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Simple Summary: In response to an increasing shift towards automation in the livestock industry, 
it is important that, as automated systems are developed, they include the capability for automated 
monitoring of animal health and welfare. As an alternative to current manual methods, this study 
reports on the development and validation of an algorithm for automated detection and analysis of 
the eye and cheek regions from thermal infrared images collected automatically from calves. Such 
algorithms are essential for the integration of infrared thermography (IRT) technology into 
automated systems to noninvasively monitor calf health and welfare.  

Abstract: As the reliance upon automated systems in the livestock industry increases, technologies 
need to be developed which can be incorporated into these systems to monitor animal health and 
welfare. Infrared thermography (IRT) is one such technology that has been used for monitoring 
animal health and welfare and, through automation, has the potential to be integrated into 
automated systems on-farm. This study reports on an automated system for collecting thermal 
infrared images of calves and on the development and validation of an algorithm capable of 
automatically detecting and analysing the eye and cheek regions from those images. Thermal 
infrared images were collected using an infrared camera integrated into an automated calf feeder. 
Images were analysed automatically using an algorithm developed to determine the maximum eye 
and cheek (3 × 3-pixel and 9 × 9-pixel areas) temperatures in a given image. Additionally, the 
algorithm determined the maximum temperature of the entire image (image maximum 
temperature). In order to validate the algorithm, a subset of 350 images analysed using the algorithm 
were also analysed manually. Images analysed using the algorithm were highly correlated with 
manually analysed images for maximum image (R2 = 1.00), eye (R2 = 0.99), cheek 3 × 3-pixel (R2 = 
0.85) and cheek 9 × 9-pixel (R2 = 0.90) temperatures. These findings demonstrate the algorithm to be 
a suitable method of analysing the eye and cheek regions from thermal infrared images. Validated 
as a suitable method for automatically detecting and analysing the eye and cheek regions from 
thermal infrared images, the integration of IRT into automated on-farm systems has the potential to 
be implemented as an automated method of monitoring calf health and welfare. 

Keywords: Infrared thermography; algorithm validation; automated systems; early disease 
detection; calves 
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1. Introduction 

Over time, the livestock industry has seen a significant change in response to an increasing 
reliance on automated systems. This reliance has largely been driven by a need to reduce labour costs 
and has resulted in the development of automated systems such as the robotic milking and 
automated calf feeder systems seen in modern dairy farming systems [1]. This increasing level of 
automation in the livestock industry [2] has resulted in a less “hands-on” approach to farming, and 
additionally, there are fewer experienced stock people in the industry [3]. These effects of automation, 
along with increasing herd sizes and less individual animal contact, can result in a reduced ability to 
monitor and identify animals displaying signs of compromised health and welfare. It is therefore 
important as part of the future development of automated systems that they are designed to 
incorporate methods which provide the capability to reliably monitor animal health and welfare on-
farm. 

Infrared thermography (IRT) is a technology which has the potential to be integrated into 
automated systems for monitoring animal health and welfare [3]. IRT detects the amount of infrared 
energy an object radiates; the more infrared energy, the greater the temperature of the object [4]. IRT 
is a noninvasive, remote method of measuring an animal’s surface temperature [5], where the 
temperatures detected and the distributions may be associated with underlying physiological, 
metabolic and behavioural processes and mechanisms [6]. There is the potential that, by measuring 
changes in surface temperature, IRT can be applied as a method for detecting disease based on the 
detection of fever/inflammation [7]. The use of IRT in livestock and veterinary applications was most 
recently reviewed by Luzi et al. [8]. Applications for which IRT has been applied include the detection 
of bluetongue virus in sheep [9], of foot and mouth disease in mule deer [10], of rabies in raccoons [11], 
of thoracolumbar vertebral disk disease in dogs [12], of pregnancy in zebras and black rhinoceros [13] 
and of impaired meat quality in pigs [14]. With specific relevance to cattle welfare, some of the 
applications that IRT has been used for include diagnosing mastitis [15] and lameness [16,17] by 
detecting areas of inflammation and as a method for measuring stress and pain responses to 
procedures such as disbudding [18], castration [19], handling [20] and transport [21]. IRT has also 
been used in previous studies as a method for the early detection of diseases such as bovine viral 
diarrhea (BVD), bovine respiratory disease (BRD) [22–24] and neonatal calf diarrhea (NCD) [1,25] 
and, additionally, as a method for detecting differences in feed efficiency [26–28]. Previous studies 
have collected infrared images from various anatomical regions. Whilst investigating IRT as a method 
for detecting BVD for example, Schaefer et al. [22] found changes in eye temperature as early as 1 d 
postinfection; however, changes in nose, ear, hoof, lateral and dorsal temperatures were not 
significant until 5–6 days postinfection. The increased sensitivity of the eye was considered to be 
attributed to the blood flow being closer to the surface and thus providing a more accurate reflection 
of core body temperature [5]. 

Generally, thermal infrared images are collected and analysed manually, where an observer 
collects images using a handheld infrared camera (e.g., ThermaCAM S60; FLIR systems AB, 
Danderyd, Sweden) [1,26]. These images are then analysed using specific analysis software (e.g., 
ThermaCAM Researcher; FLIR systems AB, Danderyd, Sweden). This software requires observers to 
select the region of interest (ROI) in each image to obtain the minimum, median and maximum 
temperatures of the area. These manual methods are often time-consuming, especially when dealing 
with large groups of animals and large data sets and requires the skill of trained observers during 
image collection and analysis [29]. Additionally, handheld infrared cameras are often cumbersome 
and impractical to use and can, in some situations, cause disturbances for the animals, which can 
affect the results [29]. The development of automated methods for the collection and analysis of 
thermal infrared images would provide an alternative to current manual methods [29]. Furthermore, 
the development of algorithms is necessary for the successful integration of IRT into automated 
systems where it could then be utilized for noninvasive monitoring of animal health and welfare. The 
integration of IRT into automated systems could potentially enable diseased animals to be identified 
sooner than is currently possible based on overt clinical signs [1]. This would enable sick animals to 
be identified and isolated from their pen mates to prevent the spread of disease and would enable 
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treatments to be administered sooner [1]. A system providing the ability to detect early disease onset 
would also facilitate decision-making abilities for farmers, reducing costs on-farm and for the 
industry as a whole through reduced labour, mortalities and veterinary costs, and, overall, would 
lead to improvements in both production and animal welfare [1]. 

This study was part of a larger project investigating a wide range of automated methods for 
early disease detection in calves. The purpose of the current project was 1) to develop an algorithm 
capable of detecting and analysing temperatures of the eye and cheek regions from thermal infrared 
images (collected automatically while calves visited an automated calf feeder) and 2) to validate the 
algorithm through comparison with manual methods of analysis.  

2. Materials and Methods  

All procedures involving animals in this study were approved by the University of Waikato 
Animal Ethics Committee (Protocols #955 and 985) under the New Zealand Animal Welfare Act 1999. 

2.1. Development of Eye and Cheek Algorithm 

An algorithm was developed with the capability of automatically detecting and analysing the 
eye and cheek from thermal infrared images collected from calves. Within each captured image, 
individual pixels acted as floating-point numbers, indicating temperature in degrees Kelvin. Images 
were converted from floating-point raw data into 8-bit grey-scale portable network graphics (PNG) 
images using the following conversion formula: 𝑥′ = 255 𝑥 − 260315 − 260 (1) 

where x is the original temperature, 𝑥′ is the scaled pixel value, 260 is the minimum temperature and 
315 is the maximum temperature. All temperatures which fell outside the minimum and maximum 
temperatures were clamped at those values to maximise the temperature resolution when converting 
the raw data into a PNG image. The original temperature (x) was calculated from the PNG images 
using the following formula: 𝑥 = 𝑥′ 315 − 260255 + 260 (2) 

The calculation of x was subject to a conversion accuracy of approximately ± 0.2 °C as a result of 
the level of error in converting from float to byte values. 

The eye detection component of the algorithm used a cascade of AdaBoost classifiers using 
decision stumps and Haar wavelets [30] and was generated using the OpenCV (version 3.4.3) [31] 
utility opencv_trainscascade with the following parameters: stageType = BOOST; featureType = 
HAAR; width = 24; height = 24; boostType = GAB; minHitRate = 0.99; maxFalseAlarm = 0.4; maxDepth 
= 1; maxWeakCount = 100; featSize = 1; and mode = BASIC. 

For further development of the eye detection component, the OpenCV utility required a set of 
training images. Training images were collected during a previous study by our group [32] using an 
infrared camera (Thermovision A300 (accuracy: ± 2.0 °C; sensitivity: <0.05 °C; resolution: 320 × 240; 
temperature range: −20 °C to 120 °C; spectral range: 7.5–13 µm); FLIR Systems AB, Danderyd, 
Sweden) set up at an automated calf feeder (RFID Calf Feeder, A&D Reid, Temuka, New Zealand (as 
used previously by Lowe et al. [1])) in the same manner as the current study (as described below). 
Training images were collected from 23 animals, with the number of images captured for each 
individual varying from 162 to 252 images, yielding a total of 5250 images. For training purposes, 
images were split into both positive and negative examples.  

Positive examples were images that, with the exception of including some surrounding area, 
contained only the ROI. Including some surrounding area to the ROI has been found to improve the 
robustness of the detector in face detection applications [33] and hence was included in the positive 
training images. From the eye, maximum temperature has been found to be the most relevant 
diagnostic [24]; therefore, for training purposes, the location of the maximum temperature was 
identified manually in 1364 images. To create the positive training images, a 72 × 72-pixel sub-image 



Animals 2020, 10, 292 4 of 15 

was extracted from the original image based on the thermal maximum with a top-left position of (x − 12, 
y − 36) and a bottom right position of (x +60, y + 36). Once extracted, these sub-images were resized 
for efficiency purposes to 24 × 24 pixels for the training process. The process of creating the positive 
training sub-images is shown in Figure 1. 

 
Figure 1. Automated thermal infrared image collected as a calf fed from the automated calf feeder 
showing the square the algorithm traced around the region of interest (ROI) in order to create the sub-
image which was then resized for efficiency purposes to a 24 × 24-pixel image. 

Negative training examples did not include the whole eye region but consisted of parts of an 
eye. In addition to images which only partially included the eye, negative training examples included 
those in which the eye was fully or partially closed, as these types of images reduce the ability to 
acquire an accurate temperature measurement. Examples of negative training images are shown in 
Figure 2. 

 
Figure 2. Examples of negative training images, where the eye being fully or partially closed 
prevented an accurate temperature measurement of the eye. 

The training process resulted in an 8-stage cascade, with each stage consisting of 3, 3, 3, 5, 4, 6, 8 
and 9 weak classifiers respectively. Each sub-image was passed through the cascade detector in order 
to determine whether an eye was present within the sub-image. Images which were considered to 
potentially consist of an eye were passed onto subsequent stages of the cascade until a definite 
determination on whether the image contained an eye could be made. If a sub-image was considered 
not to contain an eye, the image was eliminated from the cascade. An illustration of how the cascade 
worked is shown in Figure 3.  
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Figure 3. Illustration of the 8-stage cascade detector: At each stage, if the sub-image potentially 
contained an eye, the sub-image was passed onto the next stage of the cascade. If determined not to 
contain an eye, the sub-image was eliminated from the cascade. 

Each cascade stage is an AdaBoost classifier using Haar wavelets as features and decision 
stumps as weak classifiers within AdaBoost. A decision stump is a simple threshold rule computed 
over a single feature (a Haar wavelet). A Haar wavelet feature is a weighted sum of pixel values lying 
within two, three or four connected rectangles. Figure 4 shows the five possible feature shapes. Each 
shape has 4 trainable shape parameters: x and y offset from the origin of the window and the width 
and height of the rectangles.  

 
Figure 4. Illustration of the Haar wavelet features showing the five possible feature shapes. 

The features are evaluated by summing up the pixel values under the white rectangles and by 
subtracting the sum of the pixel values under the black rectangles (suitably weighted to normalize 
area). There are over 150,000 possible features which are evaluated exhaustively on the training set 
so that the best features are chosen at each cascade stage. A threshold is automatically determined to 
maximally separate positive and negative training examples, both within each weak classifier and 
within a single cascade stage. A decision stump, D, is evaluated on a window, w, according to the 
following equation: 
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𝐷 𝑤 =  𝐼𝑓 𝐹 𝑤 < 𝑡 𝑡ℎ𝑒𝑛 𝑣1 𝑒𝑙𝑠𝑒 𝑣2 (3) 

where F (w) evaluates the Haar feature on the window w (a weighted sum of the pixel values in each 
rectangle), t is the learned threshold, and v1 and v2 are the values returned depending on if the feature 
is above or below the threshold. The cascade stage is evaluated as the sum of all weak classifiers in 
the stage as follows: 𝑆 𝑤 =  𝐷 𝑤 +  𝐷 𝑤 + 𝐷 𝑤 + ⋯ (4) 

If S(w) is greater than the stage threshold, then the window passes on to the next stage, and if not, it 
is rejected as outlined in Figure 3. 

For example, the first cascade stage has 3 weak classifiers and eliminates approximately 60% of 
sub-windows. In this case, the three weak classifiers are as follows: 

 
 𝐷 𝑤 =  𝐼𝑓 𝐹 𝑤 < 0.081 𝑡ℎ𝑒𝑛 − 1.0 𝑒𝑙𝑠𝑒 0.6 

   𝐷 𝑤 =  𝐼𝑓 𝐹 𝑤 < 0.068 𝑡ℎ𝑒𝑛 − 0.95 𝑒𝑙𝑠𝑒 0.59 
  𝐷 𝑤 =  𝐼𝑓 𝐹 𝑤 < 0.056 𝑡ℎ𝑒𝑛 − 0.97 𝑒𝑙𝑠𝑒 0.42 

 

(5) 

The features F1, F2 and F3 are shown in Figure 5. As can be seen from the figure, the features tend 
to find areas where there is high contrast in the target class, and this is typical of all the features used 
by such classifiers. 

 
Figure 5. Features used in the first cascade stage. 

Each cascade layer was trained to achieve a true positive rate of 0.99 and a false positive rate of 
0.4. Therefore, the theoretical accuracy of the entire 8-stage cascade was a true positive rate of 0.998 = 0.92 
with a false positive rate of 0.48 = 0.00066. Example images from cascade stage 8 indicating the location 
of the maximum eye temperature are shown in Figure 6. 
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Figure 6. Examples of eye images from cascade stage 8: The marked positions indicate the location of 
the algorithm maximum eye temperature. 

In addition to the eye detection component of the algorithm, we further developed the algorithm 
in order to detect the cheek region. The development of the cheek component of the algorithm 
required a set of training images. Training images were collected manually using a handheld infrared 
camera (ThermaCAM S60, FLIR Systems AB, Danderyd, Sweden) during a previous trial [1]. A total 
of 465 training images was collected from 43 calves, within which the cheek region was manually 
selected within each image by tracing a circle over the cheek muscle using ThermaCAM Researcher 
software (version 2.10; FLIR Systems AB, Danderyd, Sweden) (as described by Lowe et al. [1]). Based 
on the location of the cheek region as specified in the manually analysed images, the eye was used as 
a reference point in order to train the algorithm to determine the location of the cheek. The cheek 
region was identified by the algorithm tracing a rectangle down from the eye as shown in Figure 7. 
At the base of this rectangle, 3 × 3 and 9 × 9-pixel areas were automatically traced by the algorithm, 
from which the maximum temperatures of those areas were generated (Figure 8). The location of the 
cheek being determined using the eye as a reference point allowed the eye and cheek temperatures 
to be collected from the same images.  

Figure 7. Example images which, based on the location of the eye, show the rectangle that the cheek 
component of the algorithm traced to determine the location of the cheek. 
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Figure 8. Example image showing the 3 × 3 (red square) and 9 × 9 (blue square) pixel area traced by 
the algorithm within the cheek ROI from which the maximum temperatures of those areas were 
determined. 

The algorithm developed consists of two modes: 1) single-image mode and 2) multiple-image 
mode. In single-image mode, each image is treated independently and, hence, temperatures from all 
detected eyes or cheeks are reported; this mode is most useful when only a few images of each animal 
are recorded. In multiple-image mode, the algorithm assesses all images on an individual animal 
basis, reporting the median of the maximum eye or cheek temperatures across all images as the 
temperature for that animal. Multiple-image mode is most advantageous when numerous images of 
the same animal are being recorded.  

For both modes of image analysis, the eye component of the algorithm records the maximum 
temperature in degrees Celsius in two ways: 1) as the maximum temperature measured from the 
hottest pixel located within the eye region (algorithm: eye maximum temperature) and 2) as the 
maximum temperature measured from the hottest pixel within the entire image (not necessarily the 
eye) (algorithm: image maximum temperature). Similarly, the cheek component of the algorithm also 
records the maximum temperature in degrees Celsius in two ways: 1) as the maximum temperature 
within a 3 × 3-pixel area (algorithm: cheek 3 × 3 pixel maximum temperature) and as the maximum 
temperature within a 9 × 9-pixel area (algorithm: cheek 9 × 9 pixel maximum temperature). 

2.2. Validation of the Eye and Cheek Algorithm as an Automated Method for Thermal Infrared Image Analysis 

In order to validate the eye and cheek algorithm, thermal infrared images were collected and 
analysed automatically and compared to manual methods of analysis as described below. 

2.2.1. Animals 

This validation component of the study was undertaken at a farm in the Waikato region of New 
Zealand (38°04'15.6"S 175°19'42.5"E) from July to October 2016. One hundred and twenty mix breed 
heifer calves (66 dairy calves (Friesian, Jersey and cross breeds) and 54 Hereford calves) (36.4 ± 4.33 
kg, mean ± SD) were enrolled into the study at two days of age and were observed until 24 ± 14.4 
(mean ± SD) days of age.  

2.2.2. Automated Thermal Infrared Image Collection and Analysis 

Throughout the course of the study, calves were fed whole milk using two automated calf 
feeders (RFID Calf Feeder, A&D Reid, Temuka, New Zealand (as used previously by Lowe et al. 
[15])). Thermal infrared images were collected automatically using an infrared camera (Thermovision 
A300 (accuracy: ±2.0 °C; sensitivity: <0.05 °C; resolution: 320 × 240; temperature range: −20 °C to 120 °C; 
spectral range: 7.5–13 µm); FLIR Systems AB, Danderyd, Sweden) integrated into each calf feeder. 
The left side panel of the calf feeder was modified by cutting out a square viewing hole so that the 
infrared camera could be placed in such a position that, as the calf fed, it could continuously collect 
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images of the facial region during each visit (Figure 9). Thermal infrared images were captured at 60 
frames per second with a resolution of 320 × 240 pixels. Calves were individually identified using an 
automatic electronic identification (EID) reader (G03113 EID tag reader controller R; Gallagher, 
Hamilton, New Zealand) and antenna system (G03121 EID tag reader antenna panel 600; Gallagher, 
Hamilton, New Zealand) as they entered the feeder based on the EID in their ear tags. The infrared 
camera was programmed to begin capturing images once the EID of the calf visiting the feeder had 
been detected. The infrared cameras were connected to a laptop which, through interface software, 
enabled the individual tag information and thermal infrared images to be collected and stored. For 
consistency, all images were collected at a set distance of 0.5 m and at an angle of 90° to the animal. 
Each infrared camera was set at an emissivity of ε = 0.98, which is accepted as a suitable emissivity for 
measuring an animal’s surface temperature [34] and has been used previously in cattle studies [1,3,29]. 
During the present study, thermal infrared images were collected during a total of 29,637 visits to the 
calf feeder. A subset of 350 randomly selected images were analysed using the eye and cheek 
detection algorithm as described above to determine the image, eye, cheek 3 × 3-pixel and cheek 9 × 
9-pixel maximum temperatures. 

 
Figure 9. Infrared thermography (IRT) camera installed on the left side of the automated calf feeder 
collecting thermal infrared images of the facial region through the square viewing hole as a calf feeds 
from the feeder.  
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2.2.3. Manual Image Analysis 

The 350 images analysed using the algorithm were also analysed manually in order to validate 
the algorithm. Images were analysed manually to determine the maximum image, eye and cheek (3 
× 3 and 9 × 9-pixel areas) temperatures using MATLAB analysis software (R2019b; MATLAB, 
MathWorks Inc., Natick, MA, USA). As shown in Figure 10, the “manual: image maximum 
temperature” was determined by tracing the black square around the entire image. The “manual: eye 
maximum temperature” was determined by tracing the green square around the eye to include the 
eyeball and area surrounding the eyelid. The “manual: cheek 3 × 3-pixel maximum temperature” and 
“manual: cheek 9 × 9-pixel maximum temperatures” were determined respectively by tracing the red 
and blue squares over the cheek muscle using the eye as a reference point. 

 

Figure 10. Example image showing the areas traced during the manual analysis to determine the 
“manual: image maximum temperature” (black square), “manual: eye maximum temperature” 
(green square), “manual: cheek 3 × 3-pixel maximum temperature” (red square) and “manual: cheek 
9 × 9-pixel maximum temperature” (blue square). 

2.3. Statistical Analysis 

Using Microsoft Excel (version 16.26; Microsoft Corporation, Redmond, WA, USA), data 
recorded automatically using the eye and cheek detection algorithm from thermal infrared images 
collected in the current study were regressed against the data gathered from manual analysis of the 
same images. This enabled the level of agreement between the two different methods of analysis to 
be assessed. Bias was assessed using Bland Altman analyses. In addition, a Lin’s concordance analysis 
was carried out to assess the level of equality between the different types of temperature 
measurement. 

3. Results 

Images analysed using the algorithm were highly correlated with those analysed manually for 
maximum image (R2 = 1.00, p < 0.001), eye (R2 = 0.99, p < 0.001), cheek 3 × 3-pixel (R2 = 0.85, p < 0.001) and 
cheek 9 × 9-pixel (R2 = 0.90, p < 0.001) temperatures (Figure 11). Bland Altman analysis of the differences 
between the algorithm and manual analysis plotted against the average showed no evidence of any 
change in bias across the range of values, and the average bias was not significant for maximum image 
(0.00 ± 0.000), eye (0.00 ± 0.001), cheek 3 × 3-pixel (0.07 ± 0.027) and cheek 9 × 9-pixel (0.08 ± 0.031) (mean 
difference ± standard error of the mean (SEM)) temperatures. In addition, Lin’s concordance analysis 
showed strong levels of equality between the two methods of analysis for maximum image (Qc = 1.00, 
p < 0.001), eye (Qc = 0.99, p < 0.001), cheek 3 × 3-pixel (Qc = 0.92, p < 0.001) and cheek 9 × 9-pixel (Qc = 0.95, 
p < 0.001) temperatures. 
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Figure 11. Correlations between images analysed using the algorithm and manually for the maximum 
(A) image, (B) eye, (C) cheek 3 × 3-pixel and (D) cheek 9 × 9-pixel temperatures. 
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4. Discussion 

The current study provides a demonstration of an automated IRT system where infrared 
cameras were programmed to collect images automatically as calves fed from automated calf feeders. 
The system used for automatically collecting thermal infrared images in the current study is similar 
to that used by Schaefer et al. [24], who provided the first example of an automated IRT system for 
the early detection of BRD in beef calves. Schaefer et al. [24] demonstrated that IRT cameras could be 
used to noninvasively collect thermal infrared images as calves visited a water station. Further, the 
current study validated an algorithm developed as an automated method of detecting and analysing 
the eye and cheek regions from thermal infrared images collected from young calves.  

The strongest level of agreement between the algorithm and manual method of analysis 
occurred when determining the maximum image temperature. This finding reflects both methods of 
analysis, assessing the entire image in order to determine the temperature of the single hottest pixel 
within the image. The maximum eye temperature also showed a strong level of agreement between 
both methods of analysis. This reflects the distinct appearance of the eye, making it possible for this 
region to be easily distinguished from the rest of the image and therefore enabling the eye region to 
be selected to determine the maximum eye temperature. In comparison, whilst the cheek 3 × 3 and 
cheek 9 × 9-pixel maximum temperatures also showed strong agreement between both methods of 
analysis, the level of agreement was lower than for the maximum eye temperature. In contrast to the 
eye region, the cheek has a less distinguishable appearance and the region of selection is instead 
based on using the eye as a reference point to determine the location of the cheek, which can result 
in some variability in the exact location selected. This level of variability consequently leads to some 
reduction in the level of agreement between methods when determining the maximum temperature 
of the cheek region. As demonstrated in the current study, the cheek 9 × 9-pixel area showed a 
stronger level of agreement between methods than the cheek 3 × 3-pixel area. This finding is due to 
the increase in pixel area, reducing the variability in the area being selected between the two methods 
of analysis. Validated as an automated method of analysing the eye and cheek regions from thermal 
infrared images, this algorithm would support the integration of IRT into automated systems for 
noninvasive monitoring of animal health and welfare. 

Previous studies [22–24] investigating the use of IRT for early detection of BRD and BVD have 
found IRT capable of detecting the onset of the diseases based on changes in eye temperature. 
Schaefer et al. [23,24] found that eye temperature increased significantly in response to the onset of 
BRD, and these changes were found to occur several days to a week before clinical signs of disease 
were apparent. Similarly, Schaefer et al. [22] found a significant increase in eye temperature in 
response to the onset of BVD, and this increase was found to occur as early as 1-day postinfection. 
The integration of IRT into automated systems on-farm would enable continuous monitoring of 
individual animals. For the purpose of detecting diseases such as BRD and BVD, for example, this 
would enable a history of baseline data to be established per animal. Baseline data is essential in order 
for parameters to be set in such a way that deviations from what is considered “normal” for each 
animal can be detected. Deviations could then be used to generate alerts to notify farmers of animals 
displaying early signs of disease. Early disease detection would enable farmers to identify and isolate 
sick animals to prevent the spread of disease and would enable treatments to be administered sooner 
to reduce the degree of suffering [1]. Early disease detection would facilitate decision-making abilities 
for farmers, would reduce costs on-farm and for the industry as a whole through reduced labour, 
mortalities and veterinary costs and, overall, would lead to improvements in both production and 
animal welfare [1]. Robotic milking systems, automated feeders and automated water stations are 
potential systems that could support the integration of IRT. Integration of IRT into such systems 
would support the simultaneous collection of IRT alongside other behavioural and physiological 
measures. For example, Lowe et al. [1] found that milk consumption, number and duration of lying 
bouts, and duration of drinking visits all changed prior to the onset of NCD and suggested that they 
could be useful early indicators for detecting NCD. Additionally, Lowe et al. [1] manually collected 
and analysed thermal infrared images from a number of anatomical locations and found thermal 
changes of the side and shoulder of the calf to have the best potential as early indicators of NCD; 
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therefore, these may be other anatomical areas which are worth developing further automated 
detection algorithms. Additionally, it may be useful to combine thermal changes, measured using 
IRT, with behavioural changes in feeding and drinking behaviours to provide stronger predictive 
composite indicators of disease. In addition to disease, the automation of IRT could also be beneficial 
for other applications including genetic selection and breeding and as a method for measuring stress 
and pain responses. Additionally, although the algorithm discussed in the current study was 
developed for use in young calves, with future developments, it may have further applications for 
use in adult cattle and other species.  

5. Conclusions 

In conclusion, this study reports on the development and validation of an algorithm with the 
ability to automatically detect and analyse the eye and cheek regions from thermal infrared images 
collected from calves, which is a significant step towards the integration of IRT into automated 
systems. It is possible that further algorithms could also be developed to automatically detect and 
analyse other anatomical locations. With the support of algorithms, IRT could be integrated into 
automated systems, where, alongside other behavioural and physiological measures, IRT could be 
implemented as a noninvasive method of monitoring animal health and welfare.  
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17. Alsaaod, M.; Büscher W. Detection of hoof lesions using digital infrared thermography in dairy cows. J. 
Dairy Sci. 2012, 95, 735–742. 

18. Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.L.; Webster, J.R. Eye temperature and heart rate 
variability of calves disbudded with or without local anaesthetic. Physiol. Behav. 2007, 93, 789–797. 

19. Stewart, M.; Verkerk, G.A.; Stafford, K.J.; Schaefer, A.L.; Webster, J.R. Noninvasive assessment of 
autonomic activity for evaluation of pain in calves, using surgical castration as a model. J. Dairy Sci. 2010, 
93, 3602–3609. 

20. Stewart, M.; Schaefer, A.L.; Haley, D.B.; Colyn, J.J.; Cook, N.J.; Stafford, K.J.; Webster, J.R. Infrared 
thermography as a non-invasive method for detecting fear-related responses of cattle to different handling 
procedures. Anim. Welf. 2008, 17, 387–393. 

21. Schaefer, A.L.; Jones, S.D.M.; Tong, A.K.W.; Vincent, B.W. The effects of fasting and transportation on beef 
cattle. 1. Acid-base-electrolyte balance and infrared heat loss of beef cattle. Livest. Prod. Sci. 1988, 20, 15–24. 

22. Schaefer, A.L.; Cook, N.J.; Tessaro, S.V.; Deregt, D.; Desroches, G.; Dubeski, P.L.; Tong, A.K.W.; Godson, D.L. 
Early detection and prediction of infection using infrared thermography. Can. J. Anim. Sci. 2004, 84, 73–80. 

23. Schaefer, A.L.; Cook, N.J.; Church, J.S.; Basarb, B.; Perry, B.; Miller, C.; Tong, A.K.W. The use of infrared 
thermography as an early indicator of bovine respiratory disease complex in calves. Res. Vet. Sci. 2007, 83, 
376–384. 

24. Schaefer, A.L.; Cook, N.J.; Bench, C.; Chabot, J.B.; Colyn, J.; Liu, T.; Okine, E.K.; Stewart, M.; Webster, J.R. 
The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using 
infrared thermography. Res. Vet. Sci. 2012, 93, 928–935. 

25. Lowe, G.L.; Schaefer, A.L.; Waas, J.R.; Wilson, M.T.; Sutherland, M.A.; Stewart, M. The use of infrared 
thermography and feeding behaviour for early disease detection in New Zealand dairy calves. Proc. NZSAP 
2016, 76, 177–179. 

26. Martello, L.S.; Silva, S.L.; Gomes, R.C.; Corte, R.R.P.S.; Leme, P.R. Infrared thermography as a tool to 
evaluate body surface temperature and its relationship with feed efficiency in Bos indicus cattle in tropical 
conditions. Int. J. Biometeorol. 2016, 60, 173–181. 

27. Montanholi, Y.R.; Swanson, K.C.; Schenkel, F.S.; McBride, B.W.; Caldwell, T.R.; Miller, S.P. On the 
determination of residual feed intake and associations of infrared thermography with efficiency and 
ultrasound traits in beef bulls. Livest. Sci. 2009, 125, 22–30. 

28. Montanholi, Y.R.; Swanson, K.C.; Palme, R.; Schenkel, F.S.; McBride, B.W.; Lu, D.; Miller, S.P. Assessing 
feed efficiency in beef steers through feeding behaviour, infrared thermography and glucocorticoids. 
Animal 2010, 4, 692–701. 

29. Lowe, G.L.; Sutherland, M.A.; Waas, J.R.; Schaefer, A.L.; Cox, N.R.; Stewart, M. Infrared thermography—
A non-invasive method of measuring respiration rate in calves. Animals 2019, 9, 535. 

30. Viola, P.; Jones, M. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. 
31. Bradski, G. The opencv library. Dr. Dobbs. J. 2000, 25, 120–125. 
32. Sutherland, M.A.; Lowe, G.L.; Huddart, F.J.; Waas, J.R.; Stewart, M. Unpublished Work. 2018. 



Animals 2020, 10, 292 15 of 15 

33. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. Proc. IEEE Comput. 
Soc. Conf. Comput. Vis. Pattern Recognit. 2001, 1, 511–518. 

34. Redaelli, V.; Ludwig, N.; Costa, L.N.; Crosta, L.; Riva, J.; Luzi, F. Potential application of thermography 
(IRT) in animal production and for animal welfare. A case report of working dogs. Ann. Ist. Super. Sanità. 
2014, 50, 147–152. 

 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open 
access article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


