Count correlation graphs (Best viewed in zoom).
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Figure 11. Box plots corresponding to (a) bird count, (b) duration and (c) count error by the computer,
computer-assisted Exp1 and computer-assisted Exp2, Exp1 and Exp1, respectively.

Table 2. Descriptive statistics of test variables. Computer-assisted is abbreviated with C.A.

Variable Counter Min Max Median q1 q3 iqr Mean sd se CI

C
ou

nt

Exp1 39 2422 231 83 533 450 412.02 510.07 76.04 153.24

Exp2 38 1748 203 85 581 496 404 430.77 64.22 129.42

Automated 34 1643 201 79 551 472 355.33 380.08 56.66 114.19

C.A. Exp1 42 1876 204 88 559 471 380.93 431.71 64.36 129.7

C.A. Exp2 42 1902 205 82 559 477 390.62 450.26 67.12 135.27

D
ur

at
io

n

Exp1 19 132 61 43 102 59 70.13 33.49 4.99 10.06

Exp2 18 164 48 33 72 39 59.33 36.55 5.45 10.98

Automated 6 8 8 6 8 2 7.29 0.97 0.14 0.29

C.A. Exp1 4 40 16 13 21 8 17.42 8.08 1.2 2.43

C.A. Exp2 5 45 15 10 21 11 16.4 8.46 1.26 2.54

Er
ro

r

Exp1 0 0.86 0.12 0.07 0.21 0.14 0.16 0.15 0.02 0.05

Exp2 0 0.81 0.09 0.03 0.17 0.14 0.15 0.19 0.03 0.06

Automated 0 0.55 0.06 0.02 0.12 0.10 0.12 0.15 0.02 0.05

C.A. Exp1 0 0.22 0.01 0.01 0.04 0.04 0.04 0.05 0.01 0.02

C.A. Exp2 0 0.05 0.01 0 0.02 0.02 0.01 0.02 0 0.01

Figure 12. Average bird size versus count error graphs (best viewed in color). Computer-assisted is
abbreviated with C.A.
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3.3. Bird Mapping Results

Figure 13 shows the resulting geo-visualizations of the bird order distribution and species diversity
observed in the last decade as pie-charts over the physical map of Turkey (Figure 13). Observed bird
counts for each species at each OP used to prepare these maps are given as a supplementary table
(Table S1). Although our results include only photo-based bird numbers (i.e., not the entire seasons’
bird monitoring data), bird map is still informative for the bird diversity and bird movement activity
on OPs. Eighteen species were soaring migrant birds. The most numerous and most common species
was Ciconia ciconia which migrates in large flocks even over entire Turkey. Hatay–Belen had the highest
bird species diversity and bird count among the other OPs, which is known as an important migration
bottleneck for bird migrations in the Western Palearctic [75,76]. The primary routes of the north–south
migratory bird movements through Turkey occur between the Eastern Black Sea (Borçka) and Thrace
region (Bosporus) in the north and the Mediterranean region in the south (Belen) [77,78]. As expected,
bird diversity and count were higher in those OPs that were near the primary routes.

(a) Bird order distribution. The arrows point the charts to their true OP locations.

Figure 13. Cont.
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(b) Bird diversity. The radius of the circle at each OP is set proportional to the total bird count observed on
that point.

Figure 13. Bird order distribution and diversity level map of Turkey with overlays of geographic
information system (GIS) bird migration routes data layer extracted by Turan et al. [79] (best viewed in
zoom and color). The red lines represent the primary migration routes where the magnitude of the
bird migration is higher, the blue lines represent the secondary migration routes where the magnitude
of the bird migration is relatively high and lower than the primary routes, and arrows represent the
broad front across routes of migrant birds where the bird movement occurs on north–south axis rather
than following the particular routes. ArcGIS software was used for visualization.

4. Discussion

4.1. Automated Bird Detection Discussion

The quantitative results (Figure 6) showed that the deep neural networks that use data-driven
features outperformed the BoW that manually extracts features from sliding windows. Lower recall
despite comparable precision for BoW can be explained by false detection of many non-bird regions
as birds. Although SIFT was the most popular feature extraction tool during the previous decade,
we observed that the hand-crafted SIFT features could be noisy for natural scenes and could not encode
shape information distinctive to birds. Hence, many patches that did not correspond to birds appeared
in the output. The slightly lower accuracy performance of the SSD compared to the Faster R-CNN
can be explained by the inherent extreme bird/background class imbalance problem encountered in
one-shot detection schemes (i.e., without an RPN) during training [80]. That is, the last prediction
layer in SSD was exposed to many candidate ROIs, only a few of them containing birds. This spent
most of the training effort mostly on adjusting the network parameters to avoid these easy negatives
rather than fine-tuning them in favor of the bird examples. Conversely, the RPN in Faster R-CNN
filtered many background instances out resulting in a more balanced bird/background ratio.

The visual results in Figure 7 showed that the Faster R-CNN was successful in identifying the
regions corresponding to birds and could cope with difficult situations with multiple overlapping birds
and birds with extreme poses. Furthermore, the computer-based model could detect camouflaged
birds that were almost indistinguishable from their backgrounds.

Major misdetections occurred due to very small bird sizes (Figure 8). As the distance to birds
increases, such birds often correspond to very small details (i.e., several pixels) for even the human
eye to differentiate. Consequently, these birds might have been lost in the low-resolution feature
map that was generated by the last convolutional layer after several max-pooling operations. Small
object detection is also an open-problem in many other datasets [81]. Other main reasons for the
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misdetections were intra-species variation, unusual bird poses, occlusions by other birds and plants,
cast shadows, and background clutter. The reason for most false detections were non-bird regions
that had similar color and shape characteristics to birds. The last type of error, called over-detection,
is defined as a single bird being divided into multiple bounding boxes and was mostly seen in larger
birds. Nevertheless, unless a bird is not totally missed or divided into multiple parts, the localization
ability of the algorithm is not as critical when the goal is counting. In the extreme case, a single
correctly detected pixel inside a bird is sufficient for counting and can attract one’s focus-of-attention
to that bird.

The last column in the table in Figure 6b shows the average running times over all images for
the three algorithms. The quantization step (i.e., clustering the high-dimensional SIFT feature vectors)
took a very long time in BoW training. SSD achieved the fastest test performance whilst Faster R-CNN
the worst since the RPN and the prediction stages are fully consecutive in SSD reducing redundant
computations. The results revealed that in case of real-time bird detection (e.g., from surveillance
videos), Faster R-CNN would fail with its three-step architecture.

We believe that the output of the automated methods can be useful when the goal is faster and
more accurate bird counting particularly when we do have lots of images but a few human volunteers.
To sum up, Faster R-CNN should be preferred over the other methods if the main concern is localization
accuracy. However, If the priority is speed, SSD seems a better choice. Nonetheless, the detection
accuracy can be improved possibly by increasing the number of tagged images—a task which can
even be organized as a citizen volunteered event, as will be discussed in Section 4.3.

4.2. Bird Counting Discussion

Both experts and the automated method approximately counted a similar number of birds
from photos whereas the model was significantly faster than the experts. This implied that the
computer-based model worked as effectively as the traditional on-ground point count method.
In computer-assisted counting, the experts’ task was to correct the overall count in each photo by
finding out the uncounted and/or over-counted birds in the corresponding model output. On average,
tuning the model counts by an expert reduced the manual and automated count errors by factors
of 5 and 4, respectively, while the total computer-assisted counting duration (i.e., automated plus
correction) was still three times faster than the manual method. Thereby, computer-assisted counting
appeared to be a more accurate method than manual or automated methods. Automated methods can
be considered as the most technically acceptable methods since they estimate not only more accurate
counts but also with the same level of precision every time the counting is repeated.

The individual graph of the automated method in Figure 12 highlighted a direct relation between
the scale of a bird and the possibility of counting it. That is, the computer model gave higher error rates
for very small (<1500 pixels) and very big (>60,000 pixels) scales. This was expected because these tails
corresponded to rare observations that were not usually tuned by the model parameters. In particular,
smaller birds were usually so invisible in the last convolutional layer of Faster R-CNN as to cause
under-counting whereas larger birds were usually divided into parts that caused over-counting.
SSD attempted to solve this scaling problem by computing the predictions across several feature
maps’ resolutions [63], but still, the tendency of missing small objects remained and is left for future
work. According to the camera settings in Table 1, a bird 750 m away from the camera with a 1 m
wingspan would have covered an area of approximately 1500 pixels in the photo. This means that
shooting a flock of 1 m wing-spanned birds more than 750 m away might even cause the model to
miss the whole flock. The manual counting performances showed no explicit correlation with the bird
scale. This suggested that factors like heterogeneity of the background and physical and/or mental
discomfort of the experts may have affected the human performance at all scales. However, manual
correction seemed to well compromise the computer model for extremum scales while, in between,
the computer model decreased the uncertainty in manual counts.
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4.3. Bird Mapping Discussion

When doing statistical analysis about birds, the data source should be as free of bias as possible to
make more confident inferences about the whole population. A larger data size by increased count
duration and number of OPs generally increases the likelihood that the data accurately reflects the
target population [82]. In our case, the species distribution map in Figure 13 was prepared with
111,511 counted birds. In order to reach this number, nearly 20,000 birds had to be photographed
every year on the average. In this sense, the species diversity, population size, and spatio-temporal
nature of flocks’ movements make representative bird monitoring a hard challenge. In practice,
this issue can be converted into a problem of citizen-scientists that can have greater time and area
coverage as well as more linkage with the surrounding ecosystem especially to find out the bird
migration patterns. On a single day, tens of thousands of people from all around the world go
bird-watching as a scientific sport and record their photos. This big amount of data can be utilized for
bird habitat assessment by the collaboration of citizen scientists, ornithologists, computer engineers,
and geomatics engineers. Even so, one important bottleneck in integrating all of these data to geospatial
technologies is the difficulty of counting birds. Our results demonstrated that the automated model
outputs could be useful for the spatial data gathering for the bird migration over Turkey and replace
the traditional point pattern analysis in GIS applications. In such a monitoring activity scenario,
anyone can upload their on-ground photos at any time where the number of individuals can be
extracted in a semi-automated manner. Species identification can be done by a registered society of
ornithologists or bird categorization algorithms [83] that need a large data set of bird image patches
with category annotations that can also be supplied by citizen scientists. However, fine-grained
object classification still remains under computer-scientific level of interest because of very small
details that differentiate between species and specifies an interesting direction of our future work.
In this manner, a digital network of local volunteers, usually at the country level, can easily prepare
their own bird distribution presence-only maps similar to our case-study demonstrated in Figure 13.
This volunteered effort is prone to biases and limitations related to variability in species, time, locality,
and volunteer skills [84,85]. However, spatial bias can be degraded to a certain degree using existing
geospatial analytical methods [86] and consensus of the multiple automated point counts can be a
natural validation method for the individual counts. Availability of photo-based counts increases the
number of volunteer investigators (i.e., observation units) which increases statistical representation
power. Thus, maps prepared with personal bird photo scene collections and/or Internet photo sharing
sites can be compared among themselves and be used as indicators of the bird population trend in an
area over time. The resulting system can also enable the users to browse and see the source photos
together with the detected birds with which the maps were built.

5. Conclusions

We studied the automation of the bird counting problem in geo-tagged digital photos, that
were taken over a long period of time in a wide area of migration routes over Turkey, using a
deep learning approach. Our experiments revealed that neural networks can be more helpful in
assisting humans rather than fully automating the decision as most AI systems do. These algorithms
can facilitate numerous bird monitoring activities such as on-ground bird counting at migration
bottlenecks, aerial bird counting, and ornithological monitoring at power plants. The model outputs
were also exploited as a proof-of-concept GIS application to map the country-wide bird distribution
which can inspire deeper multi-spatial and multi-temporal bird population trend analysis. In a broader
sense, this multidisciplinary work can be a simple yet important step to a large-scale bird mapping
activity using volunteers and citizen scientists.
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79. Turan, L.; Kiziroğlu, İ.; Erdoğan, A. Biodiversity and its disturbing factors in Turkey. In Proceedings of the

6th International Symposium on Ecology and Environmental Problems, Antalya, Turkey, 17–20 November
2011; p. 56.

80. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV 2017), Venice, Italy, 22–29 October 2017;
pp. 2980–2988.

81. Wang, X.; Zhao, Y.; Pourpanah, F. Recent advances in deep learning. Int. J. Mach. Learn. Cybern. 2020, 11,
747–750. [CrossRef]

82. Ralph, C.J.; Sauer, J.R.; Droege, S. Monitoring Bird Populations by Point Counts; Gen. Tech. Rep. PSW-GTR-149;
US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1995;
Volume 149, p. 187. Available online: https://www.fs.usda.gov/treesearch/pubs/download/31461.pdf
(accessed on 29 March 2020).

83. Van Horn, G.; Branson, S.; Farrell, R.; Haber, S.; Barry, J.; Ipeirotis, P.; Perona, P.; Belongie, S. Building a bird
recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection.
In Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015),
Boston, MA, USA, 7–12 June 2015; pp. 595–604.

84. Snäll, T.; Kindvall, O.; Nilsson, J.; Pärt, T. Evaluating citizen-based presence data for bird monitoring.
Biol. Conserv. 2011, 144, 804–810. [CrossRef]

https://rcompanion.org/handbook
https://CRAN.R-project.org/package=rstatix
https://github.com/droglenc/FSA
https://CRAN.R-project.org/package=rcompanion
http://dx.doi.org/10.21105/joss.01686
http://dx.doi.org/10.1111/j.1474-919X.1967.tb00018.x
http://dx.doi.org/10.13157/arla.64.2.2017.ra2
http://dx.doi.org/10.1007/s13042-020-01096-5
https://www.fs.usda.gov/treesearch/pubs/download/31461.pdf
http://dx.doi.org/10.1016/j.biocon.2010.11.010


Animals 2020, 10, 1207 24 of 24

85. Yang, D.; Wan, H.Y.; Huang, T.-K.; Liu, J. The Role of Citizen Science in Conservation under the Telecoupling
Framework. Sustainability 2019, 11, 1108. [CrossRef]

86. Zhang, G. Integrating Citizen Science and GIS for Wildlife Habitat Assessment. In Wildlife Population
Monitoring; Ferretti, M., Ed.; IntechOpen: London, UK, 2019; ISBN 978-178-984-170-1.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/su11041108
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Data Collection
	Automated Bird Detection
	Faster R-CNN Network Architecture
	Data Augmentation
	Performance Evaluation

	Bird Counting
	Geospatial Bird Mapping

	Results
	Automated Bird Detection Results
	Bird Counting Results
	Bird Mapping Results

	Discussion
	Automated Bird Detection Discussion
	Bird Counting Discussion
	Bird Mapping Discussion

	Conclusions
	References

