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Simple Summary: For dog breeders, health is one of the main criteria when choosing a
breeding animal; thus, selection for good anatomy is the key to reduce orthopedic disorders.
In many dog breeds, radiographic screening for canine hip and elbow dysplasia is a compulsory test
for breeding; however, these multifactorial traits are determined by genetic and environmental factors.
Therefore, it is extremely difficult to eliminate these disorders from the population. In natural
selection, such traits can be “purged” out of the population with inbreeding. The study aimed to
examine the inbreeding-purge of canine hip and elbow dysplasia in the border collie breed. The main
conclusion was that over-representation of homozygous individuals may have a positive effect on hip
and elbow conformation.

Abstract: Pedigree data of 13,339 border collie dog was collected along with canine hip dysplasia (CHD)
and canine elbow dysplasia (CED) records (1352 CHD and 524 CED), and an inbreeding–purging
(IP) model was created. Ancestral inbreeding coefficients were calculated by using a gene dropping
simulation method with GRain 2.2 software. Cumulative logit models (CLM) for CHD and CED
were fitted using a logit-link Poisson distribution and the classical (F_W), and ancestral inbreeding
(F_BAL, F_KAL, and F_KAL_NEW) coefficients as linear regression coefficients. The effective population
size was calculated from F_W and decreased in the examined period along with an increase of F_W;
however, slight differences were found as a consequence of breeding dog imports. CHD values were
lowered by the expansion of F_BAL, as the alleles had been inbred in the past. For CHD, signs of
purging were obtained. There was a positive trend regarding the breeding activity (both sire and
dam of the future litters should be screened and certified free from CHD and CED), as years of
selection increased the frequency of alleles with favorable hip and elbow conformation. Division
of the ancestral inbreeding coefficient showed that alleles that had been identical by descent (IBD)
for the first time (F_KAL_NEW) had a negative effect on both traits, while F_KAL has shown favorable
results for alleles IBD in past generations. Some authors had proven this phenomenon in captive
populations or experimental conditions; however, no evidence of inbreeding purge has ever been
described in dog populations. Despite the various breeding practices, it seems that alleles of these
polygenic disorders could be successfully purged out of the population with long-term selection.
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1. Introduction

Dog breeds had gone through several morphological and functional changes over the centuries
as a result of selective breeding. In the 19th century—at the time of Kennel Club foundations—dog
populations went through the greatest bottleneck effect in dog breeding history. With the rising
interest in purebred dogs, selection pressure has affected dog breeds considerably, and they have
suffered a higher loss of genetic diversity than other domesticated species [1,2] also reported that
out of 207 examined breeds, collies showed the highest average inbreeding. Due to the repeated
use of popular sires, breeding for phenotype and linebreeding also resulted in smaller effective
population size [3]. While undesirable traits are eliminated from other agricultural species as breeding
programs focus on production and longevity, selection in dog breeding concentrates on looking and
behaving in certain ways [4] Alongside the transformation of breed functions (from working dogs
to companion pets), lower within-breed heterogeneity and unhealthy anatomy leads to inherited
disorders, which can be connected to breed standards highlighting show ring appearance. Some of
these health problems are monogenic (produced by a single gene or allele); on the other hand, there are
multifactorial traits that are influenced by genetic factors and the environment.

The border collie was mainly a working breed during the last two centuries; however, nowadays
show-line dogs make up a great part of the population as a good family pet with lower energy levels.
Dog breeders and the different kennel clubs operate with compulsory genetic and clinical health tests
for breeding animals (in Hungary, compulsory tests are only in the working line) to increase the chance
to produce healthy offspring. The most common clinical tests for orthopedic disorders are the screening
of possible canine hip dysplasia (CHD) and canine elbow dysplasia (CED). These multifactorial traits
are both affected by genetic and environmental components showing great incidence variability among
breeds with mixed results of phenotypic selection [5,6].

CHD-affected dogs diagnosed by radiographic imaging have abnormal hip development with
femoral head luxation and ossification delay [7]. Selection is based on phenotype by scaling images
from normal to severe [8]. CED was previously defined as a combination of orthopedic disorders
of the foreleg, such as fragmented medial coronoid process, osteochondritis, an incongruity of
the elbow joint, and ununited anconeal process [9] leading to osteoarthritis, which is debilitating
and incurable. As a result, dysplasia categorized as severe or moderate is painful and frequently
causes lameness.

Breeding schemes showed a diverse degree of improvement in hip and elbow joint confirmation
due to different sample sizes assessment protocols [6,10] and variation in the effectiveness of selection.
CHD was registered to Orthopedic Foundation of Animals (OFA) in the ’60s, to provide data for
breeding programs by integrating genetic and phenotypic information of animals and support selection
decisions [11,12]. Heritability of CHD ranges from h2 = 0.35 [6] to 0.58 [13,14], while CED heritability
ranges from 0.01 to 0.36 [15], depending on the pedigree completeness and breed differences. In closed
populations, such as purebred dog populations, selection pressure and inbreeding may reduce fitness
since inbreeding enhances the number of homozygotes of a certain allele (inbreeding depression).
In conservation genetics, [16] proposed that Ne should be at least 100 to avoid short-term inbreeding
depression; this concept should be also be promoted in dog breeding. Nevertheless, inbreeding
promotes the expression of recessive alleles; it also gives a rise to the effectiveness of natural selection
known as genetic “purge” [17]. The beneficial effects of purging were first reported in a small
captive Speke’s gazelle population [18,19] where the population’s reproductive performance was
improved within few generations. According to [18,19] selection and inbreeding were combined
to get rid of the deleterious alleles. Purging can be effective when the average effect of deleterious
mutations is strong (relative to the effective population size); inbreeding occurs gradually and over
several generations, and the population is sufficiently isolated so that purged deleterious alleles are
not reintroduced by immigration [20]. Although purging has extensively been analyzed, research
conducted in domesticated species is rare, and it is mostly related to a few cattle populations [21,22].



Animals 2020, 10, 1743 3 of 14

The study aimed to examine the border collie breed in an inbreeding–purging (IP) concept for CHD
and CED with the model of [23]. This concept uses ancestral inbreeding in an attempt to demonstrate
that inbreeding depression is partially purged due to selection.

2. Materials and Methods

2.1. Data Collection

The database of the examined population contained 13,339 individuals (5649 males and
7750 females) built up from electronic herd books and pedigrees from Hungarian breeders. The reference
population consisted of 1877 border collies (929 males and 948 females) born between 1990 and 2016
with relevant CHD and CED data. Genealogy information was tracked back from the late 1800s to the
present day. Records were created with EquiHun Pedigree Builder [24] with the following parameters:

• Individual identity number;
• Male parent;
• Female parent;
• Date of birth;
• Country of birth (i.e., country of origin).

The reference population had pedigree completeness of 99.6% up to 15 generations, and the
pedigree analysis was carried out by [25]. Ancestral inbreeding coefficients were calculated by a
gene dropping simulation method [26,27] with GRain 2.2 (Wageningen University, [28]) to avoid
overestimation of ancestral inbreeding. In the present study, 1,000,000 simulations were used,
and correlations between all inbreeding coefficients were tested. 1352 CHD and 525 CED data were
added to pedigrees for further evaluation. General requirements of CHD and CED screening were
described in detail by FCI (Federation Cynologique Internationale, [29]), where the main regulations
were as follows:

• The minimum age of the dog for radiographic imaging is 1 year;
• The dog must be identified by a microchip;
• All dogs should be sufficiently sedated or anesthetized during the procedure to relax all muscles.

The categories of CHD data were summarized in Table 1. For further evaluation, FCI categories
were coded with numbers from 0 (excellent) to 4 (severe). Radiographic images were taken
individually by veterinarians and sent for evaluation to the Pet Orthopedic Association Hungary for
uniform assessment.

Table 1. Categories and code numbers of canine hip dysplasia.

Hip Rating Category Name Hip Scores

A Excellent 0
B Borderline 1
C Mild 2
D Moderate 3
E Severe 4

CED categories are described in Table 2 and coded from 0 (normal) to 3 (severe).

Table 2. Elbow rating categories.

Elbow Rating Category

0 Normal: No sign of arthrosis
1 Slight: Osteophytes, less than 2 mm
2 Medium: Osteophytes from 2 to 5 mm
3 Severe: Osteophytes, more than 5 mm
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2.2. Data Analysis

The applied models combine the genetic basis of inbreeding depression with a purging mechanism,
based on the assumption that inbred animals with inbred ancestry are less responsive to inbreeding
depression than inbred animals with non-inbred ancestry [19]. Since the inbred ancestors that can
attain breeding requirements for health are less likely to be carriers of deleterious alleles, inbreeding
depression must be present for purging.

The change of inbreeding depression due to purging was calculated based on [30] as follows:

u = u0 + βf f + βfafa + βfdfd + βYOBYOB

where where u is the logit transformation of a measure of fitness (CHD or CED score); u0 is the mean
fitness of non-inbred animals; f a is the ancestral inbreeding coefficient; and βf, βfa, βfd and βYOB are the
regression coefficients associated with the inbreeding coefficient (f ), the interaction term ff a, maternal
inbreeding (f d) and year of birth (YOB), respectively.

The inbreeding coefficients were summarized by birth year (1990–2016), from the first date of
radiographic examination. The models contained the following inbreeding coefficients as logistic
regression coefficients:

• F_W: Inbreeding coefficient described by [31].
• F_BAL: Ancestral inbreeding coefficient, determined as the cumulative proportion of the genome

exposed to inbreeding effects [26]. F_BAL was created to test the magnitude and effectiveness
of inbreeding depression as the extent to which individual’s ancestors had been subjected
to inbreeding.

• F_KAL: Inbreeding coefficient defined by [17]. The probability that alleles had been autozygous
(IBD) in the previous generation at least once, where the common ancestor was presented on both
sides of the pedigree.

• F_KAL_NEW: Kalinowski new inbreeding coefficient, described as alleles IBD, was inbred for the
first time [17].

Effect plots of the applied models were created with the “effects” package in R [32] to display
differences between the models and illustrate the IP, where purging is the fitness decline with increasing
inbreeding (purifying selection, facilitated by inbreeding) where inbred animals with good performance
have been selected from the population as parents, while the poorly performing inbred animals are not
selected [22].

R package ‘’MASS” was used (Springer, New York, NY, USA [33]) to make a cumulative logit
model (CLM) for ordinal responses. The data were fitted with ‘’polr” function. An effective population
size was calculated from an individual increase of inbreeding (F_W) [34].

To estimate the proportion of each dog’s genome that alleles were identical by descent in an
ancestor of a dog, for the first time a stochastic approach was applied by gene dropping [35] with GRain
2.2 (Wageningen University, [28]), due to the fact that F_w and F_BAL are dependent. So, the procedure
included two unique alleles assigned to each founder and generated the genotypes of all offspring
along with the pedigree by Mendelian segregation rules.

The structure of the applied models are described in Table 3 by the method of [36], as follows:
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Table 3. Structure and fitting of the applied models.

Model Component Models
AIC

CED CHD

1 F_w + F_BAL 95.56 2243.45
2 F_KAL + F_KAL_New 92.82 2250.16

F_W: inbreeding coefficient of the population; F_BAL: ancestral inbreeding coefficient of the population; F_KAL:
Kalinowski inbreeding coefficient of the population; F_KAL_NEW: Kalinowski “new” inbreeding coefficient of the
population; AIC: akaike information criterion for model 1 and 2; CED: canine elbow dysplasia; CHD: canine
hip dysplasia.

3. Results

The effective population size of the border collie breed in the examined period (from the first litter
born in Hungary until the present day) is demonstrated in Figure 1.
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Figure 1. The effective population size of the border collie breed.

The effective size of both male and female dogs decreased each year. Despite the popularity of
the breed, owners usually buy cheaper dogs from unregistered breeders, and the number of dogs with
registered pedigree diminishes each year. Besides, using favorite males for matings is a common trend
in dog breeding that can lower the population size and enhance inbreeding. On the contrary, it can
increase litter homogeneity, which is highly preferred from the breeder’s point of view.

Figure 2 summarizes the estimated values for the ancestral inbreeding coefficients and F_W by
birth year.

An increasing trend of estimated F_W values can be observed; however, differences were found
between the examined years, thanks to the popularity of the working line from time to time. These dogs
were imported mainly for FCI collecting style herding events. This finding indicates that differences
between breeding trends can maintain genetic variability; on the other hand, the number of working-line
border collies is still low compared to the show-line dogs [25]. Looking at the estimated values for
F_BAL coefficients, similar tendencies were observed. The first border collie arrived in Hungary in 1990;
thus, ancestral inbreeding was enhanced as the first kennels started their breeding programs. Table 4
summarizes the significant inbreeding coefficients regarding CED and CHD for the applied models.
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For CHD, only F_KAL_NEW has no significant effect, while F_W and F_BAL in ‘’model 1” are
insignificant for the development of CED in the population. Correlation coefficients of F_W and
F_BAL are relatively weak (0.48), while those between F_KAL and F_W show a strong correlation (0.9)
because of the part–whole relationship between them. Similar results were previously reported by [22],
who examined the IP concept in the Irish Holstein–Friesian population.
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Table 4. Effect of the inbreeding coefficients for the examined traits.

Variables
CED CHD

Pr(>|z|) Pr(>|z|)

F_W 0.802 0.009 **
F_BAL 0.425 0.003 **
F_KAL 0.001 *** 0.003 **

F_KAL_NEW 0.011 * 0.444

*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001.

3.1. Results for Purging in Canine Hip Dysplasia

Figure 3 demonstrates the number of excellent (A) and borderline (B) CHD examinations by
birth year.
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Figure 3. Number of excellent (A) and borderline (B) canine hip dysplasia (CHD) results in the reference
population. A: Excellent; B: Borderline.

Results show that the number of dogs with excellent results increased each year. Altogether,
1235 border collies were diagnosed with A and B hip results, while cases of mild, moderate and severe
CHD were low (34).

Figure 4 demonstrates the effect plots of the inbreeding–purging concept of variables for CHD
and visualizes F_W showing their effect on the examined trait.

The shaded area represents a pointwise confidence band for the fitted values, based on standard
errors computed from the covariance matrix of the fitted coefficients. The rug plot shows the location
of the values of inbreeding. It is visible that as the inbreeding coefficient (F_W) increases year-by-year
in the population, the probability of dogs with excellent results increases; however, the genetic load of
partially deleterious alleles is still represented in the population (score: 1–2).

Inbreeding in the ancestral population displays the phenomenon of purging. As F_BAL values
increase, the probability of CHD decreases. It is detectable that after an initial drop, the examined
inbred population recovered its level of health, thus with the occurrence of purging through several
generations, it should contain fewer deleterious alleles. There is a great number of dogs with high
ancestral inbreeding having excellent hip results (score: 0), while the probability of having ‘’borderline”
or ‘’mild” hip results (score: 1–2) remains low. This may be the consequence of long-term selection for
healthy hips as a favorable trait.

The ancestral inbreeding coefficient defined by [17] showed similar tendencies to F_BAL. ‘’Moderate”
and ‘’severe” hip conditions remained constant regarding all significant inbreeding coefficients.
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3.2. Results of Purging in Canine Elbow Dysplasia

For CED results, the tendencies were similar; however, the estimated values of classical inbreeding
coefficient and the ancestral inbreeding defined by [26] did not show any significant differences
(p = 0.802, p = 0.425).

The number of normal (0) and slight (1) CED results is represented in Figure 7.
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Figure 7. Number of normal (0) and slight (1) canine elbow dysplasia (CED) results by birth year in the
reference population. 0: Normal; 1: Slight.

Normal elbow records were the most frequent during the studied period (5), while the rate
of X-ray evaluations increased. Besides, the breeding strategies were advantageous, since only
27 dogs were diagnosed with severe CED and failed as a breeding animal. After the division of the
inbreeding coefficient into two parts—F_KAL and F_KAL_NEW—for CED shows, that selective breeding
was successful.

The effect plots for F_KAL and F_KAL_NEW are shown in Figures 8 and 9.
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Figure 8. Effect plot of F_KAL for CED.
Animals 2020, 10, x FOR PEER REVIEW  11 of 14 

 

Figure 9. Effect plot of F_KAL_NEW for CED. 

CED for selection criteria are very recent (radiographic imaging to detect this disorder started in 

the mid‐2000s in Hungary), and still optional. It can be concluded that as the amount of the ancestral 

inbreeding rises, CED results improve. This result is also favorable; however, only 2 out of these 525 

scanned dogs had severe CED.   

These results demonstrate  the differences between Ballou’s and Kalinowski’s concept.  In  this 

case, examining the estimated values for purging requires not just the classical inbreeding‐purging 

concept, but the previously described ancestral inbreeding approaches. 

4. Discussion 

Within‐breed variation was previously described by [37] and [1], showing that dog populations 

had a great selection pressure and several bottlenecks. Overuse of popular sires and a large amount 

of unequally used breeding animals [2] decrease genetic diversity. Nevertheless, other mating trends 

such  as  “outbreeding”  and  “outcrossing” may  have  a  positive  effect  on  genetic  diversity  and 

inbreeding depression [3]. Thus, consequences in connection with the health status of the breed can 

be  divided  into  two  categories:  alleles  concerning  lethal  and  sub‐lethal  mutations  and  mildly 

deleterious mutations  that  are  only  partially  recessive  [38].  The  over‐represented  homozygous 

individuals might have a positive effect, since recessive alleles can be purged out of the population 

[39,40] by  the  increased amount of  inbreeding and  selection, having a positive  effect on  traits  in 

connection with health. Our results show that ancestral inbreeding coefficients had a positive effect 

on hip and elbow conformation; however, the genetic load was not completely excluded from the 

population.   

Comparing the  inbreeding coefficients by [17], it can be concluded that as the number alleles 

IBD in the past increased, the hip conformation results started to improve. Before the availability of 

phenotypic assessments,  there was no possibility  to pre‐select breeding dogs by  their anatomical 

values. On the other hand, alleles IBD for the first time tended to have a negative effect on health. 

F_KAL_NEw tended  to be higher, and  the number of dogs with  excellent and good hip  results was 

enhanced. F_KAL_NEW was used only  in a  few studies  [21,22] where  the detrimental effects of  these 

Figure 9. Effect plot of F_KAL_NEW for CED.

CED for selection criteria are very recent (radiographic imaging to detect this disorder started in
the mid-2000s in Hungary), and still optional. It can be concluded that as the amount of the ancestral
inbreeding rises, CED results improve. This result is also favorable; however, only 2 out of these
525 scanned dogs had severe CED.
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These results demonstrate the differences between Ballou’s and Kalinowski’s concept. In this case,
examining the estimated values for purging requires not just the classical inbreeding-purging concept,
but the previously described ancestral inbreeding approaches.

4. Discussion

Within-breed variation was previously described by [37] and [1], showing that dog populations
had a great selection pressure and several bottlenecks. Overuse of popular sires and a large amount of
unequally used breeding animals [2] decrease genetic diversity. Nevertheless, other mating trends such
as “outbreeding” and “outcrossing” may have a positive effect on genetic diversity and inbreeding
depression [3]. Thus, consequences in connection with the health status of the breed can be divided into
two categories: alleles concerning lethal and sub-lethal mutations and mildly deleterious mutations that
are only partially recessive [38]. The over-represented homozygous individuals might have a positive
effect, since recessive alleles can be purged out of the population [39,40] by the increased amount of
inbreeding and selection, having a positive effect on traits in connection with health. Our results show
that ancestral inbreeding coefficients had a positive effect on hip and elbow conformation; however,
the genetic load was not completely excluded from the population.

Comparing the inbreeding coefficients by [17], it can be concluded that as the number alleles
IBD in the past increased, the hip conformation results started to improve. Before the availability
of phenotypic assessments, there was no possibility to pre-select breeding dogs by their anatomical
values. On the other hand, alleles IBD for the first time tended to have a negative effect on health.
F_KAL_NEW tended to be higher, and the number of dogs with excellent and good hip results was
enhanced. F_KAL_NEW was used only in a few studies [21,22] where the detrimental effects of these
coefficients were reported for most of the examined traits. [41] reported the harmful effects of new
inbreeding and the lack of negative effects of old inbreeding for reproductive traits in rabbits.

The phenotypic trend for CHD and CED in 60 different dog breeds showed substantial differences
according to [14]. The study pointed out that out of the examined breeds, border collies are not in the
group of breeds that are highly affected by orthopedic disorders. According to [42], the correlation
between radiographic and physical signs depends on physical demands (working dogs and family
pets are different due to muscularity), age, and the breed. [43] previously reported a positive effect of
selective breeding for exercise physiology and selective sweeps linked to genes influencing muscle
fiber formation in thoroughbred horses. [44,45] and [46,47] also found that age at the X-ray examination
has a serious impact on hip and elbow results.

The most often cases for purging are slow inbreeding and competitive conditions [48,49]. As our
models proved, recessive deleterious alleles seemed to be purged in inbred ancestors; thus, dogs with
higher F_BAL and F_KAL, for both traits are expected to carry less of these alleles to the next generation
than individuals with the same level of inbreeding but lower ancestral inbreeding values. [23] previously
described this phenomenon in captive populations.

5. Conclusions

The decrease of effective population size points to a trend: that dog owners do not prefer to
buy from registered breeders. The results show that models containing the alternative inbreeding
coefficients and the significant positive effects of ancestral inbreeding coefficients on the examined
traits suggest that the border collie population in Hungary experienced purging. This finding was not
surprising when taking into account the long and complete pedigree and the slow but continuous
inbreeding rate, and the very high ancestral inbreeding coefficient at the end of the analyzed period.

To maintain variability, the genetic contribution of some preferred males could be limited by
mating schemes to help the breeders with breeding decisions. Import breeding dogs could be also a
solution to this problem; on the other hand, breeding standards are slightly different between countries,
so this requires collaboration between breeding organizations and scientists to improve the health of
the next generation over looks.
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