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Simple Summary: Goat plays an irreplaceable role as domestic animals by providing milk, meat,
and fiber. With the advancement in human civilization, over 500 goat breeds with various adaptive
traits have been established. Whole-genome sequencing and subsequent analyses (including selective
sweep analysis) are important tools to reveal the genetic basis underlying these adaptive traits.
In this study, we investigated the sequenced genomes of 15 Du’an goats from one flock to identify
the genomic characteristics and candidate genomic regions which might be involved in the adaptive
traits. Selective sweep analysis revealed selected genes and/or pathways related to immune resistance,
small body size, and heat tolerance. The identification of genomic characteristics and selective signals
will not only help understand the demographic history and the genetic mechanism underlying
adaptive traits but can provide novel insights into genetic diversity and development of breeding
strategies in Du’an goats.

Abstract: The Du’an goat is one of the most important farm animals in the Guangxi Autonomous
Region of China, but the genetic basis underlying its adaptive traits has still not been investigated.
Firstly, in this study, the genomes of 15 Du’an goats from a breeding farm were sequenced (mean
depth: 9.50X) to analyze the patterns of genetic variation. A comparable diversity (17.3 million
single nucleotide polymorphisms and 2.1 million indels) was observed to be associated with a
lower runs of homozygosity-based inbreeding coefficient and smaller effective population size in
comparison with other breeds. From selective sweep and gene set enrichment analyses, we revealed
selective signals related to adaptive traits, including immune resistance (serpin cluster, INFGR1, TLR2,
and immune-related pathways), body size (HMGA2, LCOR, ESR1, and cancer-related pathways) and
heat tolerance (MTOR, ABCG2, PDE10A, and purine metabolism pathway). Our findings uncovered
the unique diversity at the genomic level and will provide the opportunities for improvement of
productivity in the Du’an goat.
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1. Introduction

The goat (Capra hircus) was one of the oldest livestock species domesticated in the Zagros
Mountains in the Fertile Crescent, around 10,000 years ago [1]. Domestic goats play an important
role in the transition of human civilization from foraging and hunting to farming and herding by
supplying milk, meat, and fiber. Due to natural and anthropogenic factors (e.g., climate changes,
human migration, and population expansion), there are now more than 1006 million individuals and
557 registered breeds worldwide [2,3].

The Du’an goat is a small-statured goat breed which is mainly reared in Du’an county of
Guangxi Zhuang Autonomous Region in China and is sporadically found in the neighboring counties.
The number of Du’an goats raised per year is more than 0.6 million. Du’an goats are featured as a
meat-type breed with the following characteristics: (1) small body size with the average body weight
of 41 kg in the female; (2) high heat tolerance with average temperatures of 29 Celsius degree in July in
the Du’an county; (3) high disease resistance against Fasciola hepatica; (4) diverse types of coat color
(white, black, etc.); (5) tender meat; and (6) diverse types of horn (Figure 1) [4,5]. However, the genetic
basis underlying these characteristics is still not investigated.
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The decreasing cost of high-throughput sequencing has resulted in considerable progress in
genome characterization and demographic history of various organism. Moreover, the selection sweep
analysis from the genome data set helped in the identification of the candidate genes/regions associated
with adaptive traits. For example, a whole-genome sequencing study showed a very high diversity
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associated with linkage disequilibrium in Moroccan goat [6]. The selection sweep analysis of Korean
indigenous goats revealed selective signals for Salmonella infection and cardiomyopathy [2]. One of
the recently-published studies including 164 modern domestic goat, 52 ancient goat, 24 modern bezoar,
and 4 ancient bezoar genomes indicated that Asian goats are genetically distinct from European and
African samples. More importantly, the study identified a strong signature of selection harboring
MUC6 gene conferred enhanced immune resistance to gastrointestinal pathogens [7]. Furthermore,
studies showed selective signals in other important traits, such as hair growth in the Cashmere goat [8],
litter size traits in the Laoshan dairy goat [9], and high altitude adaptation in the Tibetan goat [3].
However, there have been scarce or no attempts to analyze the genomic characteristics and selective
signals in the Du’an goat.

In the present study, we performed whole-genome resequencing of 15 Du’an goats to identify
genomic characteristics and selective signals. The revelation of selective signals related to immune
system, body size, and heat resistance will help further investigate the genetic mechanism underlying
adaptive traits in the domestic goats of South China. Our findings will also provide valuable resources
for breeding programs and managemental strategies regarding the Du’an goat.

2. Materials and Methods

2.1. Animal Sampling

The ear tissue of 15 Du’an goats was collected from a designated breeding farm in Du’an county
of Guangxi Zhuang Autonomous Region, China. Genomic DNA was extracted from the ear tissue
using the standard phenol–chloroform protocol [10]. The sampling procedure was approved by
the Institutional Animal Care and Use Committee of Northwest A&F University (permit number:
NWAFAC1019).

2.2. Genome Sequencing and Variant Calling

Each DNA sample was used to construct paired-end sequencing libraries with the insert size of
350 bp. The constructed libraries were sequenced using the Illumina NovaSeq 6000 platform at the
Novogene Bioinformatics Institute, Beijing, China. The length of reads was 150 bp. The raw reads
were filtered using Trimmomatic [11] with the following parameters: LEADING:20, TRAILING:20,
SLIDINGWINDOW:3:15, AVGQUAL:20, MINLEN:35, and TOPHRED33. The clean reads were aligned
to the goat reference assembly (ARS1) [12] using Burrows-Wheeler Alignment Maximal Extract Matches
algorithm [13] with default parameters. After alignment, the short reads in the BAM file were sorted
and duplicated reads were marked (Supplementary Note).

For SNP (single nucleotide polymorphism) and indel detection, we orderly used the modules
(HaplotypeCaller, CombineGVCFs, GenotypeGVCFs, and SelectVariants) of Genome Analysis Toolkit
3.8 (GATK) [14] to call the raw variants (Supplementary Note). The raw SNPs were filtered using the
VariantFiltration module of GATK with the following parameters recommended by GATK: SOR > 3.0,
QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < −12.5, ReadPosRankSum < −8.0, DP < 47, and DP > 427.
Similarly, raw indels were filtered using the following parameters recommended by GATK: QD < 2.0,
FS > 200, and ReadPosRankSum < −20.0. The package ANNOVAR [15] was used to annotate the
variants to identify the protein coding mutations caused.

2.3. Population Genetic Analysis

To check for the relatedness among the samples, identity-by-descent testing was performed
using PLINK (–genome) [16]. Nucleotide diversity (–window-pi 50,000 –window-pi-step 50,000) and
inbreeding coefficient (–het) were also calculated to detect the genomic characteristics in the Du’an
goat using VCFtools [17]. The linkage disequilibrium (LD) decay in Du’an goats was estimated using
PopLDdecay [18].
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Runs of homozygosity (ROH) in the Du’an goat was detected using PLINK [16] (Supplementary Note).
The ROH-based inbreeding coefficient (FROH) was calculated as the average fraction of the autosome
covered by ROH. In addition, effective population size (Ne) was calculated using SNeP version 1.1
with default parameters [19].

2.4. Detecting Positive Selection

Before detecting the selective signals, one of the samples was removed due to relatedness
(identity-by-descent PI_HAT = 0.29). Evidence of positive selection was investigated through three
statistics. First, the SNPs were filtered with minor allele frequency < 0.05 and missing rate > 0.10
using VCFtools [16], and missing alleles imputation and haplotype inference were performed using
Beagle version 4.1 (Supplementary Note) [20]. The integrated haplotype score (iHS) was estimated
from haplotype information to find the selected alleles segregating at intermediate frequency in the
Du’an goat using selscan [21]. We also normalized the iHS score using the norm module of selscan.
For the iHS statistic, the fraction of SNPs with |normalized iHS score| > 2 in 50 kb windows with 20 kb
increments was calculated across the autosomes.

Second, based on the empirical frequency spectrum with all allele frequencies across the autosomes,
sweepfinder2 [22] was used to calculate the composite likelihood ratio (CLR) statistics for sites every
1 kb (−lg 1000 FreqFile SpectFile OutFile) using allele frequency information to detect the completed
sweep. In order to define candidate regions, the genome was divided into 50 kb windows with 20 kb
increments. In each window, the maximum CLR was defined as the test statistic.

Third, the nucleotide diversity (θπ) was calculated (–window-pi 50,000 –window-pi-step 20,000)
using VCFtools [16]. Outlier regions supported by two or three methods (higher iHS: top 1%, higher
CLR: top 1%, and lower θπ: bottom 1%) were defined as the candidate regions under positive selection.
In addition, the Tajima’D statistic was also calculated (–TajimaD 20,000) across the autosomes to
consolidate our results using VCFtools [16].

2.5. Candidate Genes Analysis

Based on the goat reference genome (ARS1), a custom perl script was used to annotate the
regions under positive selection. The protein-coding genes overlapped with the regions under positive
selection were defined as candidate genes. Kyoto Encyclopaedia of Genes and Genomes (KEGG)
pathway analysis was performed on the candidate genes using KOBAS 3.0 [23]. Fisher’s exact test
with false discovery rate testing was executed and a corrected p-value of less than 0.05 was chosen as
an inclusion criterion for functional categories.

3. Results

3.1. Sequencing and Identification of SNPs and Indels

To identify the SNPs and indels in the Du’an goat, we sequenced 15 genomes. In total, ~2.81 billion
clean reads were generated and aligned to the goat reference genome (ARS1). The average genome
coverage was 99.68% (ranging from 99.24% to 99.79%) with an in-depth mapping coverage of 9.50 folds
(ranging from 7.74 to 11.47) (Table S1).

After quality filtering, a total of 17,317,364 SNPs was retained, while the average number of
singletons, observed homozygosity, and observed heterozygosity were 163,581 (ranging from 96,181
to 373,907), 11,589,894 (ranging from 10,995,608 to 12,573,915) and 4,433,699 (ranging from 3,414,574
to 5,114,509), respectively. The transitions/transversions ratio was 2.3359, which was comparable to
that in the Dazu black goat (2.3347) [24], and lower than the Moroccan goat (2.3552) [6], suggesting
that the variant calling of the samples was done correctly. The majority of SNPs were identified in the
intergenic (61.6%) and intronic (35.6%) regions, while, only a fraction of SNPs were detected in the
genic regions including exonic (0.8%) and untranslated regions (0.7%). Among the exonic SNPs, 45,410
SNPs caused amino acid change, while 4009 and 83 SNPs caused the creation and elimination of a stop
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codon, respectively (Figure 2a). Similarly, 2,111,567 indels were detected, where, 0.3% were detected in
exonic regions, 37.6% in intronic regions, 59.5% in intergenic regions, and 1% in untranslated regions.
Among exonic indels, 1265 and 1020 indels led to frameshift deletion and insertion, respectively, and 58
and 4 indels led to the creation and elimination of a stop codon, respectively (Figure 2b).
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We also investigated the genomic characteristics in the Du’an goat. According to identity-by-descent
analysis, only one pair from the individuals showed PI_HAT value of greater than 0.25 (which was
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later excluded from the selection sweep analysis). The mean and median of nucleotide diversity
were 0.0019 and 0.0017, respectively, in non-overlapping windows of 50 kb across the autosomes
(Figure 2c). The average SNP-based inbreeding coefficient was 0.06613 in the Du’an goat (Table S2).
Linkage disequilibrium (LD) analysis indicated the physical distance between SNPs to be 77 kb
(reported as half of its maximum) (mean r2 = 0.35) (Figure 2d), while, the average ROH coverage was
6.217 Mb (ranging from ~1–44.312 Mb). Accordingly, the average FROH was 0.0025 (ranging from
~0.0004–0.0179) (Table S3). In addition, an estimated decrease in the Ne was also observed in the Du’an
goat (from 2668 at 999 generations ago to 55 at 13 generations ago) (Figure 2e) (Table S4).

3.2. Identification of Selective Sweep

To identify candidate regions and genes under selection in the Du’an goat, we used iHS statistic,
CLR statistic, and nucleotide diversity. The regions with support from two or three methods (lower
nucleotide diversity, higher iHS statistic, and CLR statistic) were defined as the candidate regions
under selection (Figure 3a–c). After merging the overlapping regions, 124 candidate regions with
245 genes were identified under selection in the Du’an goat (Table S5). Based on annotation of the
ANNOVAR software, we also identified 131 nonsynonymous SNPs with the high frequency (>0.8) in
68 selected genes (Table S6) and eight exonic indels with the high frequency (>0.8) in six selected genes
(Table S7).

An extreme iHS score was located in the serpin cluster. The selective signals in the serpin cluster
were further confirmed by a higher value of CLR, local reduced nucleotide diversity, and lower value of
Tajima’s D (Figure 3d). HMGA2 was identified as a candidate gene, which showed a strong CLR signal
and reduced nucleotide diversity. The region also showed a negative value of Tajima’s D indicative of
an increase of rare alleles, such as recent bottleneck followed by expansion (Figure 3e). In addition,
we found MTOR fell in a region that contained some of the most extreme CLR statistic and nucleotide
diversity. The negative value of Tajima’s D also supported the selection in the region (Figure 3f).
Other interesting candidate genes overlapped with selective signals were IFNGR1, TLR2, ESR1, LCOR,
ABCG2, and PDE10A.
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3.3. Kegg Pathway Analyses of the Candidate Genes under Selection

In order to provide more functional information about the candidate genes under selection,
gene set enrichment analysis of the KEGG pathway was performed, resulting in nine significant
pathways. The most significant pathway was olfactory transduction. Other pathways included four
immune-related categories (amoebiasis, acute myeloid leukemia, staphylococcus aureus infection,
and tuberculosis), two cancer-related categories (PD-L1 expression and PD-1 checkpoint pathway
in cancer, and proteoglycans in cancer), and one metabolism-related category (purine metabolism)
(Table 1).
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Table 1. Enriched gene ontology terms among the candidate genes under selection 1.

KEGG Term Corrected p Gene Count

Olfactory transduction 2.22 × 1034 44 (448)

Amoebiasis 0.00194 6 (95)

PD-L1 expression and PD-1
checkpoint pathway in cancer 0.0097 5 (89)

Acute myeloid leukemia 0.021178 4 (66)

Staphylococcus aureus infection 0.003584 5 (68)

Tuberculosis 0.023397 6 (179)

Purine metabolism 0.029284 5 (130)

Proteoglycans in cancer 0.032434 6 (203)

Salivary secretion 0.040032 4 (90)

1 Enriched terms are color-coded to reflect relatedness in functional proximity. Blue, immune system; green,
cancer; and orange, metabolism. For each term, gene count shows number of candidate genes (total number of
annotated genes).

4. Discussion

4.1. Genetic Diversity in the Du’an Goat

Study of genetic diversity plays an important role in the conservation and utilization of
germplasm resources, revelation of evolutionary history, and investigation of phylogenetic relationships.
The number of the detected SNPs in the Du’an goat (~17M) was lower than that in the Moroccan (~33M)
and Korean indigenous (~37M), and higher than that in the Tibetan Cashmere (~12M), Chengdu Brown
(~10M), and Jintang Black goat (~12M) [8], which could be explained by the difference in the number
of individuals, reference genome, detection method, filtering criteria, or breed. The average nucleotide
diversity in the Du’an goat was lower than that in the Iranian indigenous goat, while it was found to
be higher than that in the Nubian and Korean indigenous goat. The average SNP-based inbreeding
coefficient in the Du’an goat was higher than the Nubian and Korean indigenous goat. The average
r2 in 50 Kb in the Du’an goat was higher than that in the Iranian indigenous, Moroccan indigenous,
and Boer goat, while it was lower than that in the Nubian goat (Table 2). However, ROH-based
inbreeding coefficient (0.0025) was lower in the Du’an goat than the Chengdu Brown (0.194), Tibetan
Cashmere (0.068), Moroccan indigenous (0.085), and Jintang Black goat (0.119) [8]. The revelation of
individual ROH may help the conservation of this breed, since animals with high levels of ROH could
be excluded or assigned lower priority for mating to minimize the loss in genetic diversity. In addition,
a decreasing Ne was observed in the Du’an goat, and the estimated Ne value was 55 at 13 generations
ago, which was lower than that in the Arbas Cashmere (95) and Guangfeng goat (64) [25]. Similarly,
a previous study also found higher Ne values in the Argentinian (67), French (57) and South Afrcian
goat (93) at 10 generations ago [26], which supports our results. A recent decrease in Ne can be due to
a stronger selective pressure in recent generations or to a recent bottleneck. From the above results,
we can conclude that the Du’an goat has higher SNP-based inbreeding, lower ROH-based inbreeding,
fewer variants, higher linkage decay, and smaller effective population size and nucleotide diversity
comparable to the other locally-adapted populations, suggesting the unique genetic characteristics.
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Table 2. Difference in genomic characteristics between the Du’an goat and seven other goat breeds.

Breed Number of SNPs Nucleotide
Diversity

Inbreeding
Coefficient 1 Average r2 (50 kb)

Du’an goat 17,317,364 0.001905 0.06613 0.3674
Iranian indigenous goat 2 35,742,191 0.001998 0.06229 0.087908

Moroccan indigenous goat 2 32,914,220 0.001859 0.06143 0.079364
Saanen goat 2 36,845,217 0.001783 0.00207 0.063634
Nubian goat 2 23,726,534 0.001117 −0.0234 0.487128

Boer goat 2 32,384,827 0.001724 −0.04455 0.091387
Korean indigenous goat 2 37,715,208 0.001472 0.01661 0.161031

Capra aegagrus 2 39,222,625 0.001804 0.06821 0.087908
1 Inbreeding coefficient was estimated using a method of moments. 2 The genomic characteristics in these breeds
was identified by Badr Benjelloun et al. in 2019 [2].

4.2. Putatively-Selected Genes

4.2.1. Immune System

High disease resistance is one of the key features in the Du’an goat. A previous study reported
that Fasciola hepatica is endemic in Guangxi Zhuang Autonomous Region inhabited by the Du’an
goat [5]. Among the putatively-selected genes, serpins are serine proteinase inhibitors involved in host
defense pathways [27]. An in-depth proteomic analysis of Fasciola hepatica intra-mammalian stages
showed that five serpins were identified in adult excretory/secretory product and somatic soluble
newly excysted juveniles, suggesting that serpins could be important for Fasciola hepatica establishment
and survival in the host [28]. Other noteworthy genes in our candidate list were IFNGR1 involved in
hepatitis B virus and mycobacteria infection [29,30] and TLR2 implicated in pathogen recognition and
activation of innate immunity [31]. Interestingly, the ADAPTmap consortium found that the IFNGR1
was one of candidate genes involved in environmental adaptation; another 10 candidate genes (ARL8A,
CDC25A, GPR37L1, IL22RA2, IQCE, KIT, LOC102181444, MAP28, NAV1, and PTPN71) identified by the
ADAPTmap consortium were also within the region under selection in the Du’an goat [32]. At the same
time, we found four nonsynonymous SNPs with the high frequency in three immune-related genes
in the Du’an goat (IFNGR1: c.A733G, p.I245V; SERPINB7: c.A82G, p.M28V; TLR2: c.T47C, p.V16A;
and TLR2: c.A739G, p.I247V). In addition, gene set enrichment analysis showed four immune-related
KEGG pathways. We could speculate that these genes, nonsynonymous SNPs, or pathways could have
been affected by selection targeting at immune traits such as resistance to viruses, bacteria, or parasites.

4.2.2. Body Size

Another important Du’an goat characteristic is its small body size. The average body weight is
48 kg in the adult male and 41 kg in the adult female. One interesting observation was the presence of
HMGA2 among the genes with strong signal of selection. HMGA2 is a widely-studied gene explaining
the difference in body size in many organisms including humans [33], cattle [34], dog [35], and horse [36].
Other putatively-selected candidates included LCOR associated with cattle stature [34] and ESR1
associated with body height in two Swedish populations [37]. It is worth mentioning that there were
two nonsynonymous SNPs with the high LCOR frequency in the Du’an goat (c.G3029A:p.G1010E and
c.G2513C:p.S838T). In addition, we observed that two cancer-related KEGG pathways were detected in
gene set enrichment analysis. In fact, the relationship between cancer and body size or obesity has
been established by numerous studies [38–40]. From the above results, we can conclude that these
genes or pathways were strong candidates contributing to the small body size in the Du’an goat.

4.2.3. Heat Tolerance

Guangxi Zhuang Autonomous Region, inhabited by the Du’an goat, is in the south subtropical
zone, where the average annual temperature is 17–23 Celsius degree, the average maximum temperature
is about 29 Celsius degree in July [41]. In the genome-wide screen, we found a very strong selective



Animals 2020, 10, 994 10 of 13

signal with a high-frequent nonsynonymous SNPs in MTOR (c.G5507C:p.G1836A). A previous study
has shown that MTOR is essential for the proteotoxic stress response, HSF1 activation, and heat
shock protein synthesis [42]. Moreover, heat stress experiments showed enhanced MTOR signaling in
human and rat skeletal muscle [43,44]. A prominent study showed that MTOR could regulate phase
separation of PGL granules to modulate their autophagic degradation and heat stress adaptation during
Caenorhabditis elegans embryogenesis [45]. In fact, another study has proved that mutation of MTOR
gene could be associated with heat tolerance in Chinese cattle [46]. Other strong selection candidates
included ABCG2 implicated in oxidative stress [47], and PDE10A implicated in a thermoregulatory
role [48]. It has been demonstrated that the duration of thermal stress affects the expression of
ABCG2 in broilers [49]. In addition, we found that purine metabolism was significantly enriched in
putatively-selected genes using KEGG pathways. A review has presented the function of heat shock
protein and metabolic responses under heat stress or high ambient temperature [50]. Some studies have
shown that purine metabolism is involved in heat stress [51,52]. All the above findings indicate that these
genes or pathways may be important factors in Du’an goat adaptation to a subtropical environment.

5. Conclusions

Our study used resequencing data from the Du’an goat to identify genomic characteristics and
selective signals. The descriptions of genomic characteristics (nucleotide diversity, SNPs, indels,
inbreeding coefficient, linkage disequilibrium, ROH, and effective population size) are not only crucial
for maintaining herd genetic diversity and development of breeding programs, but also help understand
the demographic history in the Du’an goat. The revelation of selective signals related to immune
system, body size, and heat tolerance will provide an important opportunity for further investigation
of the genetic mechanisms and underlying adaptive traits in the Du’an goat. The identification of some
candidate variants will facilitate investigation into related phenotypical data to detect causative variants.
Further studies are hereby desired with broader and thorough investigation, leading towards more
elaborative genomic characterization and demographic history based on larger datasets, augmenting
the current study for better managemental and breeding policies.
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