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Simple Summary: This study investigated the informative regions and the efficiency of genomic
predictions for backfat thickness, days to 90 kg body weight, loin muscle area, and lean percentage
in Korean Duroc pigs. The several regions of the genome were identified and a significant marker
was found near the MC4R gene for growth and production-related traits. No differences in
genomic accuracy were identified on the basis of the Bayesian approaches in these four growth
and production-related traits. The genomic accuracy is improved by using deregressed estimated
breeding values including parental information as a response variable in Korean Duroc pigs.

Abstract: Genomic evaluation has been widely applied to several species using commercial single
nucleotide polymorphism (SNP) genotyping platforms. This study investigated the informative
genomic regions and the efficiency of genomic prediction by using two Bayesian approaches (BayesB
and BayesC) under two moderate-density SNP genotyping panels in Korean Duroc pigs. Growth and
production records of 1026 individuals were genotyped using two medium-density, SNP genotyping
platforms: Illumina60K and GeneSeek80K. These platforms consisted of 61,565 and 68,528 SNP
markers, respectively. The deregressed estimated breeding values (DEBVs) derived from estimated
breeding values (EBVs) and their reliabilities were taken as response variables. Two Bayesian
approaches were implemented to perform the genome-wide association study (GWAS) and genomic
prediction. Multiple significant regions for days to 90 kg (DAYS), lean muscle area (LMA), and lean
percent (PCL) were detected. The most significant SNP marker, located near the MC4R gene, was
detected using GeneSeek80K. Accuracy of genomic predictions was higher using the GeneSeek80K
SNP panel for DAYS (∆2%) and LMA (∆2–3%) with two response variables, with no gains in accuracy
by the Bayesian approaches in four growth and production-related traits. Genomic prediction is
best derived from DEBVs including parental information as a response variable between two DEBVs
regardless of the genotyping platform and the Bayesian method for genomic prediction accuracy in
Korean Duroc pig breeding.
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1. Introduction

Genomic selection (GS) has been widely applied to several species, for example, pigs, chickens,
beef, and dairy cattle, using commercial single nucleotide polymorphism (SNP) genotyping platforms
from Illumina, GeneSeek-Neogen, and Affymetrix. These arrays estimate genomic-enhanced estimated
breeding values (GE-EBVs), which are blended with classical estimated breeding values (EBVs) from
classical genomic best linear unbiased prediction (BLUP) and molecular breeding values (MBVs) from
summation of single nucleotide polymorphism (SNP) marker effects for genotyped animals. The most
important parameter in genomic prediction modeling is the accuracy of genomic prediction for the
estimation of GE-EBVs because the weights are determined on the basis of that parameter when
blended with traditional EBVs and MBVs in a “correlated traits” approach [1]. Two terms in the

classical concept of quantitative genetics in the formula of genetic progress (∆G =
i × r × σg

L ) that are
directly affected by the implementation of genomic selection in the pig industry are the generation
interval (L) and accuracy (r).

Genetic improvements are achieved by reducing the generation interval and increasing the
accuracy through genomic selection modeling in dairy and beef cattle. However, in pigs, genetic
improvements with the generational interval parameter are limited by rapid generational turnover.
Therefore, increased accuracy of genetic predictions may be the largest parameter impacting genomic
selection in pig breeding [2]. These authors [2] also reviewed the accuracy of genomic prediction for
maternal, performance, and carcass traits in pigs. Breeders of various animal species have conducted
research using various prediction models with the aim of increasing the accuracy of genomic prediction
for more reliable GE-EBVs. However, these models are affected by several factors, such as the size of
the reference data, which mean having both genomic and phenotypic data [3,4], density of genotyping
platforms [5–8], relationships between training and testing sets in the process of cross validation for
genomic accuracy [9], and choice of response variables in genomic prediction models [8]. In addition,
the models were also affected by the choice of covariates (individual SNP vs. haplotype) in genomic
prediction modeling [10], choice of penalty or a priori density in statistical methods (e.g., regression on
SNP marker) [11], and causative variants or SNPs in strong linkage disequilibrium (LD) with causative
variants [12].

The objectives of this study were to (1) identify informative genomic regions through a
genome-wide association study (GWAS) and (2) to investigate and compare the accuracy of genomic
prediction of two genomic evaluation methods using two Bayesian methods (BayesB and BayesC)
under two medium-density, SNP genotyping platforms with two response variables (DEBVexcPA
and DEBVincPA). This is the first study to assess the accuracy of genomic prediction for growth and
production-related traits in Korean Duroc pig populations.

2. Materials and Methods

2.1. Genotype and Phenotype Data Editing and Imputation

A total of 1026 Duroc pigs were genotyped. These animals were genotyped with two
medium-density SNP genotyping platforms, including 487 genotyped by the Illumina PorcineSNP60
version 2 (Illumina, Inc., San Diego, CA, USA) and 539 genotyped by GeneSeek-Neogen PorcineSNP80
(BeadChip Neogen Agrigenomics, Lincoln, NE, USA), respectively. They consisted of 61,565 and 68,528
SNP markers, respectively. The quality control measures in SNP markers and animals were performed
by excluding 7849 and 7758 unmapped SNPs, 1458 and 3273 SNPs on sex chromosomes, 6399 and 1613
SNPs with a poor call rate (<0.90), 17 and 18 SNPs with a poor call rate for a duplicate SNP map-position
for SNP markers, 7 and 5 animals with poor call rates (<0.90), 8 and 34 animals that did not match
with phenotypes for each Illumina PorcineSNP60 version 2 and GeneSeek-Neogen PorcineSNP80
genotyping platform, and 3 animals with a poor call rate for duplicate genotypes between two SNP
genotyping platforms. Consequently, the number of available SNP markers was 45,840 and 55,866
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for 60K and 80K SNP panels, respectively, leaving 472 and 500 animals for 60K and 80K SNP panels,
respectively, for use in further genome-wide association studies, and genomic prediction modeling.

The imputation processes of these two medium density SNP panels (Illumina60K and
GeneSeek80K) were separately performed using the following two steps: (1) FImpute version 2.2 [13]
imputed missing SNP genotypes of two SNP panels (50K and 80K) on the basis of the information for
each marker map to be used for the reference panel and (2) FImpute version 2.2 [13] imputed between
two SNP panels, from Illumina60K to GeneSeek80K and from GeneSeek80K to Illumina60K. Finally,
we accepted two kinds of reference population for further genomic analysis, consisting of 972 animals
in the imputed 60K and 80K data because there were no duplicate genotypes between the Illumina60K
and GeneSeek80K.

2.2. Deregression of Expected Breeding Values (DEBVs) for Response Variables

A multitrait animal model with 46,305 phenotypic data recorded from 2005 to 2017 and 72,781
pedigree records was applied to estimate the variance components and genetic parameters (Table 1).

Table 1. Variance components and heritability estimated for growth- and production-related traits in
Duroc pigs.

Trait 1 Additive Genetic Variance Phenotypic Variance Heritability

BFAT 1.21 3.42 0.35
DAYS 34.57 85.10 0.41
LMA 1.14 7.15 0.16
PCL 2.09 5.52 0.38

1 BFAT = backfat thickness; DAYS = days to 90 kg body weight; LMA = loin muscle area; PCL = lean percent.

This was required as a priori information for the genomic prediction model and for EBVs and
corresponding reliabilities for the genotyped animals and their sires and dams. These analyses used
the ASReml version 4.1 software [14] for four growth and production-related traits: backfat thickness
(BFAT), days to 90 kg body weight (DAYS), loin muscle area (LMA), and lean percent (PCL). Phenotypes
were adjusted for fixed effects using contemporary groups comprising of farm, birth-year, season, and
sex effects. A common litter environment effect was also included in a multitrait animal model for
those parameters and EBV. We used the methodology provided by Garrick et al. [15] for the two kinds
of DEBVs, which were (1) a combination of deregression (dividing by the reliability of the EBV) and
adjustment for ancestral information (i.e., parental average, which only contained their own and the
descendant’s information, hereafter called “DEBVexcPA”), and (2) in contrast to Garrick et al. [15], the
parent average EBV (PA) was added back to the DEBV (hereafter called “DEBVincPA”) to account for
breed and family differences in subsequent analyses. These two DEBVs (DEBVexcPA and DEBVincPA)
were obtained using Equation (1):

DEBVi = (PA) +
ĝi − PA

r2
i

, (1)

with the corresponding weighting factors using Equation (2):

wi =

(
1− h2

){
c +

[(
1− r2

i

)
/r2

i

]}
h2

, (2)

where ĝi is the EBV (estimated breeding value) of the individual, PA is its parent average, h2 is the
heritability, r2

i is the reliability of the EBV of the individual, and c is the proportion of genetic variation
that could not be explained by the markers. In this study, c was assumed to be equal to 0.40 and is the
proportion of the genetic variance not explained by SNP markers, as suggested by Saatchi et al. [16].
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After removing animals with a reliability of less than 0.10, 964 registered Duroc pigs remained for
further analysis.

2.3. Statistical Method for Estimating SNP Effects

Two methods (BayesB [3] and BayesC [17], with π set to 0.99 and weighting factors), were used
to estimate SNP marker effects using the GenSel4R software [18] for GWAS and genomic prediction
models. The BayesB and BayesC methods use the mixture model that assumes some fraction π of SNP
markers have zero effects and assumes that SNP markers have non-zero effects. The BayesB method
uses the t-distribution a priori for the SNP marker effects and has locus-specific variances whereas the
BayesC method uses the normal distribution a priori for the SNP marker effect and has a common
variance [19]. For each trait, the model was fitted to estimate SNP marker effects for these two methods
using Equation (3):

yi = µ+
∑k

j=1
Zi ju jδ j + ei, (3)

where yi is response variable (DEBVexcPA or DEBVincPA) on animal i for the respective trait, I? is
the population mean, k is the number of markers, Zi j is allelic state at locus j in individual i, and u j
is the random substitution effect for marker j, which follows a mixture distribution for this random
substitution effect according to indicator variable (δ j). A random absent (0) or present (1) variable
indicates the absence or presence of marker j in the model, with u j assumed normally distributed
N(0, σ2

u) when δ j = 1, and ei is a random residual effect assumed normally distributed N(0, σ2
e ).

The posterior distributions of the parameters and effects were obtained using Gibbs sampling, for
a total number of 110,000 Markov chain Monte Carlo (MCMC) iterations, the first 10,000 of which
were discarded for burn-in, before estimating posterior means of marker effects and variances, and
a sampling interval (thinning) of 10. All procedures were implemented in GenSel4R software [18].
The convergence of MCMC iterations was tested by comparing results from three iteration lengths
(75,000 vs. 110,000 vs. 150,000) with the first 10,000 cycles being discarded and having a sampling
interval of 10. The differences in the posterior means of genetic and residual variances were negligible
among three MCMC iteration lengths for all growth and productive-related traits (results not shown).

2.4. Identification of Significant Window Regions and SNP Markers

The 0.8% of additive genetic variance, which was estimated as a fraction of the total genetic
variance explained by all SNPs, was used for the significance level of the putative informative 1 Mb
window region. A total of 2454 1-Mb window regions located on autosomes were considered for
two SNP genotyping platforms (Illumina60K and GeneSeek80K) in this analysis. The theoretical
rate of the genetic variance could be assumed approximately 0.04% (100% /2454), but the stringent
threshold of 0.8%, which is twenty times higher than the theoretical proportion was considered as the
small reference set in Korean Duroc pigs. The Bayes factor (BF) was used to determine SNPs with a
significant association within this region using Equation (4):

BF =
p̂i/(1− p̂i)

(1−π)/π
, (4)

where π is the prior probability and p̂i is the posterior probability that an SNP was included in the
model. Following the definitions of Kass and Raftery [20] for the strength of an association on the basis
of the range of values, the SNP markers with a Bayes factor above 3.2 were considered as “suggestive
evidence”, above 20 was described as “strong evidence” and above 100 was described as “decisive
evidence”.
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2.5. Accuracy of Genomic Prediction under a 10-Fold Cross-Validation

To account for the relatively small sample size of the prediction model, a 10-fold cross-validation
strategy was used to estimate the accuracies of the genomic prediction models. Previous study related
to the number of folds on the process of the cross validation have reported that trade-off effects were
detected between the number of folds and the relationships between training and testing sets [8].
Nevertheless, we used a 10-fold cross-validation to maximize the size of the training data because of
the limited reference data set in Korean Duroc pigs. For each trait of interest in this study (BFAT, DAYS,
LMA, and PCL) and following the procedures outlined by Saatchi et al. [9], genotyped animals were
split into ten groups using K-means clustering to reduce the relationships between training and testing
populations. A total of 3821 elements of pedigree information related to the 964 genotyped Duroc pigs
was used for K-means clustering, giving the number of individuals within each fold, and within and
between fold averages of amax and aij, and their standard deviations (Table 2).

Table 2. Comparison of relationships among animals within and across clusters in K-means 10-fold
cross validations.

No. of Clusters No. of Animals inBreC 1 amax_within
2 amax_between

3 aij_within
4 aij_between

5

1 94 0.011 0.48 (0.11) 0.32 (0.14) 0.09 (0.02) 0.05 (0.01)
2 162 0.031 0.47 (0.12) 0.17 (0.10) 0.07 (0.01) 0.01 (0.01)
3 78 0.048 0.52 (0.10) 0.37 (0.13) 0.19 (0.03) 0.05 (0.00)
4 113 0.070 0.54 (0.11) 0.40 (0.11) 0.19 (0.03) 0.05 (0.00)
5 61 0.048 0.52 (0.11) 0.39 (0.14) 0.17 (0.03) 0.05 (0.01)
6 65 0.053 0.55 (0.08) 0.37 (0.13) 0.23 (0.02) 0.05 (0.01)
7 70 0.029 0.42 (0.15) 0.39 (0.12) 0.10 (0.03) 0.04 (0.01)
8 112 0.009 0.49 (0.10) 0.26 (0.10) 0.10 (0.03) 0.03 (0.00)
9 123 0.063 0.54 (0.10) 0.19 (0.08) 0.17 (0.02) 0.03 (0.01)

10 94 0.001 0.34 (0.19) 0.12 (0.14) 0.03 (0.02) 0.01 (0.01)
1 inBreC = inbreeding coefficients within clusters; 2 amax_within = the average of amax value (the maximum value
of relationships for each individual) within clusters; 3 amax_between = the average of amax values between clusters
(training and testing); 4 aij_within = the average of aij values (relationships) within clusters; 5 aij_between = the average
of aij values between clusters (training and testing).

Accuracies of genomic prediction were assessed by the correlation between the MBVs of genotyped
animals from each validation set and their response variables, r(ŷ, y), where y is a vector of
pseudo-phenotypes (DEBVexcPA or DEBVincPA) for the validation set and ŷ is a vector of MBV
for the corresponding animals in y.

3. Results and Discussion

3.1. Assessing the Accuracy of Imputation

The imputation process was performed to test the imputation accuracy of two SNP genotyping
platforms, the Illumina60K and GeneSeek80K. The accuracy of imputation with a higher minor allele
frequency (MAF) was lower than for those with a lower MAF for both SNP genotyping platforms
(Figure 1).
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Figure 1. Imputation accuracy computed using the proportion of correctly imputed genotypes by minor
allele frequency (MAF). Imputation accuracy computed (A) from the Illumina60K to GeneSeek80K and
(B) from the GeneSeek80K to Illumina60K.

These results are consistent with the results of Badke et al. [21], who showed that the proportion
of correctly imputed alleles decreased by increasing the number of SNPs with a high MAF in Yorkshire
pigs. Using dairy cattle, Ma et al. [22] showed that the imputation accuracies were lower with a
higher MAF across available imputation programs [13,23–26]. The accuracies of imputation using
simulation studies were 98.6% from the Illumina60K to GeneSeek80K SNP panel and 99.4% from the
GeneSeek80K to Illumina60K SNP panel. The accuracies of imputation were similar and consistent
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across chromosomes for imputation to both SNP platforms from the other SNP platform, likely because
the proportion of common SNP markers between the two SNP genotyping platforms (Illumina60K:
59.1% and GeneSeek80K: 53.1%) was high.

3.2. Genome-Wide Association Study (GWAS) for Growth- and Production-Related Traits

GWAS for growth and production traits was performed using two commercially developed
Porcine SNP genotyping platforms (Illumina60K and GeneSeek80K) to identify the most informative
window regions and significant SNP markers based on the Bayes factor within these regions. GWAS
analyses using BayesB with a high value of π (0.99) and a DEBVincPA response variable for growth
and production-related traits in Duroc pigs were chosen because the informative window region and
significant SNP markers were similarly distributed across the three response variables and Bayesian
methods. The results of these associations are shown in Tables 3 and 4, and Figure 2.

Table 3. Informative 1 Mb genome windows and significant single nucleotide polymorphisms (SNPs)
based on the Bayes factor within windows associated with growth- and production-related traits in
Korean Duroc pigs from the genome-wide association study (GWAS) using markers on the Illumina
PorcineSNP60 genotyping platform.

Trait 1 SSC
_Mb GV (%) 2 Informative

SNP
Position

(Mb) Effect BF 3 Region
Annotation Gene Annotation

BFAT

1_62 1.26

MARC0038944 62.12 −0.04 24.17 intergenic CGA (dist = 131054)
ALGA0003581 62.20 −0.04 23.39 intergenic CGA (dist = 44656)
ALGA0003583 62.23 −0.04 22.52 intergenic CGA (dist = 16224)
ALGA0003587 62.24 0.03 21.88 intergenic CGA (dist = 2593)

13_205 1.24 ASGA0059825 205.31 0.12 136.38 intergenic CLDN8 (dist = 1144428),
SOD1 (dist = 309936)

4_16 0.81 ASGA0018674 16.88 0.10 97.55 intergenic FBXO32 (dist = 210423),
DERL1 (dist = 213410)

DAYS

7_124 1.58 ASGA0093614 124.68 0.94 708.50 intergenic BDKRB2 (dist = 26181)

18_29 1.50 ALGA0097693 29.01 0.97 240.97 intergenic TSPAN12 (dist = 1290900),
CFTR (dist = 1388059)

1_177 1.30 ASGA0004988 177.53 −0.66 85.63 intergenic RNF152 (dist = 468819),
MC4R (dist = 1019391)

10_27 0.99 H3GA0029615 27.03 −0.62 77.98 intergenic MIR181A-1 (dist = 601150),
NR5A2 (dist = 252919)

10_26 0.80 H3GA0029613 26.91 −0.58 69.77 intergenic MIR181A-1 (dist = 489646),
NR5A2 (dist = 364423)

LMA

5_87 2.36 ALGA0033240 87.39 0.21 934.40 intergenic SLC5A8 (dist = 318494),
NR1H4 (dist = 399478)

11_68 2.02 CASI0007856 68.91 −0.18 864.04 intergenic DCT (dist = 757772)

1_179 1.52
ALGA0006660 179.02 0.14 57.55 intergenic PMAIP1 (dist = 161261),

MIR122 (dist = 897655)

ALGA0006655 179.00 0.12 47.49 intergenic PMAIP1 (dist = 144947),
MIR122 (dist = 913969)

16_9 1.40 ALGA0101487 99.10 0.09 96.92 - NONE

18_12 1.25
ASGA0078904 12.62 −0.05 42.71 intergenic ZC3HAV1 (dist = 1552776),

PTN (dist = 273756)

M1GA0023069 12.64 0.05 38.94 intergenic ZC3HAV1 (dist = 1572284),
PTN (dist = 254248)

8_128 1.24 ALGA0115575 128.24 −0.13 149.93 intergenic NFKB1 (dist = 573086),
PPP3CA (dist = 224770)

PCL

13_205 1.08 ASGA0059825 205.31 −0.18 190.47 intergenic CLDN8 (dist = 1144428),
SOD1 (dist = 309936)

1_62 0.90
ALGA0003581 62.20 0.04 21.72 intergenic CGA (dist = 44656)
MARC0038944 62.12 0.04 21.00 intergenic CGA (dist = 131054)
ALGA003583 62.23 0.04 20.59 intergenic CGA (dist = 16224)

1 BFAT = backfat thickness; DAYS = days to 90 kg body weight; LMA = loin muscle area; PCL = lean percent; 2 GV
(%) = Percentage of additive genetic variance explained by SNP markers within each 1 Mb window region; 3 BF =
Bayes factor.
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Table 4. Informative 1 Mb genome windows and significant SNPs based on the Bayes factor within
windows associated with growth- and production-related traits in Korean Duroc pigs from the GWAS
using markers on the GeneSeek-Neogen PorcineSNP80 genotyping platform.

Trait 1 SSC
_Mb

GV
(%) 2 Informative SNP Position

(Mb) Effect BF 3 Region
Annotation Gene Annotation

BFAT

1_178 1.88 WU_10.2_1_178188861 178.19 −0.21 195.56 intergenic RNF152(dist = 1123583),
MC4R (dist = 364627)

18_58 1.06 WU_10.2_18_58809866 58.81 −0.04 26.71 intergenic INHBA (dist = 800771)

1_62 1.04
ALGA0003581 62.20 −0.03 21.94 intergenic CGA (dist = 44656)
ALGA0003587 62.24 0.03 21.51 intergenic CGA (dist = 2593)

14_150 0.93
WU_10.2_14_150298075 150.30 0.08 68.20 intergenic GLRX3 (dist = 891194)

M1GA0019859 150.87 0.03 21.50 intergenic GLRX3 (dist = 891194)

DAYS

18_29 1.19 ALGA0097693 29.01 0.78 145.57 intergenic TSPAN12 (dist = 1290900),
CFTR (dist = 1388059)

14_4 1.16 WU_10.2_14_4968099 4.97 0.86 186.71 intergenic LPL (dist = 511359),
DOK2 (dist = 1649547)

1_177 0.99 ASGA0004988 177.53 −0.51 58.27 intergenic RNF152 (dist = 468819),
MC4R (dist = 1019391)

LMA

1_178 3.56 WU_10.2_1_178188861 178.19 0.30 1010.87 intergenic RNF152 (dist = 1123583),
MC4R (dist = 364627)

5_87 2.17 ALGA0033240 87.39 0.20 659.04 intergenic SLC5A8 (dist = 318494),
NR1H4 (dist = 399478)

11_68 1.19 CASI0007856 68.91 −0.12 158.68 intergenic DCT (dist = 757772)

16_9 0.97 ALGA0101487 9.91 0.08 88.43 - NONE

8_128 0.85 ALGA0115575 128.24 −0.09 77.91 intergenic NFKB1 (dist = 573086),
PPP3CA (dist = 224770)

PCL
1_178 1.44 WU_10.2_1_178188861 178.19 0.26 167.70 intergenic RNF152 (dist = 1123583),

MC4R (dist = 364627)

11_74 0.61 WU_10.2_11_74507674 74.51 0.12 85.22 intergenic IPO5 (dist = 334379),
SLC15A1 (dist = 382105)

1 BFAT = backfat thickness; DAYS = days to 90 kg body weight; LMA = loin muscle area; PCL = lean percent; 2 GV
(%) = Percentage of additive genetic variance explained by SNP markers within each 1 Mb window region; 3 BF =
Bayes factor.

Three and four informative windows (1 Mb) were detected for BFAT using the Illumina60K
panel and GeneSeek80K panel, respectively. The most significant window was identified on Sus
scrofa chromosome (SSC)1 at 62 Mb using the Illumina60K panel and on SSC1 at 178 Mb using the
GeneSeek80K panel, which explained 1.26% and 1.88% of genetic variance, respectively. Significant SNP
markers, based on the Bayes factor, common to both two panels were ALGA0003581 and ALGA0003587,
which were located on SSC1 at the 62 Mb position nearby the CGA gene. For DAYS, we detected five
informative quantitative trait loci (QTL) using the Illumina60K panel and three informative QTLs
using the GeneSeek80K panel. The regions of SSC7 at 124 Mb (1.58%) and SSC18 at 29 Mb (1.19%)
were the most informative 1 Mb window regions in GWAS for DAYS using the Illumina60K and
using GeneSeek80K, respectively. The common significant SNPs were ALGA0097693 (located on
SSC18 at the 29 Mb position between TSPAN12 and CFTR) and ASGA0004988 (located on SSC1 at the
177 Mb position between RNF152 and MC4R) in both panels. We identified six significant regions
using the Illumina60K panel and five significant regions using the GeneSeek80K panel for LMA. The
most significant region using the Illumina60K was detected on SSC5 at 87 Mb (2.36%), and SSC1
at the 178Mb (3.56%) region was detected when using GeneSeek80K. Two informative QTLs were
detected using the Illumina60K and GeneSeek80K panels for PCL. In addition, common significant
SNPs were not identified using either panel. The GeneSeek80K genotyping panel contained more
SNP markers in major genes than the Illumina60K genotyping panel (i.e., MC4R). As a result, the
informative SNP markers not included in the Illumina60K panel were detected using the GeneSeek80K
panel. Interestingly, the WU_10.2_1_178188861 SNP located by the GeneSeek80K panel was associated
with all growth and production traits except DAYS, which is not included in the Illumina60K panel
and is located on SSC1 at the 178 Mb position between RNF152 and MC4R. For DAYS, ASGA0004988,
which was positioned on SSC1 at 177 Mb, was detected as an informative SNP marker, but the nearest
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gene was MC4R. The MC4R gene is a major determinant of the nervous system and plays a substantial
role in the regulation of food intake, energy balance, and body weight in mammals [27–29]. Previous
studies [29–32] have reported the identified QTL near the MC4R gene located at 178 Mb on SSC1 as
Sscrofa10.2. Our findings related to the 178 Mb region on SSC1, along with other significant regions,
were consistent with previously identified regions that potentially impact growth and production traits
in the Animal QTL database.
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Manhattan plot using BayesB method and Illumina60K for DAYS

Chromosome

w
in

do
w

 v
ar

ia
nc

e 
(%

)

0.
0

0.
5

1.
0

1.
5

2.
0

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 161718

(c)
Manhattan plot using BayesB method and GeneSeek80K for DAYS

Chromosome

w
in

do
w

 v
ar

ia
nc

e 
(%

)

0.
0

0.
5

1.
0

1.
5

2.
0

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 161718

(d)

Manhattan plot using BayesB method and Illumina60K for LMA
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Manhattan plot using BayesB method and Illumina60K for PCL
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Figure 2. Manhattan plot of the GWAS result of 18 porcine autosomes using the BayesB method and
two SNP genotyping platforms, the Illumina60K and GeneSeek80K. The y-axis indicates window
variance (%), and the x-axis represents the pig autosomal chromosome physical map. The red dotted
horizontal lines indicate that the threshold of the percent variance of the 1 Mb genomic region used
was above 1.0% to identify associations with two SNP genotyping platforms and traits: (a) backfat
thickness (BFAT) with the Illumina60K, (b) BFAT with the GeneSeek80K, (c) days to 90 kg body weight
(DAYS) with the Illumina60K, (d) DAYS with the GeneSeek80K, (e) loin muscle area (LMA) with the
Illumina60K, (f) LMA with the GeneSeek80K, (g) lean percent (PCL) with the Illumina60K, and (h) PCL
with the GeneSeek80K.
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3.3. Accuracy of Genomic Prediction

3.3.1. SNP Genotyping Platforms and Bayesian Methods

Table 2 shows that the data were successfully partitioned using the K-means clustering method
for genomic evaluation, whereby the relatedness was maximized within each partitioned group and
minimized between each partitioned group. The accuracy of the genomic prediction with BayesB
using the Illumina60K ranged from 0.179 (BFAT) to 0.234 (LMA) and from 0.247 (BFAT) to 0.314 (LMA)
for DEBVexcPA and DEBVincPA, respectively (Table 5).

Table 5. Accuracies and their standard errors of genomic prediction between molecular breeding
values and their corresponding response variables (DEBVexcPA or DEBVincPA) and according to
Bayesian methods and SNP genotyping platforms (Illumina PorcineSNP60 and GeneSeek-Neogen
PorcineSNP80) in Duroc pigs across growth- and production-related traits.

SNP Platforms Bayes Types Traits 1 Response Variables 2

DEBVexcPA DEBVincPA

Illumina60K

BayesB

BFAT 0.18 (0.044) 0.25 (0.043)
DAYS 0.19 (0.046) 0.27 (0.044)
LMA 0.23 (0.041) 0.30 (0.040)
PCL 0.22 (0.045) 0.29 (0.043)

BayesC

BFAT 0.18 (0.044) 0.26 (0.042)
DAYS 0.19 (0.046) 0.28 (0.044)
LMA 0.23 (0.041) 0.31 (0.040)
PCL 0.22 (0.045) 0.30 (0.043)

GeneSeek80K

BayesB

BFAT 0.18 (0.044) 0.25 (0.042)
DAYS 0.21 (0.046) 0.27 (0.044)
LMA 0.25 (0.040) 0.33 (0.040)
PCL 0.22 (0.045) 0.30 (0.043)

BayesC

BFAT 0.18 (0.044) 0.25 (0.042)
DAYS 0.20 (0.046) 0.27 (0.044)
LMA 0.24 (0.041) 0.32 (0.040)
PCL 0.22 (0.045) 0.30 (0.043)

1 BFAT = backfat thickness; DAYS = days to 90 kg body weight; LMA = loin muscle area; PCL = lean percent. 2

DEBVexcPA = deregressed-EBV excluding parent average; DEBVincPA = deregressed-EBV including parent average.

A similar trend was observed with BayesC when using the GeneSeek80K, with a range of
accuracies from 0.176 (BFAT) to 0.246 (LMA) and from 0.250 (BFAT) to 0.331 (LMA) for DEBVexcPA
and DEBVincPA, respectively (Table 5). These results indicate similar levels of accuracy of genomic
prediction regardless of the genotype platform or Bayesian method. However, a slight increase in the
accuracy of genomic prediction was observed in DAYS (2%) with the DEBVexcPA response variable
and LMA (2% and 3%) with the DEBVexcPA and DEBVincPA response variables when comparing the
GeneSeek80K to the Illumina60K SNP genotyping platform. These comparisons between different SNP
genotyping platforms have also been studied in beef and dairy cattle [7,33]. In cattle, the accuracies of
genomic prediction were compared between moderate and high-density panels (50K and 777K) or
between moderate-density genotype panels (50K and 80K). Pérez-Enciso et al. [7] observed that the
reliabilities of genomic predictions did not increase when using a high-density SNP chip (HD) compared
with a 50K SNP chip. Lee et al. [8] and Guo et al. [33] also reported no significant improvement in
accuracy when using a 50K panel vs an 80K panel for Red Angus beef cattle in the United States.
Overall, no significant improvements in prediction accuracies on the basis of SNP panel density have
been observed from the results of previous genomic prediction studies (50K vs. 777K or 50K vs. 80K)
because even though the number of SNPs increases, the panel may contain a small number of SNP
markers in high LD with causative variants. In addition, simply increasing SNP markers instead of
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causal mutation may bring an additional source of noise to genomic prediction [5,7,8]. The results
revealed a slight increase in genomic accuracy for DAYS and LMA with the BayesB method and the
GeneSeek80K SNP platform compared with the Illumina60K SNP platform. This was because the
GeneSeek80K SNP platform includes a causal variant in strong LD with the MC4R gene [2], which
was the most informative for LMA (Table 4, Figure 2). These results are consistent with the results of
Pérez-Enciso et al. [7] and Van et al. [12], suggesting that the inclusion of causative variants or SNPs
with high LD with causative mutation improved the accuracy of genomic prediction.

3.3.2. Response Variables (DEBVincPA and DEBVexcPA)

The average accuracies of genomic prediction across the growth- and production-related traits
ranged from 0.177 (BFAT) to 0.244 (LMA) for the Illumina60K and GeneSeek80K when using DEBVexcPA
as a response variable, and from 0.252 (BFAT) to 0.327 (LMA) for the Illumina60K and GeneSeek80K
when using DEBVincPA as a response variable with 10-fold cross validation (Table 5). In the current
study, we observed higher prediction accuracies when using DEBVincPA as a response variable
compared with DEBVexcPA for all studied traits. Interestingly, the largest difference (+8.3%) in terms
of average accuracies of genomic prediction between the two response variables was observed for the
lowest heritable trait (LMA) when using DEBVincPA as a response variable. While DEBVexcPA [15]
has the greatest numerical properties in addressing double counting by removing the parental
contribution [8,33,34], our results showed a lower performance in prediction accuracies in comparisons
of two response variables. Boddhireddy et al. [34] reported that using EBV without removing
parental contributions as a response variable yielded greater prediction accuracies compared to using
DEBVexcPA in both validation tests for US Angus beef cattle. Lee et al. [8], however, observed that the
genomic accuracies obtained using DEBV after removing parental information as a response variable
were higher than those obtained using DEBV without removing parental information in growth and
carcass traits in US Red Angus beef cattle. The differences in genomic accuracies among the different
panels were not significant for the traits used in this study. Although the GeneSeek80K panel contained
a major marker, MC4R, this had no influence on genomic prediction; however, the genomic accuracy
using this panel was approximately 3% higher than when using the Illumina60K panel in LMA.

An advantage of excluding the parent average (PA) was to avoid double counting. Otherwise
using PA would shrink the individual EBV toward to the parent average [15]. However, the inclusion
of PA after deregression added an advantage by accounting for the differences in PA among genotyped
animals, such as between family differences [35]. For all studied traits, DEBVincPA, as the response
variable, showed higher genomic accuracy than DEBVexcPA. This finding supports the result of Lee et
al. [36] that DEBVincPA compared with other response variables (EBV and DEBVexcPA) was the most
advantageous genomic prediction in Korean Yorkshire pigs. However, because this result is from a
relatively small training size, we need further studies to verify the biased accuracy from the double
counting issue by securing a larger training size.

4. Conclusions

In this study, we identified candidate genes for growth- and production-related traits in purebred
Korean Duroc pigs, and evaluated and compared the accuracy of genomic prediction between two
genotyping platforms, response variables, and two Bayesian methods (BayesB and BayesC). A total of
15 and 12 informative 1 Mb window regions for growth- and production-related traits were identified
using the Illumina60K and GeneSeek80K panels, respectively. The genomic accuracy when using
DEBVincPA as the response variable was of higher value than other response variables. We suggest
that a fine-mapping study is necessary to pinpoint the causal variant of the informative genomic region
(i.e., the MC4R gene), and that the genomic accuracy for growth- and production-related traits will be
improved by adding a pinpoint for the causal variant of the informative genomic region. Furthermore,
a genomic selection model for growth- and production-related traits could be useful for future genomic
evaluation in purebred Korean Duroc pigs.
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