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Simple Summary: During exercise, horses produce heat from working muscles, and this heat,
under certain circumstances, may accumulate in the body. Conduction, convection, radiation, and
evaporation are the primary heat transfer mechanisms for the control of body temperature. Horses
that undergo strenuous exercise in hot and humid environments may have heat production that
exceeds their ability to dissipate the heat. Therefore, the horse could be at risk from postexercise
exertional heat illness, possibly leading to heat shock and death. To avoid this outcome, many
Thoroughbred racehorses are cooled-down postracing by using water application (ice-cold water or
ambient temperature water), fans, combinations of water application and fans, or water application
followed by scraping the water off the horse. Early detection of the clinical signs of exertional
heat illness and adequate treatments are important to prevent severe hyperthermia and irreversible
thermal damage. The development and application of technology that will provide accurate, rapid,
safe, and noninvasive monitoring of body temperature changes might help the detection of postrace
exertional heat illness in equine athletes. Implanted percutaneous thermal sensing microchip (PTSM)
is a reliable method to measure body temperature in horses; however, the optimal location within the
body of the horse needs to be determined.

Abstract: Accurately measuring body temperature in horses will improve the management of horses
suffering from or being at risk of developing postrace exertional heat illness. PTSM has the potential
for measuring body temperature accurately, safely, rapidly, and noninvasively. This study was
undertaken to investigate the relation between the core body temperature and PTSM temperatures
prior to, during, and immediately after exercise. The microchips were implanted into the nuchal
ligament, the right splenius, gluteal, and pectoral muscles, and these locations were then compared
with the central venous temperature, which is considered to be the “gold standard” for assessing
core body temperature. The changes in temperature of each implant in the horses were evaluated in
each phase (prior to, during, and immediately postexercise) and combining all phases. There were
strong positive correlations ranging from 0.82 to 0.94 (p < 0.001) of all the muscle sites with the central
venous temperature when combining all the phases. Additionally, during the whole period, PTSM
had narrow limits of agreement (LOA) with central venous temperature, which inferred that PTSM is
essentially equivalent in measuring horse body temperature. Overall, the pectoral PTSM provided a
valid estimation of the core body temperature.
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1. Introduction

Thoroughbred horse racing is one of the most attractive events among horse competitions in
Australia [1,2]. According to Racing Australia [1,2], 19,409 and 19,369 races were held in Australia
during the 2017/18 and 2018/19 season, respectively, and 35,107 and 35,196 horses were raced during
the respective seasons. During the two seasons, horses were raced on average over a 1000 m track,
which they completed in 56 s, equating to a speed of 17.86 m/s [1]. The horses raced under various
weather conditions, including heatwaves. Several states in Australia have policies in place to guide
the Thoroughbred racing industry to protect the welfare of the horses racing and training in hot
weather [3–7].

It was reported by Hodges et al. [8] that strenuous exercise, such as Thoroughbred racing, requires
horses to expend a large amount of energy, which produces metabolic heat in muscles leading to an
increase in body temperature of 1 ◦C for every one minute of racing. Horses are normally able to
control this accumulated body heat by dissipating heat to the environment via conduction, convection,
radiation, and evaporation [8]. However, if the exercise is prolonged, especially during hot or hot
and humid weather, horses may have limited capacity to dissipate the accumulated body heat [9].
Furthermore, unlike humans or other animal athletes, horses have a large body mass with a small body
surface area, which further restricts the dissipation of body heat [10,11].

As stated, when exercise is prolonged during hot or hot and humid weather, heat dissipation may
be limited and, eventually, heat transfer may be reversed, i.e., the animal does not dissipate heat to
the environment and may actually gain heat from the environment [9,12,13]. Even if the transfer by
convection and radiation are reversed, the horse may still be able to dissipate body heat via sweating
even when weather conditions are such that the rate of sweat evaporation is reduced [13]. However,
horses have thick, waterproof hair, which interrupts the evaporative cooling of sweat by blocking
its exposure to air [14]. The heat dissipation efficiency of the sweat running off the skin is only 5 to
10% of the sweat evaporation [13,15], so evaporative heat loss is critical if horses are to maintain body
temperature within a tolerable range. To support evaporation from the body surface during the hot
or hot and humid condition, horses produce a surfactant protein, Latherin, and when mixed with
sweat, it helps the wetting of the hair by sweat, improves evaporation, and decreases the amount
of sweat running off the surface of the animal [8,14,16]. Under hot or hot and humid conditions,
prolonged exercise may cause exertional heat illness (EHI), dehydration, collapse, and death [17,18].
When the central blood, the hypothalamic, and muscle temperatures reach 42.5 ◦C, 41.5 ◦C, and
45 ◦C, respectively, horses may show signs of hyperthermia [15]. It has been demonstrated that blood
temperature is a very sensitive measure of core body temperature in horses during exercise [9,19–22].

Monitoring weather conditions before and during a race event is essential for the safety of the
animal. In terms of exertional heat illness or heat-related regulations, the wet-bulb globe temperature
(WBGT) is used worldwide for monitoring sports events, such as the International Olympic Committee
or Fédération Equestre Internationale competitions. Some racing organizations in Australia also use the
WBGT index to aid in the decision-making process of weather safety prior to a race. When the forecast
WBGT is above 26 ◦C, it is recommended that organizers consider modifying or canceling the race.
Governing bodies in Australia (Racing Queensland, Thoroughbred Racing South Australia, Racing
New South Wales, and Racing Victoria) recommend taking extra care, such as providing an additional
veterinarian at the track, ensuring the availability of adequate drinking water, and washing bays for
horses at the events. In 2017, Equestrian Australia (EA) announced that when WBGT is above 28 ◦C,
extra care and precautions are required to limit overheating of horses. However, there is an overall lack
of guidelines for the recognition, prevention, and treatment of postrace EHI. As reported by Brownlow
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et al. [23], a horse with EHI shows increased rates of respiration and heart rate, slow capillary refill
times, loss of consciousness, and some dangerous behaviors, such as kicking out randomly or lunging
forward. To prevent brain damage, blood flow to the brain is restricted during hyperthermia, which
can cause cerebral ischemia and brain edema. The induced brain damage results in central nervous
system dysfunction leading to a loss of normal reflex responses, headache, collapse, or coma. Several
methods can be used to reduce accumulated body heat after racing, such as taking the horses into an
air-conditioned room, spraying cool water and fanning, pouring cool water on the skin, placing on
ice collar of the neck, or using intravenous detomidine hydrochloride (a sedative) to reduce and to
attenuate clinical signs of central nervous system (CNS) dysfunction [24–29]. However, it is not clear
when more aggressive actions should be undertaken to save a horse from the effects of excessive heat
load. Furthermore, there are currently no methods to detect early or mild postrace EHI cases. If body
temperature could be measured accurately, safely, quickly, and noninvasively, then early detection and
management of EHI would be possible.

Many methods are used to measure body temperature, such as gastrointestinal pills
(gastrointestinal temperature), infrared thermal image (eye or skin temperature), central venous
temperature, digital thermometer (rectal temperature), or using percutaneous thermal sensing
microchips (PTSM) (muscle temperature) [22,30–33]. However, rectal thermometry is the most
commonly used method to estimate core body temperature [34,35].

Rectal thermometry is an inexpensive technique, yet it is also time- and labor-consuming to
perform, and may inflict local injury in horses, particularly during repeated samplings, and commonly
induces handling stress or requires the use of sedatives. However, obtaining the rectal temperature
of a horse immediately postexercise can also be dangerous and infeasible for the operator due to the
restless behavior, especially in highly excitable horses and the constant movement of the animal while
it is recovering from strenuous exercise. Furthermore, if the horse is exhibiting signs of postrace EHI,
such as irritability and uncooperative behavior or kicking out, it will be unsafe and challenging to
obtain the rectal temperature. Infrared temperature image has been used as a method to measure horse
body temperature, but it may be affected by sunlight and therefore may be of limited practical value as
an assessment of core body temperature [36].

In this study, it was hypothesized that PTSMs would accurately measure body temperature
changes in horses. There are a lack of data on testing PTSMs usage in horses during exercise and
immediately after exercise. In addition, no previous studies have tested PTSMs implanted in various
locations of the horses’ body [35,37]. The aim of the present study was to document the relationship
between the central venous temperature (as the core body temperature) and PTSMs temperatures in
various muscle sites during and immediately after exercise.

2. Materials and Methods

2.1. Animals

Eight unconditioned adult horses (7 geldings and 1 mare; 4 Thoroughbred and 4 Standardbred)
ranging from 4 to 12 years old (average 7 ± 3 years old) and 455 to 545 kg body weight (average
493 ± 31 kg) were used in the study. The horses are part of the research herd at The University of
Queensland (Gatton Campus), and they are routinely housed in groups of 10 to 15 horses in large
grazing paddocks located on the Gatton campus. Ad libitum access to pasture and hay is provided with
oat hay (1.5% of body weight) once or twice a week. The horses used in the study were not exercised
during the 3 months prior to the commencement of the study. During the experiment, the animals
were housed in small yards adjacent to the UQ VETS, Equine Specialist Hospital, The University of
Queensland Gatton campus. Water was available ad libitum, and 1.5% of body weight of lucerne
hay was provided per day. The use of animals and all experimental procedures were approved by
the Animal Ethics Committees (AEC) of The University of Queensland (Approval No. SAFS/431/18).
All horses were shod prior to the commencement of the study. A general physical and lameness



Animals 2020, 10, 2274 4 of 20

examination was performed at walk and trot by an equine surgeon specialist (A.S.G.) before the
experiment to ensure that all of the horses used were healthy and sound. Full details of the exercise
regimen are provided below.

2.2. Microchipping

Percutaneous thermal sensing microchips (LifeChip® with Bio-thermoTM; Destron FearingTM;
TX, USA), which contained a passive transponder programmed temperature sensor, were implanted
two weeks before the commencement of the study. The horses were placed in a crush and sedated
using xylazine (0.3–0.4 mg/kg body weight (BDW IV)). The implantation sites were clipped and
surgically prepped using betadine and alcohol. Three milliliters of local anesthetic (Lignocaine
Hydrochloride 20 mg/mL) was injected subcutaneously five minutes before implantation of the
microchips. The microchip was inserted perpendicular to the skin to the maximum depth allowed by
the presterilized 12-gauge needle assembly containing the transponder.

The sites were determined using set parameters to ensure uniformity of their position.
The percutaneous thermal sensing microchips were implanted into the nuchal ligament (only in
the first two horses) halfway between the poll and the withers into the right splenius muscle halfway
between the poll and the middle of the scapular spine, into the right gluteal muscle halfway between the
tail head and the right tuber coxae, and into the right pectoral muscle in the middle of the right cranial
pectoral muscle. The nuchal ligament PTSM was inserted dorsally following the same guidelines
insertions as the conventional ID microchips.

The position of the microchips was followed up with ultrasound (MyLab Delta; Esaote S.p.A;
Genova; Italy) examinations with a linear transducer (3–11 MHz frequency) to detect any abnormalities
in the surrounding area after two months of implantation.

A preliminary study using two horses, fitted with a central venous temperature probe (see
below) and PTSMs placed in the nuchal ligament and right gluteal muscle area, was undertaken.
After observing a weak correlation and statistically nonsignificant data (r = 0.01, p = 0.93) between the
nuchal ligament temperatures and central venous temperatures, the study design was modified so that
PTMS were placed in the right splenius muscle, the right pectoral muscle, and the right gluteal muscle
of 8 horses (including the two used in the preliminary study). The present study includes the results of
these 8 horses.

2.3. Central Venous Temperature (TCV) Probe Insertion

A small area in the cranial third of the jugular groove was clipped and aseptically prepared
before the initiation of the treadmill exercise. A type T flexible implantable thermocouple (Physitemp
Instrument; Clifton, NJ, USA) was introduced into the jugular vein through the lumen of a 14 Gauge
3.25 inches (8 cm) intravenous catheter (AngiocathTM; Becton-Dickinson and company; Franklin Lakes,
NJ, USA). The thermocouple was introduced 80 cm from the IV catheter within the jugular vein
toward the thorax. The temperature was displayed on a monitor (Thermalert model TH-8; Physitemp
Instrument; Clifton, NJ, USA).

2.4. Rectal Temperature (TR) Probe Placement

A temperature data logger (HOBO Pro v2; U23-002; Onset Computer Corporation; Bourne, MA,
USA) was used to obtain rectal temperature (TR) during exercise. A 184 cm long thermal sensor was
fed through a universal insemination pipette for mares and introduced 40 to 50 cm into the rectum.
Fecal content was removed prior to insertion of the thermal sensor. The data logger was secured to the
tail using vet wrap.
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2.5. Data Collection

2.5.1. Exercise Program

All horses were familiarized and habituated to the treadmill (Veterinary Pit Model 980; Classic
Treadmills Australia PTY LTD; QLD, Australia) and the microchip scanners two days before data
collection. Because all horses were exposed to the treadmill in previous studies, only one session of
habituation was required. This consisted of walking speed at 2 m/s for approximately 2 min followed
by trotting at 4 m/s for 2.5 min and cantering at 6 to 7 m/s for 1 min. All horses moved comfortably on
the treadmill and transition well between the different gaits. No signs of distress or incoordination
were observed during habituation. Microchip scanners were used while the horses were exercised to
habituate them to the operators’ movement and scanner noise.

During the experiment, each horse underwent a standardized treadmill exercise program, where
slight variation on the speed (max speed range between 8 and 10 m/s) and duration (between 8 and
11.5 min) of the exercise was adapted to their individual fitness levels. The horses were warmed
up by walking them for 5 min in an undercover area with a hard floor surface next to the treadmill
room. Horses were walked in this area both pre- and postexercise. The exercise began at the speed
of 2 m/s for 30 s, with the treadmill being set at a 5% incline. The speed was then increased to 4 m/s
and maintained for 2.5 min. The speed was then increased from 6 to 8 m/s to change the gait from
trotting to cantering and then to galloping. Once the gait changed, the speed increased by 1 m/s every
minute until the TCV reached 41 ◦C. When the TCV reached 41 ◦C, the treadmill speed was reduced to
4 m/s and maintained at this speed for 2 min. Two wall fans were operated in front of the treadmill
machine with approximately a 1.5 m distance and 2.5 m from the floor on the wall at 5 m/s just above
the level of the treadmill during the exercise. Following the 10 min of hand-held walking, the horses
were washed with cold tap water and returned to the small yards near the Equine Specialist Hospital.

2.5.2. Temperature Acquisition

The microchip temperature in the nuchal ligament (TNL), the right splenius muscle (TSM), the right
gluteal muscle (TGM), and the right pectoral muscle (TPM) were measured using microchip scanners
(GPR+; Destron FearingTM; Dallas, TX, USA). Two scanners were used so that the temperature
of the different sites could be obtained at the same time. Microchip temperatures were acquired
once before the commencement of treadmill exercise and then every 30 s during the treadmill
exercise. The temperatures were then measured at one-minute intervals during the cool-down
walk phase. Central venous temperature (TCV) and rectal temperature (TR) data were obtained
at 1 s intervals. The TCV and TR data were extracted to match the time points of the microchip
temperature measurements.

2.5.3. Data Processing

Temperature data (TCV, TR, TSM, TGM, TNL, TPM) were pooled from the eight horses to document
the changes in the body temperature during the experiment. The temperatures were grouped into the
following phases: prior to exercise (Phase A; static phase), during exercise on the treadmill (Phase B;
dynamic phase), immediately after exercise (Phase C; static phase), and cool-down walk (Phase D;
dynamic phase) (Figure 1).

Eight temperature readings were recorded per horse for each temperature acquisition site during
Phases A and C. A minimum of 15 temperature readings were recorded per horse for each temperature
acquisition during Phase B, and a minimum of 8 temperature readings were recorded per horse for
each temperature acquisition during Phase D (Figure 1).
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2.6. Statistical Analysis

All of the PTSM temperatures and TR were paired with TCV (e.g., TCV/TPM pair, TCV /TGM pair,
TCV /TSM pair, and TCV/TR pair) to calculate the correlation and differences between TCV, the core body
temperature, and the other body temperatures prior to, during, and after treadmill exercise.

All statistical analyses were conducted in R [38]. The normal distribution of the data was
investigated using a Shapiro–Wilk test. The significance level was set at p < 0.05.

The correlation coefficients of the temperature readings were computed to determine the
relationships between temperature pairs using Pearson and Spearman rank tests. In addition,
the limit of agreement (LOA) was computed to assess the agreement in temperature readings obtained
using TCV, TGM, TSM, TPM, and TR. For each pair, a generalized linear regression model was fitted to
get the mean bias and the standard error for computing the corresponding LOA.

For Phases B and D as dynamic phases, the repeated correlation coefficient for normally distributed
data and the bootstrap method for non-normal data were used. The linear mixed-effects model was
fitted to compute the LOA for the repeated temperature readings obtained using TCV and PTSM.

The correlation coefficients in the current study were determined based on previously used
categories (|r| = 1: Perfect correlation, 0.9 > |r| > 0.7: Strong correlation, 0.6 > |r| > 0.4: Moderate
correlation, 0.3 > |r| > 0.1: Weak correlation, and r = 0: Zero correlation) [39].

For theoretical explanation and model formula used in the analysis, refer to Appendix A.

3. Results

The average depth of the microchip from the skin surface to the right pectoral muscle was 2.01 cm,
to the right gluteal muscle it was 2.36 cm, and to the right splenius muscle, it was 2.14 cm (Figure 2).
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3.1. Results of the Preliminary Study (n = 2)

In the preliminary study (n = 2), the TCV had the highest correlation with TGM (r = 0.84, p < 0.001).
There was no statistically significant relationship between TNL and TCV (r = 0.01, p = 0.93) or between
TR and TCV (r = 0.13, p = 0.35). However, the correlation between TNL and TR was strong (r = 0.80,
p < 0.001).

3.2. Results of the Final Study (n = 8)

Body Temperatures and Its Paired Analysis

Most of the recorded body temperatures were normally distributed. Non-normal distribution
was found in TR (p = 0.012) during Phase A, in TSM (p = 0.023) during Phase C and in TGM (p = 0.008)
during all phases (Phases A–D). Further details of these analyses are shown in Table A1 of Appendix A.

The changes in temperature at the different areas of the body are shown in Figure 3. The central
venous temperature peaked at the end of Phase B, whereas the PTSMs temperatures peaked during
Phase C (TPM and TGM) and the first minute of Phase D (TSM). Rectal temperature increased until the
end of the test, whereas the other body temperatures decreased during Phase D.
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Figure 3. The average temperature during Phases A (prior to exercise), B (exercise on the treadmill),
C (immediately after exercise), and D (cool-down walk) of the modified final study. a TCV =

central venous temperature, TPM = pectoral muscle temperature, TGM = gluteal muscle temperature,
TSM = splenius muscle temperature, TR = rectal temperature.

Table 1 summarizes the horse body temperature readings from each method for the various phases
of the experiment.

During Phase A, the lowest temperature was 36.90 ◦C at TPM and the highest observed was
39.10 ◦C at TSM. Statistically significant and strong correlations were observed for TCV/TPM (r = 0.95,
p < 0.001) and for TCV/TSM (r = 0.87, p < 0.001) pairs. There were no other statistical correlations.

During Phase B, both the lowest and highest temperatures were recorded at TSM (37.82 ◦C and
40.37 ◦C, respectively). Statistically significant and strong correlations between temperature readings
were observed for TCV /TGM (r = 0.84, p = 0.01), TCV/TSM (r = 0.83, p = 0.01), and TCV/TR (r = 0.83,
p = 0.01) pairs, but no significant correlations were observed for the TCV/TPM pair (p = 0.10).
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During Phase C, the lowest temperature was 38.53 ◦C for TR and the highest was 42.00 ◦C at TSM.
There was no statistically significant correlation in the temperature pairs in this phase.

During Phase D, the lowest temperature was 38.91 ◦C for TPM and the highest was 41.61 ◦C at
TSM. There was no statistically significant correlation in the temperature pairs in this phase.

Combining all the data (Phases A–D), the lowest temperature was 36.90 ◦C for TPM and the
highest was 42.00 ◦C for TSM. Statistically significant and strong correlations were observed in all the
temperature pairs. The highest correlation was observed in the TCV/TPM pair (r = 0.94, p < 0.001), and
the second-highest correlation was in the TCV/TGM pair (r = 0.90, p < 0.001). The lowest correlation
was between that of TCV and TR (r = 0.71, p < 0.001).

Table 1. Summary of body temperature readings of horses before, during, and after treadmill exercise.

Summary Stat Correlation (95% CI)

Mean SD Min Max CC Correlation (r) p-Value LL UL

Phase A (Prior to exercise)
TCV 37.96 0.41 37.40 38.60 1.09 1 <0.001
TPM 37.56 0.55 36.90 38.30 1.47 0.95 <0.001 0.76 0.99
TGM 37.58 0.41 37.00 38.30 1.08 0.59 0.12 −0.20 0.91
TSM 38.05 0.54 37.40 39.10 1.43 0.87 <0.001 0.44 0.98
TR 38.09 0.19 37.89 38.87 0.49 0.31 0.45 −0.50 0.83

Phase B (Exercise on the treadmill)
TCV 39.31 0.32 38.91 39.75 0.82 1 <0.001
TPM 39.17 0.43 38.68 39.58 1.10 0.81 0.10 −0.25 0.99
TGM 39.23 0.33 38.72 39.78 0.84 0.84 0.01 0.33 0.97
TSM 39.05 0.73 37.82 40.37 1.87 0.83 0.01 0.31 0.97
TR 38.66 0.42 38.06 39.46 1.10 0.83 0.01 0.30 0.97

Phase C (Immediately after exercise)
TCV 40.81 0.14 40.60 41.00 0.33 1 <0.001
TPM 41.31 0.48 40.50 41.90 1.15 −0.09 0.83 −0.75 0.66
TGM 41.39 0.22 41.10 41.80 0.54 −0.42 0.30 −0.87 0.41
TSM 41.00 0.28 38.80 42.00 0.67 0.62 0.10 −0.16 0.92
TR 39.32 0.53 38.53 40.20 1.34 0.13 0.76 −0.63 0.76

Phase D (Cool-down walk)
TCV 39.59 0.20 39.31 40.00 0.50 1 <0.001
TPM 40.36 0.74 38.91 41.29 1.84 0.5 0.20 −0.31 0.89
TGM 40.77 0.38 40.11 41.25 0.92 −0.43 0.29 −0.87 0.39
TSM 40.61 0.70 39.40 41.61 1.72 −0.11 0.79 −0.76 0.64
TR 39.56 0.35 39.12 39.99 0.88 0.21 0.62 −0.58 0.8

All the data (Phases A–D)
TCV 39.42 1.07 37.40 41.00 2.70 1 <0.001
TPM 39.65 1.59 36.90 41.90 4.00 0.94 <0.001 0.87 0.97
TGM 39.95 2.53 37.00 41.80 6.34 0.90 <0.001 0.80 0.95
TSM 39.65 1.37 37.40 42.00 3.46 0.82 <0.001 0.67 0.91
TR 38.92 0.68 37.89 40.20 1.75 0.71 <0.001 0.47 0.85

SD = standard deviation, CC = correlation coefficient, CI = confidence interval, LL = lower limit, UL = upper
limit, TCV = central venous temperature, TPM = pectoral muscle temperature, TGM = gluteal muscle temperature,
TSM = splenius muscle temperature, TR = rectal temperature.

3.3. Results of Limit of Agreement (LOA)

The average discrepancy between the methods (the bias indicated by a horizontal red line in the
plots) was small (Figures 4–7). The limits of agreement (LOA) were narrow, and it can be inferred that
the methods are essentially equivalent in measuring horse body temperature at various phases of the
experiment (Figures 4–7).
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During Phase A, higher temperatures were recorded for TSM (bias = −0.088) and TR (bias = −0.195)
than TCV. Lower temperatures were obtained from TGM (bias = 0.388) and TPM (bias = 0.400) compared
with TCV.

During Phase B, temperatures obtained using TCV were higher than all the other methods.
During Phases C and D, higher temperatures were recorded at TGM, TSM, and TPM compared with

TCV.
Similarly, Table A2 (in Appendix A) presents separate LOAs for the temperature readings taken

during the various phases of the experiment.

3.4. Results of Repeated Measured Correlation (rmc) during Phases B and D

The repeated-measures correlation coefficients (rmc) for body temperatures acquired during Phases
B and D indicated that there were significant correlations for all temperature pairs. The resulting rmc

along with 95% bootstrap confidence intervals and p-values are summarized in Table 2. A strong
positive correlation was calculated in the pair of TCV/TPM (rmc = 0.93, p < 0.001), followed by the
TCV/TGM pair (rmc = 0.88, p < 0.001) and the TCV/TSM pair (rmc = 0.73, p < 0.001). Finally, a moderate
positive correlation was observed in the pair of TCV/TR (rmc = 0.51, p < 0.001) (Table 2).

Table 2. Repeated-measures correlation coefficient (rmc) for body temperature readings in horses
during Phases B (exercise on the treadmill) and D (cool-down walk).

rmc p-Value Lower Limit Upper Limit

TPM 0.93 <0.001 0.88 0.93
TGM 0.88 <0.001 0.84 0.91
TSM 0.73 <0.001 0.62 0.79
TR 0.51 <0.001 0.43 0.62

TCV = central venous temperature, TPM = pectoral muscle temperature, TGM = gluteal muscle temperature, TSM =
splenius muscle temperature, TR = rectal temperature.

During Phases B and D, the muscle temperatures were higher than TCV (TCV/TGM, bias = −0.459;
TCV/TSM, bias = −0.260; and TCV/TPM, bias = −0.319), whereas the TR was lower than TCV (bias = 0.483).
The average discrepancy between the temperatures (the bias indicated by a horizontal red line in the
plots) was small (Figure 8). The limits of agreement (LOA) were narrow. Hence, with a narrow LOA
and small bias, it can be inferred that the temperatures were essentially equivalent in measuring horse
body temperature at various phases of the experiment. The scatter around the bias line gets larger
as the average temperature readings get higher. Therefore, the consistency was decreased across the
graph as the average increases (Figure 8).

Similarly, Table A3 (in Appendix A) presents separate LOAs for the temperature readings taken
during Phases B and D.
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4. Discussion

Percutaneous thermal sensing microchips have been previously used in a few horse studies [35,37];
however, this is the first study reporting the use of PTSMs in horses during and postexercise. The results
from our data revealed that the optimal location for implantation of a PTSM is the pectoral muscle
based on the strong correlation in the TCV/TPM pair followed by the TCV/TGM and TCV/TSM pairs
during strenuous exercise on the treadmill and cool-down walk immediately after the exercise.

The protocol of the preliminary study was modified due to the weak correlation between TNL

and TCV during and immediately after exercise in the first two horses assessed. This finding is most
likely related to the poor vascular supply of the nuchal ligament compared to other muscles, and this
could explain the delayed temperature changes observed in TNL compared to TCV [40,41]. The study
of Robinson et al. [35] revealed that the PTSM in the nuchal ligament was sensitive to the surrounding
environmental factors, such as ambient temperature, so the study recommended another body site to
implant the microchip for reading body temperature.

Differences between the body temperatures observed at the end of Phases B and D (Figure 3)
were due to the normal physiologic reaction of thermoregulation [18]. During exercise, an increase
in metabolic heat production augments the rate at which heat in muscles can be dissipated to the
environment in order to prevent dangerous elevations in tissue temperature. Upon the cessation
of exercise, the rate of heat production may greatly exceed the rate of heat dissipation, leading to a
sustained elevation of muscle temperature. During short-term, high-intensity exercise, the rate of heat
production will exceed the rate of heat loss throughout the exercise, and the body temperature will
continue to increase until the cessation of exercise. In a study by Marlin et al. [42], similar results were
reported during 21 min of exercise on the treadmill (up to 10 m/s of speed). The muscle, pulmonary
artery, and rectal temperatures increased to 5.0 ◦C, 4.8 ◦C, and 1.7 ◦C, respectively. In the present
study, similar outcomes were observed during 10 min of exercise (up to 10 m/s of speed). The PTSM
temperatures in the muscles increased the most (3.2 ◦C), followed by central venous temperature
(2.8 ◦C) and rectal temperature (0.98 ◦C). In this instance, a large proportion of the metabolic heat
load will be dissipated during the postexercise period. The postexercise temperature response (rate of
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temperature decay) is influenced by convective heat transfer between blood and muscle and conductive
heat transfer within the muscle. In the current study, PTSM temperatures followed the same pattern
of a continuous increase of temperature until a few minutes after cessation of exercise and then a
gradual decrease during the cooling phase. However, the muscle temperature differed depending on
the location of the microchips. These differences could be due in part to factors such as differences in
the muscle mass and energy turnover efficiency of the muscles used in the exercise activity and work
intensity of those muscles [43–45].

The depth and location of the PTSM within the same muscle group may be different between
horses. Different temperature gradients within the muscle both at rest and during exercise have been
reported in humans [46–48]. Most commonly, the highest temperature is found in the deepest part
of the muscle. Different parts of the same muscle may have different activity levels during exercise
as well as different blood flows [46]. In humans and laboratory animals, it has been demonstrated
that aging causes a profound redistribution of skeletal muscle blood flow within and between muscle
groups [49]. During the whole exercise program (Phases A–D), TGM had a non-normal distribution
(Table A1). It may due to the various depths of microchip location in the biggest muscle or different
muscle compartments work individually [46,47].

Although the different muscle sites used in the present study actively engage differently during
exercise, temperature change followed a very similar pattern, with all rising rapidly to exceed rectal
temperature. Previous studies found that PTSMs were a reliable alternative to rectal thermometry for
the measurement of body temperature in equids at rest in an ambient temperature >15.6 ◦C [50]. In the
current study, temperatures obtained using PTSMs had a poor correlation with rectal temperature
during exercise. This is likely due to thermal inertia and a higher dependence on conductive heat
transfer by blood. Rectal temperature responds more slowly in comparison to core body temperature
and PTSM temperatures [51,52]. Ambient temperature may have affected PTSM values. The ambient
temperature during exercise in our study was between 18.9 ◦C and 21.7 ◦C. In a previous study,
the effect of ambient temperature on PTSMs placed in the nuchal ligament was evaluated in horses at
rest. In that study, the PTSMs underestimated rectal temperatures <38.9 ◦C and overestimated rectal
temperatures ≥38.9 ◦C at an ambient temperature of 21.2 ◦C [35].

Obtaining rectal temperatures in racehorses immediately after a race is both time-consuming
and risky for the operator. In the current study, it was found that the mean temperature differences
between TCV and TR in the period between 3 and 5 min in Phase D were the least among the other
temperature pairs during the same period, suggesting that the attainment of rectal temperature has
value postrace. However, the lower correlation between the temperatures during Phase D and the risk
factors to handlers may negate the value. TR showed a moderate correlation with TCV during the whole
treadmill test, but it was weaker than the microchip temperatures. Based on the results from the current
study, it is recommended that rectal temperature should not be used as a measurement postexercise,
not only for safety reasons but also because of the poor correlation with the central venous temperature
immediately after exercise and at least 8 min postexercise. Since it is believed that the first 8 to 10 min
after the race is the most likely period to detect horses with emerging signs of EHI, it was found that
only one study collected the temperature after the cool-down phase (8 to 10 min postexercise) of the
experiment [53]. In the current study, TCV began to decrease as soon as exercise at maximum speed
ceased in Phase B, and TR continuously increased until the end of Phase D. The continuous increase in
TR has been observed in previous studies [23,54] during the first 10 min of walking recovery when
horses were allowed to cool passively. This resulted from the heat redistribution produced by muscle
activity to the skin and other compartments (gastrointestinal tract including the rectum) [55,56].

Intramuscular implantation of the PTSM is minimally invasive, requiring only the injection of
the microchip through a large gauge needle like the conventional ID microchip insertion [57]. After
initial implantation, measuring body temperature is completely noninvasive. No adverse reactions
were observed concerning the microchip implantation site, and the procedure was well tolerated by all
horses. Microchip migration is often suggested as a problem [58]; however, the migration or movement
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of the microchips was not observed in the short follow-up period of this experiment, and the readability
of the microchips was obtained six months after implantation (unpublished data). The horses showed
no limitations to movement by having the microchips placed in their muscles. Other advantages
of using PTSMs include the speed and ease of use, life-long battery life of the microchips, and the
rechargeable microchip reader, and it is also possible to include the unique identification number
assigned to each horse [35,37].

A strong positive correlation (r = 0.84, p < 0.001) was found between gluteal percutaneous thermal
sensing microchips, and central venous temperatures prompted the investigation for additional muscle
sites to implant microchips. Even though the current study showed a high correlation between core
body temperature and PTSM in the gluteal region, near the hind limbs, and pectoral, between the front
legs, measurements were considered to be an unsafe location when handling potentially excitable
horses postexercise or when showing EHI signs. Acquisition of the temperatures during exercise
was possible due to the experiment design on the treadmill. However, obtaining PTSM temperatures
during exercise in field conditions will have limited practical application.

The protocol within the current study was for individual horses to reach a central venous
temperature of 41 ◦C. As unconditioned horses were used in the study and each animal presented
different performance abilities, the exercise protocol varied slightly between horses, and this may
have influenced the results. However, the core body temperature increased by 1 ◦C/min during
exercise obtained in the current study is in agreement with what has been published for horses during
high-speed exercise [8].

The goal of the current study was to analyze the relation of temperatures obtained from various
sites with the central venous temperature. In this study, in all locations of PTSMs, strong positive
correlations between the core temperature and microchip temperatures were noted prior to, during,
and immediately after strenuous exercise on the treadmill, while rectal temperature had a moderate
correlation with the core body temperature. Prior to the exercise, only the pectoral and splenius
muscles had a statistically significant strong positive correlation with TCV. However, during this
phase, the temperature data were obtained only once, which generates a low sample size. It is
required to collect more data in order to assess the correlation between the muscle and central venous
temperatures at rest. This work has focused largely on the analysis of temperatures during and
immediately after exercise. All the different locations of PTSMs had strong positive correlations
with the core body temperature during and immediately after exercise on the treadmill, while rectal
temperature had a moderate correlation with the core body temperature. As it was inferred previously,
the strong correlations between PTSMs temperature and TCV, as well as narrow LOA, PTSMs in the
different muscle sites can estimate the core body temperature during and immediately after exercise
on the treadmill. However, more work is needed to validate the data presented here under racetrack
conditions. The use of PTSMs also would allow for further investigation in the most efficient cooling
techniques and, ultimately, the best procedures to decrease EHI prevalence at the racetrack.

5. Conclusions

In summary, this study demonstrated the easy use of PTSMs for measuring the body temperature
of horses during and immediately after exercise. The pectoral muscle was the most reliable implantation
site for PTSM to track temperature changes among the three different muscles in this experimental study.

These results are promising in regards to finding a simple, safe, quick, accurate, and noninvasive
method to measure the body temperature of horses immediately after high-speed exercise

Future studies are needed to validate this method under field conditions and in equine athletes
working in extreme environments and intensive activity in various equestrian sports.
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Appendix A

Appendix A.1 Repeated-Measures Correlation Coefficient (rrm)

We used the rmcorr and plot.rmc functions from the rmcorr package, respectively, for computing the
repeated-measures correlation coefficient (rrm) and producing a scatterplot of the repeated-measures
paired data, with each participant’s data plotted in a different color. The rmcorr is estimated
using ANCOVA. The rmctorr effect size is estimated using confidence intervals obtained through
bootstrapping, which does not require distributional assumptions and uses random resampling to
estimate parameter accuracy [59].

Based on the sums of squares values for the measure and error, the repeated-measures correlation
coefficient (rrm) is calculated as follows:

rrm =
√ SSMeasure

SSMeasure + SSError
(A1)

We followed the guide for interpreting the size of a correlation coefficient used by Mukaka [60]
and Akoglu [39].

Appendix A.2 Linear Mixed-Effects Model

In order to compute the limit of agreement (LOA) between the body temperature readings obtained
by the various methods with that of the TCV, linear mixed-effects models were fitted to the observed
differences of body temperature readings.

The basic linear mixed-effects model (LMM) is of the form:

yijkt = µ + αi + βj + γk + εijkt (A2)

where yijlt represents the body temperature reading/measurement made on HORSE i by device j with
VEL k at time t, µ is the overall mean; αi~N(0, σ2) is the random HORSE effect, βj is the fixed effect of
device j, γk~N(0, σ2

k), γk denotes the random VEL effect, and εijlt~N(0, σ2
ε) is the residual error.

The LMM in Equation (A2) can be modified to fit the corresponding model for fitting the differences
as follows:

yilkt = µ + αi + βj + γk + εijkt (A3)

where yikt represents the differences in body temperature readings made on HORSE i with VEL k at
time t, µ is the overall mean, αi~N(0, σ2) is the random HORSE effect, βj is the fixed effects, γk~N(0,
σ2

k), γk denotes the random VEL effect, and εijlt~N(0, σ2
ε) is the residual error.

The model specified in (3) is used to get the total variance required to compute the corresponding
LOA and the additional null model with only a random-effects mean bias.

The initial full model was fitted with Age, Weight, Breed, and Heart Rate (HR) as fixed effects
with random effects for HORSE, TIME, and VEL on the observed differences (the difference of the
horse body temperature readings between body temperature obtained by any of the four methods and
body temperature obtained by TCV). The final full model was then run with statistically significant
fixed effects and the random effects to get the between variances of the random effects and residual
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error variances. Accordingly, the standard error (SE) for obtaining the confidence intervals [61] for the
LOA was computed using the following formula:

SE =
√

VarHorse + VarTime + VarVel + VarResidual (A4)

where
VarHorse = variance due to horse to horse variability;

VarTime = variance across time;

VarVel = variance across velocity.

Finally, the null model consisting of only the random effects of HORSE, TIME, and VEL was fitted
to get the mean bias in the observed body temperature differences. Accordingly, the 95% CI for the
limit of agreement was computed using the following formula:

µb ± Zα/2 * SE (A5)

where µb is the the mean bias and α is the level of significance

Table A1. Normality tests of body temperature readings of horses before, during, and after
treadmill exercise.

Normality Test

Statistic p-Value

Phase A (Prior to exercise)
TCV 0.969 0.893
TPM 0.904 0.316
TGM 0.984 0.981
TSM 0.929 0.506
TR 0.765 0.012 *

Phase B (Exercise on the treadmill)
TCV 0.918 0.413
TPM 0.841 0.167
TGM 0.945 0.657
TSM 0.946 0.674
TR 0.958 0.795

Phase C (Immediately after treadmill)
TCV 0.93 0.512
TPM 0.941 0.621
TGM 0.942 0.633
TSM 0.792 0.023 *
TR 0.983 0.975

Phase D (Cool-down walk)
TCV 0.921 0.438
TPM 0.914 0.385
TGM 0.943 0.637
TSM 0.941 0.618
TR 0.899 0.281

All the data (Phases A–D)
TCV 0.94 0.076
TPM 0.931 0.057
TGM 0.905 0.008 *
TSM 0.94 0.077
TR 0.954 0.184

* refers to non-normal distributed data and hence the Spearman rank correlation coefficient, median, and interquartile
range were reported. TCV = central venous temperature, TPM = pectoral muscle temperature, TGM = gluteal muscle
temperature, TSM = splenius muscle temperature, TR = rectal temperature.
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Table A2. Limit of agreement (LOA) for body temperature readings of horses before, during, and after
treadmill exercise.

LOA Normality Test

Mean Bias LL UL Statistic p-Value

Phase A (Prior to exercise)
TPM 0.40 0.261 0.539 0.89 0.22
TGM 0.388 0.13 0.645 0.83 0.07
TSM −0.088 −0.274 0.099 0.96 0.85
TR −0.195 −0.438 0.048 0.87 0.14

Phase B (Exercise on the treadmill)
TPM 0.199 −0.058 0.297 0.95 0.72
TGM 0.076 −0.052 0.204 0.90 0.26
TSM 0.254 −0.09 0.599 0.92 0.46
TR 0.647 0.488 0.813 0.97 0.86

Phase C (Immediately after treadmill)
TPM −0.5 −0.851 −0.149 0.90 0.31
TGM −0.575 −0.787 −0.363 0.94 0.60
TSM −0.075 −0.691 0.541 0.80 0.03
TR 1.496 1.131 1.861 0.91 0.33

Phase D (Cool−down walk)
TPM −0.768 −1.23 −0.307 0.98 0.96
TGM −1.172 −1.515 −0.829 0.88 0.19
TSM −1.018 −1.537 −0.499 0.97 0.85
TR 0.034 −0.217 0.286 0.91 0.32

LL = lower limit, UL = upper limit, TPM = pectoral muscle temperature, TGM = gluteal muscle temperature,
TSM = splenius muscle temperature, TR = rectal temperature.

Table A3. Limit of agreement (LOA) of body temperature readings of horses during Phases B (exercise
on the treadmill) and D (cool-down walking).

Mean Bias Lower Limit Upper Limit

TPM −0.319 −1.078 0.441
TGM −0.459 −1.078 0.441
TSM −0.26 −1.653 1.134
TR 0.483 −0.787 1.799

TPM = pectoral muscle temperature, TGM = gluteal muscle temperature, TSM = splenius muscle temperature,
TR = rectal temperature.
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