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Simple Summary: Exogenous melatonin has beneficial effects on improving cumulus oophorus
expansion; mitochondrial distribution; intracellular level of glutathione; and first polar body extrusion
rate of porcine oocytes derived from in vitro maturation. Moreover; melatonin supplementation
increases relative abundances of BMP15 and CAT mRNA; and decreases intracellular levels of
reactive oxygen species; and expression values of P53 and BAX genes; which are related to in vitro
development of porcine oocytes.

Abstract: Melatonin treatment can improve quality and in vitro development of porcine oocytes,
but the mechanism of improving quality and developmental competence is not fully understood.
In this study, porcine cumulus–oocyte complexes were cultured in TCM199 medium with non-treated
(control), 10−5 M luzindole (melatonin receptor antagonist), 10−5 M melatonin, and melatonin +

luzindole during in vitro maturation, and parthenogenetically activated (PA) embryos were treated
with nothing (control), or 10−5 M melatonin. Cumulus oophorus expansion, oocyte survival rate,
first polar body extrusion rate, mitochondrial distribution, and intracellular levels of reactive oxygen
species (ROS) and glutathione of oocytes, and cleavage rate and blastocyst rate of the PA embryos
were assessed. In addition, expression of growth differentiation factor 9 (GDF9), tumor protein
p53 (P53), BCL2 associated X protein (BAX), catalase (CAT), and bone morphogenetic protein
15 (BMP15) were analyzed by real-time quantitative PCR. The results revealed that melatonin
treatment not only improved the first polar body extrusion rate and cumulus expansion of oocytes
via melatonin receptors, but also enhanced the rates of cleavage and blastocyst formation of PA
embryos. Additionally, melatonin treatment significantly increased intraooplasmic level of glutathione
independently of melatonin receptors. Furthermore, melatonin supplementation not only significantly
enhanced mitochondrial distribution and relative abundances of BMP15 and CAT mRNA, but also
decreased intracellular level of ROS and relative abundances of P53 and BAX mRNA of the oocytes.
In conclusion, melatonin enhanced the quality and in vitro development of porcine oocytes, which
may be related to antioxidant and anti-apoptotic mechanisms.
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1. Introduction

High-efficiency strategies used for in vitro maturation (IVM) of porcine oocytes are indispensable
for investigation of female reproductive technologies under in vitro conditions. Nevertheless, quality
and developmental competence of oocytes are low under in vitro culture (IVC) systems compared with
in vivo produced oocytes and embryos. It is helpful for oocyte IVM; in vitro embryo development
under low oxygen concentrations condition in pigs [1]. Reactive oxygen species (ROS) derived from
embryo metabolism and culture microenvironment alter the types of most intra- and extracellular
molecules, which lead to development blocks and retardation of early embryos [2]. Glutathione,
a free radical scavenger, is a major antioxidant that protects cells from ROS damage and maintains
cellular redox balance [3]. Melatonin can serve as an antioxidant through upregulating antioxidant
enzymes and downregulating prooxidant enzymes [4]. IVM media supplemented with melatonin
in an appropriate concentration improves rate of porcine IVM oocytes, and enhances developmental
potential of porcine parthenogenetically activated (PA) embryos [5]. Moreover; melatonin addition
not only improves quality of bovine cumulus–oocyte complexes (COCs) IVM, but also increases
the blastocyst formation rate and quality of bovine PA embryos produced by artificial activation of
MII-stage oocytes derived from high-quality COCs [6]. Melatonin addition can increase first polar
body extrusion rate and blastocyst rate, and effectively protect the oocytes from heat stress in in vitro
porcine oocytes [7]. Medium with 10−5 M melatonin enhances blastocyst rates of in vitro PA embryos
via melatonin receptors, and luzindole can be used as a melatonin receptor antagonist [8]. Resveratrol
and melatonin have synergistic effects on improving oocyte nuclear IVM, total cell numbers of PA
blastocysts, and development of porcine nuclear transfer embryos [9].

Mammalian oocyte-secreted factors are implicated in regulation of folliculogenesis and oocyte
maturation [10]. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15)
are essential components of oocyte-secreted factors, and necessary for normal ovarian function [11,12].
Tumor protein p53 (TP53) induces apoptosis and blocks proliferation in various cell types, is implicated
in regulation of apoptosis; progesterone secretion; ovarian peptide hormone and prostaglandin
secretion in porcine luteinizing ovarian granulosa cells [13]. BCL2 associated X protein (BAX) is an
apoptosis regulator, and serves as a signal transduction factor to have proapoptotic roles on granulosa
cell apoptosis of porcine atresia follicle [14]. Catalase (CAT) is expressed in oocytes, and required
for ROS scavenging, protecting the genome from oxidative damage during meiotic maturation in
mouse oocytes [15]. However; the underlying mechanisms of improving quality of porcine oocytes
and embryos have not yet been completely understood.

Effects of melatonin on in vitro maturation of porcine oocytes and intracellular levels of ROS
and glutathione of oocytes were analyzed in this study. Cleavage rates and blastocyst rates of the PA
embryos were also assessed. Additionally, expression of genes related to oocyte development, including
GDF9, BMP15, P53, BAX, and CAT, were analyzed. The objectives of the present study were to explore
the effect of melatonin on in vitro maturation of porcine oocytes, development of parthenogenetically
activated embryos, and the relationship of oocyte IVM and developmental capability with expression
of genes related to oocyte development in pigs.

2. Materials and Methods

2.1. Oocytes Collection and IVM

Experimental procedure was approved by the Animal Care and Use Committee of Animal
Husbandry and Veterinary Research Institute of Tianjin, China (AHVRIT-2015049). Porcine ovaries
were from a local abattoir, and cumulus–oocyte complexes (COCs) were aspirated from antral follicles
(2–8 mm in diameter). All oocytes were selected for IVM with a homogeneous cytoplasm and at
least three intact layers of surrounding cumulus cells. Porcine follicle fluid (pFF) was centrifuged
and filtered soon after. COCs were rinsed three times using M199 medium (Gibco, Carlsbad,
CA, USA) supplemented with follicle-stimulating hormone (FSH; 5 µg/ml; Sigma, St. Louis, MO,
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USA) and luteinizing hormone (LH; 5 µg/ml; Sigma, St. Louis, MO, USA), 1 IU/ml penicillin and
streptomycin (Gibco, Carlsbad, CA, USA), and 20% pFF. The melatonin receptor antagonist group
was supplemented with 10−5 M luzindole, and the melatonin group was supplemented with 10−5

M melatonin. The concentration of melatonin used in this study was based on a study by Shi et al.
reporting that melatonin concentration is 10−3 to 10−11 M during IVM and development of porcine PA
embryos [5]. COCs in melatonin + luzindole group were supplemented with 10−5 M luzindole and
melatonin. COCs in control group were treated with nothing (n ≥ 30 for each group, repeated 3 times).
COCs were in the maturation medium at 39 ◦C, 5% CO2, and 100% humidity for 42 h.

2.2. Evaluation of Cumulus Expansion, Oocyte Survival Rate, and First Polar Body Extrusion Rate

The degree of cumulus expansion was assessed as described previously [16]. COCs from the four
groups were examined at 42 h after IVM culture, and the sum of total COCs scores/total number of
COCs was used to calculate degree of cumulus expansion. The score method was as follows: 0, no
response; 1, minimum observable response; 2, expansion of outer OCC layers; 3, expansion of all OCC
layers except corona radiata; and 4, expansion of all OCC layers [16].

The oocyte survival rate was determined as number of survival oocytes/total number of oocytes ×
100. The survival oocytes were those that presented zona pellucida and intact plasma membranes,
and space between zona pellucida and cell membrane was clear without cytoplasmic leakage or
oocyte shrinkage. The oocytes were stained with Hoechst 33342, and assessed the first polar body
extrusion rate with a fluorescence microscopy (Nikon Corp., Tokyo, Japan) as described previously [7],
and first polar body extrusion rate was the number of oocytes with first polar body/total number of
oocytes × 100.

2.3. Parthenogenetically Activation

The MII oocytes were washed thrice, and then activated in 0.28 M mannitol supplemented with
0.01% polyvinyl alcohol, 0.1 mM MgCl2, and 0.05 mM CaCl2 by an electrical pulse of DC 130 V/mm
for 80 µs using a BTX Elecro-Cell Manipulator 2001 (BTX, Inc., San Diego, CA, USA). Porcine zygote
medium 3 (PZM-3) was used to culture the PA oocytes in an incubator at 39 ◦C and 5% CO2 as described
previously [17]. The cleavage rates were checked at 48 h, and blastocyst rate was calculated at 7 days.

2.4. Measurement of ROS Level

The ROS levels of oocytes were measured using a reactive oxygen species assay kit (Beyotime
Institute of Biotechnology, Haimen, China). Briefly, after cumulus cells and zona pellucida were
removed, the matured oocytes from control and melatonin groups (n ≥ 30 for each group, repeated
3 times) were incubated with DCFH-DA (10 mM) at 37 ◦C for 20 min. The oocytes were checked
using a fluorescence microscope (Olympus, Tokyo, Japan) with a filter at 460-nm excitation at the
same condition for the two groups in a blind manner. All oocytes were photographed in fluorescence
images using a digital camera (Nikon 990, Tokyo, Japan). The fluorescence images were analyzed
using the ImageJ by Wayne Rasband from National Institute of Health (Bethesda, MD, USA) to analyze
fluorescence intensities of the oocytes compared with that of the control after deducting the background
value. The relative fluorescence intensities were the relative ROS levels of the oocytes.

2.5. Measurement of Intracellular Glutathione

Glutathione content was determined using a total glutathione assay kit (S0052, Beyotime Institute
of Biotechnology, Haimen, China). Briefly, the matured oocytes from four groups (n ≥ 40 for each
group, repeated 3 times) were pipetted repeatedly until lysis was completed. Glutathione contents of
the oocytes from four groups were measured as described previously [18].
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2.6. Mitochondrial Distribution Analysis

Oocytes after IVM for 42 h were selected randomly from the control group and melatonin group,
and were incubated in pre-warmed maturation medium at 39 ◦C and 5% CO2 for 20 min. A Mito
Tracker Green kit (Beyotime Institute of Biotechnology, Haimen, China) was used to label distribution
of mitochondria of oocytes at 37 ◦C for 30 min. The labeled oocytes were checked using a fluorescence
microscope (Olympus, BX60, Tokyo, Japan), and all oocytes were photographed using a digital camera
(Nikon 990, Tokyo, Japan). There were two main distribution features of mitochondrial distribution
patterns in oocyte: one was that labeled mitochondria were distributed evenly throughout ooplasm
(homogeneous, Figure 1a), which indicated that mitochondrial distribution was better in oocytes.
Others were that the labeled mitochondria were distributed unevenly within ooplasm (heterogeneous;
Figure 1b,c) as described previously [19]. The abnormal distribution of mitochondria has negative
effects on ATP distribution and embryogenesis [20]. The value of mitochondrial distribution was
analyzed in a blind manner, and was determined as the number of oocytes with homogeneous
mitochondria/total number of the oocytes × 100.
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Figure 1. Mitochondrial distribution in porcine oocytes. Oocytes were stained by Mito Tracker Green.
(a) Green mitochondria distributed evenly within ooplasm; (b,c) green mitochondria distributed
unevenly within ooplasm. Bar = 20 µm.

2.7. PCR Assay

Total RNA from the oocytes of the control and melatonin groups was extracted with Trizol
reagent (Invitrogen, Carlsbad, CA, USA). Genomic DNA was removed using DNase-I (GeneCopoeia,
Rockville, MD, USA). First strand cDNA synthesis kit (GeneCopoeia, Rockville, MD, USA) was used
to synthesize cDNA, and qPCR was performed using an All-in-OneTM miRNA RT-qPCR detection
kit (GeneCopoeia, Rockville, MD, USA) with 7900HT System (Applied Biosystems, Foster City, CA,
USA). The primer sequences of BMP15, P53, GDF9, BAX, CAT, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) were designed and synthesized by Shanghai Sangon Biotech Co., Ltd., China
(Table 1). PCR amplification efficiency of each pair of primers was assessed before quantification,
and was found to be in an acceptable range (between 0.9 and 1.1). PCR conditions were 40 cycles of
95 ◦C for 10 s, 55–60 ◦C (55 ◦C for GDF9; 58 ◦C for P53; 59 ◦C for CAT, 60 ◦C for BMP15 and CAT) for
20 s, and 72 ◦C for 25 s. The 2−∆∆Ct analysis method was employed to calculate relative expression
levels of BMP15, P53, GDF9, BAX, and CAT mRNA, with GAPDH as control [21].
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Table 1. Primer sequences.

Gene Primer Sequence Product Size GenBank Accession No.

GAPDH F: TCAAATGGGGTGATGCTGGT
R: GCAGAAGGGGCAGAGATGAT 124 bp XM_021091114

BMP15 F: AGCACAACCAGTCACTTTCCT
R: CCCCTTGTGATTCCAGAGCT 123 bp NM_001005155

P53 F: AAGACCTACCCTGGCAGCTA
R: ACAGCTTATTGAGGGCAGGG 100 bp NM_213824

GDF9 F:AGCCAGACTCCAGAGCTTTG
R: TGAAGAGCCGGACAGTGTTG 114 bp NM_001001909.1

BAX F: GCTTCAGGGTTTCATCCAGGA
R: CCAGTTCATCTCCAATGCGC 134 bp XM_003127290

CAT F: ACGTTGGAAAGAGGACACCC
R: TCCAACGAGATCCCAATTACCA 137 bp NM_214301

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; BMP15: Bone morphogenetic protein 15; P53: Tumor protein p53;
GDF9: Growth differentiation factor 9; BAX: BCL2 associated X protein; CAT: Catalase.

2.8. Statistical Analysis

Each group consisted of three replicates. Chi-squared test was used to analyze the first polar
body extrusion rate. Cumulus expansion, in vitro development of PA embryos, intracellular levels of
ROS and glutathione, mitochondrial distribution, and expression levels of BMP15, P53, GDF9, BAX,
and CAT were analyzed using oneway ANOVA with Duncan’s test for post hoc analysis in SAS version
8 (SAS Institute Inc., Cary, NC, USA). Data were expressed as mean ± standard deviation. p < 0.05 was
deemed statistically significant.

3. Results

3.1. Cumulus Expansion, Survival and First Polar Body Extrusion Rates of Oocytes, and in Vitro Development
of PA Embryos in Pigs

The results showed that degree of cumulus expansion of COCs and first polar body extrusion
rate of the oocytes from the melatonin group were the highest among the four groups (p < 0.05),
but melatonin addition had no effects on the melatonin + receptor antagonist group (p > 0.05; Table 2).
Furthermore, melatonin treatment did not affect survival rate of oocytes (p > 0.05; Table 2) or the first
polar body extrusion rate of the oocytes from melatonin + receptor antagonist group.

Table 2. Effects of melatonin and melatonin receptor inhibitor (Luzindole) on cumulus expansion,
survival and first polar body extrusion rates of oocytes, and in vitro development of PA embryos
in pigs.

In Vitro Maturation of
Oocyte and Development

of Embryo
Control Melatonin Melatonin +

Luzindole Luzindole

Degree of cumulus
expansion (n) 2.74 ± 0.07 a (421) 2.86 ± 0.08 b (385) 2.76 ± 0.08 a (431) 2.72 ± 0.06 a (431)

Survival rate % (n) 94.23 ± 0.86 a

(408/433)
95.67 ± 0.19 a

(420/439)
93.96 ± 0.79 a

(420/447)
94.91 ± 1.62 a

(410/432)
First polar body extrusion

rate %
79.66 ± 1.89 a

(325/408)
85.71 ± 2.26 b

(360/420)
80.48 ± 2.50 a

(338/420)
80.49 ± 1.10 a

(330/410)

Cleavage rate % 77.48 ± 2.05 a

(117/151)
85.63 ± 2.50 b

(142/167)
79.87 ± 1.86 a

(119/149)
76.54 ± 3.26 a

(124/162)

Blastocyst rate % 29.91 ± 1.75 a

(35/151)
35.92 ± 3.90 b

(51/142)
30.25 ± 1.82 a

(36/119)
29.03 ± 2.07 a

(36/124)

Note: a,b Significantly different (p < 0.05) was indicated by different letters within the same row.
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It was shown in Table 2 that cleavage rate and blastocyst rate of the PA embryos from the melatonin
group were the highest among the four groups (p < 0.05), but there was no significant improvement in
the melatonin + receptor antagonist group (p > 0.05).

3.2. Intracellular Levels of ROS and Glutathione; and Mitochondrial Distribution in the Oocytes

As shown in Table 3, glutathione levels in the oocytes from the melatonin group and the melatonin
+ receptor antagonist group were significantly higher than that from the groups with no melatonin
supplementation (p < 0.05). Furthermore, the value of mitochondrial distribution of the oocytes from
the melatonin group was significantly high comparing with that from the control group (p < 0.05;
Figure 2), but intracellular ROS levels in the oocytes from the melatonin group was significantly low
compared with that from the control group (p < 0.05; Figure 3).

Table 3. Glutathione concentration in porcine oocytes.

Group Number of
Oocytes Replicates Glutathione Concentration

(Pmol/Oocyte)

Control 40 3 5.10 ± 0.13 a

Melatonin antagonist 40 3 5.52 ± 0.35 a

Melatonin 40 3 6.22 ± 0.21 b

Melatonin + receptor
antagonist 40 3 6.21 ± 0.45 b

Note: a,b Significantly different (p < 0.05) was indicated by different letters within the same column.
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3.3. Expression of Genes Related to the Oocyte Developmental Capability

The RT-qPCR results showed that relative abundances of BMP15 and CAT mRNA in the oocytes
from melatonin group were significantly high comparing with that from control group (Figure 4;
p < 0.05), but melatonin treatment had negative effects on relative abundances of P53 and BAX mRNA
in the oocytes (p < 0.05). However, melatonin treatment did not affect relative abundance of GDF9
mRNA in the porcine oocytes (p > 0.05).Animals 2019, 9, x 8 of 14 
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4. Discussion

Our data indicated that melatonin treatment affected cumulus oophorus expansion and first
polar body extrusion rate of the oocytes during IVM, but melatonin + receptor antagonist had no
significant effects. Normal cumulus expansion is necessary for nuclear and cytoplasmic maturation of
oocytes in pigs [22]. Melatonin has a wide range of roles in physio-pathological functions, and is partly
mediated by melatonin receptors in animals [23]. Melatonin treatment improves cumulus oophorus
expansion of porcine COCs during IVM [24], and also increases the first polar body extrusion rate of
the oocytes disrupted by heat stress and mono-(2-ethylhexyl) phthalate exposed in the porcine [7,25].
Melatonin participates in modulating functions of granulosa cell through melatonin receptor 2 (MT2),
and also promotes cumulus expansion of COCs via MT2 in pigs [26]. Therefore, melatonin treatment
can enhance cumulus oophorus expansion and the first polar body extrusion rate of oocytes through
melatonin receptors, which is beneficial for nuclear and cytoplasmic maturation of porcine oocytes
during IVM.

Melatonin treatment was beneficial for increasing the cleavage rate and blastocyst rate of PA
embryos in this study, and treatment with melatonin + receptor antagonist had no effect on cleavage
rate or blastocyst rate in pigs. Culture media supplemented with melatonin are helpful for improving
developmental capability and quality of in vitro fertilized embryos in the porcine [27], and melatonin
treatment can improve developmental potential of in vitro PA embryos in pigs [28]. Melatonin
treatment could protect in vitro oocytes and PA embryos from toxicity (impaired development rate
and blastocyst quality) induced by aflatoxin B1 in the porcine [29]. The MT1 receptor is involved
in improving development of in vitro embryo by melatonin treatment in cattle [30]. Melatonin can
remarkably alleviate oxidative stress, and markedly promote in vitro embryonic development from
the oocytes aged for 24 h in pigs [31]. Therefore, it is indicated that melatonin treatment is helpful for
development of in vitro PA embryos, which is via melatonin receptors.

It was found in this study that culture media supplemented with melatonin enhanced intracellular
glutathione level, decreased ROS level of the porcine oocytes, and receptor antagonist did not affect the
intracellular level of glutathione during IVM. Embryos can change environmental conditions, including
level of oxygen, which induces a rise of ROS. ROS can modify biological molecules, and induce
abnormal development or even embryonic lethality [32]. Melatonin achieves its detoxification of
reactive oxygen through inducing antioxidant enzymes [33]. Benzo(a)pyrene leads to oocyte meiotic
failure, which can be recovered by melatonin supplementation through repressing ROS level in
the porcine [34]. Melatonin combined with prolonged IVM enhances development of poor-quality
oocytes through decreasing ROS generation in pigs [35]. The combination of GSH with L-cysteine
decreases ROS production, which can be used to enhance blastocyst quality in IVC systems in pigs [36].
Melatonin treatment improves IVM of oocyte under heat stress via increasing GSH level, reducing ROS
level in porcine oocytes [37], and melatonin treatment enhances oocyte quality during IVM through
upregulating intracellular GSH and ATP, and expression of antioxidant genes in cattle [38]. Therefore,
melatonin treatment is beneficial for oocyte IVM through upregulating intracellular glutathione and
downregulating intracellular ROS in oocytes, which is not via melatonin receptors in porcine oocytes.

Our results showed that the value of mitochondrial distribution of the oocytes was significantly
higher in the melatonin group after IVM, which indicated that melatonin treatment could increase the
percentage of oocytes with homogeneous mitochondria. Mitochondria are important cell organelles,
and implicated in many cellular activities including apoptosis [39]. Mitochondrium is essential for
oocyte functions, fertilization, and development competence, and are also important indicators of
oocyte quality [40]. Mitochondria in oocytes and cumulus cells play vital roles in oocyte developmental
competence, and can serve as a marker of developmental competence in porcine oocytes and cumulus
cells [41]. Paraquat exposure causes abnormal distribution patterns of mitochondria in in vitro bovine
oocytes, and melatonin treatment improves mitochondrial functionality of the oocytes exposed to
paraquat during IVM in the bovine [42]. IVM medium supplemented with melatonin can alter
mitochondrial distribution patterns of oocytes, but do not affect mitochondrial activity of bovine
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oocytes [43], and defective mitochondrion integrity induced by benzo(a)pyrene can be recovered
by melatonin treatment via inhibiting ROS level in the porcine oocytes [34]. Therefore, melatonin
can enhance mitochondrial distribution of oocytes during IVM, which is helpful for functions and
development competence of in vitro oocytes.

This study indicated that melatonin treatment improved expression of CAT mRNA in the oocytes
during IVM. CAT plays key roles in neutralizing harmful hydrogen peroxide from various sources [44].
CAT mRNA expression in ovarian granulosa cells (GCs) decreases following β-zearalenol and HT-2
treatment, but upregulates in bovine melatonin-treated GCs [45]. Melatonin treatment improves
frozen–thawed semen quality, and increases blastocyst development rate and CAT transcript abundance
of the bovine in vitro-produced embryos originating from melatonin-treated spermatozoa [46].
Melatonin treatment improves CAT activity in ovaries, and protects against clomiphene citrate-induced
egg apoptosis in rats [47]. Melatonin treatment improves cytoplasmic maturation of in vitro oocytes,
and increases intracellular ROS level and expression level of CAT in cattle [38]. Therefore, upregulation
of glutathione and downregulation of ROS induced by melatonin may be via enhancing CAT expression
in porcine oocytes during IVM.

This study demonstrated that melatonin treatment induced expression of BMP15 mRNA, but had
no significant effects on GDF9 mRNA expression in the oocytes during IVM. BMP15 and GDF9 are
members of transforming growth factor-beta superfamily [48]. BMP15 participates in regulating follicle
growth and oocyte developmental competence [49]. GDF9 and BMP15 exert integral actions on oocyte
quality and fetal growth [50], and are implicated in oocyte development, fertilization, and embryonic
competence in heterodimers or homodimers through autocrine and paracrine manners in women [51].
In humans, there is a positive relation between expression values of GDF9 and BMP15 mRNA in cumulus
granulosa cells and oocyte maturation, fertilization, and embryo quality [52]. Oocytes and follicular
cells express GDF9 mRNA during oocyte-cumulus complex IVM in pigs [16]. GDF9 and BMP15 are
limited to oocyte cytoplasm, and GDF9 and BMP15 addition improves expression of genes related with
oocyte maturation and cumulus expansion in porcine oocytes during IVM [53]. Melatonin treatment
moderates reduction of relative values of BMP15 and GDF9 mRNA caused by oocyte denudation during
IVM in the bovine [6], and also upregulates expression of BMP15 and GDF9 in inferior oocytes, which
are beneficial for oocyte maturation and embryo development in cattle [54]. Melatonin supplementation
enhances expression of GDF9 gene via melatonin membrane receptors in oocytes, which are beneficial
for bovine oocyte IVM [55]. There is a low expression of value BMP15 mRNA in immature oocytes,
and BMP15 mRNA is upregulated at 18 h of IVM in porcine oocytes. However, GDF9 mRNA is
upregulated in porcine immature oocytes, but downregulated during IVM [56]. Therefore, it may be
mainly through upregulating BMP15, but not GDF9, via melatonin membrane receptors that melatonin
supplementation enhances oocyte IVM and development competence in the porcine.

Our results found that melatonin supplementation inhibited expression of P53 and BAX mRNA
in the oocytes during IVM. P53 induces apoptosis through direct interactions with both chromatin
and regulators of transcription in multicellular organisms [57], and cytoplasmic P53 can lead to
transcription-independent neural precursor cell apoptosis through interaction with activated BAX [58].
Melatonin treatment improves development of bovine nuclear transfer embryos, and inhibits P53 and
BAX expression [59]. Vitrification solution or/and IVM solution supplemented with melatonin can
decrease ROS level and BAX mRNA expression, which improve developmental ability of oocytes in
cattle [60]. Melatonin delivery by nanocapsules is more effective than melatonin treatment without
nanocapsules in improving cleavage rate and blastocyst rate and downregulating expression of
BAX gene during oocyte IVM in cattle [61]. Exogenous melatonin improves development of cloned
embryos via suppressing the P53-mediated apoptotic pathway, through directly scavenging free
radicals in pigs [62]. Melatonin treatment reduces expression of BAX and P53 mRNA through
activating MT2 in granulosa cells of pigs [63]. Therefore, downregulation of BAX and P53 is involved
in melatonin-induced improvement of quality of IVM oocytes and development competence of in vitro
PA embryos in pigs.
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5. Conclusions

Exogenous melatonin can improve cumulus oophorus expansion, mitochondrial distribution,
intracellular level of glutathione, and first polar body extrusion rate of IVM-derived porcine oocytes.
Moreover, melatonin treatment increases the relative abundances of BMP15 and CAT mRNA in IVM
oocytes. Simultaneously, melatonin treatment decreases both the intracellular level of ROS and
expression levels of P53 and BAX mRNA in IVM-derived oocytes, which turn out to improve quality
and outcome of IVM oocytes and development competence of PA embryos in pigs. Furthermore,
the beneficial effects of melatonin on cumulus expansion, first polar body extrusion rates of oocytes,
and in vitro development of PA embryos are dependent on melatonin receptors, but the intracellular
level of glutathione is independent of melatonin receptors. All in all, our finding may provide a base
for improving quality of IVM oocytes and IVC embryoes. Further experiments may be needed to
determine the relationship of exogenous melatonin to expression of BMP15, CAT, P53, and BAX in
protein levels.
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