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Simple Summary: Throughout horse industry modernization, sport horse breeds have been
genetically evolved in accordance to their abilities in sport disciplines providing an opportunity to
study selection signatures in the genome level. Future selection strategies of sport horse breeds can
be optimized by improving our knowledge of genomic signatures of selection. The main goals of this
study are identifying and investigating the genes and their biological pathways underlying selective
pressures in sport and non-sport horse breeds. Here, we detected 49 genes as selective signals
using fixation index, nucleotide diversity and Tajima’s D approaches. Intriguingly, our findings in
functional enrichment analysis revealed the selection footprints related to musculoskeletal system
development. Detected candidate genes and biological pathways in this study may be helpful to
widen our perspective in recent breeding efforts and genomic evolutionary mechanisms in sport
horse breeds.

Abstract: Selective breeding has led to gradual changes at the genome level of horses. Deciphering
selective pressure patterns is progressive to understand how breeding strategies have shaped the
sport horse genome; although, little is known about the genomic regions under selective pressures in
sport horse breeds. The major goal of this study was to shed light on genomic regions and biological
pathways under selective pressures in sport horses. In this study, whole-genome sequences of
16 modern sport and 35 non-sport horses were used to investigate the genomic selective signals of
sport performance, by employing fixation index, nucleotide diversity, and Tajima’s D approaches. A
total number of 49 shared genes were identified using these approaches. The functional enrichment
analysis for candidate genes revealed novel significant biological processes related to musculoskeletal
system development, such as limb development and morphogenesis, having been targeted by
selection in sport breeds.
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1. Introduction

The livestock species have been shaped by humans according to their needs and purposes since the
beginning of domestication process. The establishment of studbooks and modernization of breeding
methods have played key roles to increase the selective pressure for traits of interest in livestock
species [1]. In order to improve athletic performance of horses, the selection programs based on
modern methods started in the late 20th century, particularly in Europe, by warmblood horse breeding
organizations [2]. Mainly, the German and Dutch warmbloods have been bred as sport breeds and
used for three major athletic disciplines: dressage, showjumping, and eventing [3].

Swift technical advances of genome sequencing have made the large-scale sequencing data
available for investigation of candidate genes associated with economic traits [4–6]. Particularly,
revealing the genetic architecture of the horse athletic performance is crucial for breeding organizations
to optimize the selection and mating strategies that directly affects the marketability of sport horse
breeds [7]. Although the study of equine genomics started late in comparison with the genomics
studies of other species [6], it has been improved increasingly in recent years [3,8–11]. The identification
of genomic regions that have been subjected to selective pressure as signatures of selection is one
of the approaches to screen the candidate genes for economic traits in horses [3,10] and other
livestock species [5,12,13]. Detecting the candidate genes for traits such as reproduction [14], racing
performance [15], body size [10,16,17], and type [18] was the main objective in recent horse signatures of
selection studies. The main goals of this study are to investigate the population genetic structure, verify
the role of effective genes, and detect novel candidate genes associated with athletic performance, using
whole-genome sequences of sport and non-sport horse breeds. Tracing the footprints of selection in
the equine genome may help us better understand the selection role for athletic disciplines specifically
in sport breeds during the evolution. Additionally, it can be useful to optimize the single nucleotide
polymorphism (SNP) arrays that are widely used in breeding programs based on genomic evaluation.

2. Materials and Methods

2.1. Animals

The whole-genome sequence data (Supplementary Table S1) of Baden-Wurttemberg (n = 1), Dutch
warmblood (n = 1), Hanoverian (n = 6), Holstein (n = 2), Oldenburg (n = 3), Trakehner (n = 1), and
Westphalian (n = 2) as seven sport breeds, as well as, Akhal-Teke (n = 3), American Miniature (n = 2),
Arabian (n = 2), Connemara pony (n = 4), Dülmen pony (n = 1), Friesian (n = 1), Jeju pony (n = 2),
Noriker (n = 1), Percheron (n = 1), Saxon-Thuringian Heavy Warmblood (n = 1), Shetland pony (n = 4),
Sorraia (n = 1), Standardbred (n = 6), Thoroughbred (n = 5), and Welsh pony (n = 1) as 15 non-sport
breeds, were downloaded from the European Nucleotide Archive (https://www.ebi.ac.uk/ena). Former
studies were used to determine the sport and non-sport breeds [2,3].

2.2. Whole-Genome Mapping and Variant Calling

For each raw whole-genome sequence, the quality control was performed by FastQC (version 0.11.6,
http://www.bioinformatics.babraham.ac.uk/projects/fastqc), after converting their format (SRA to fastq
format). The low-quality bases and adaptors were filtered by Trimmomatic 0.36 [19]. The qualified reads
were aligned against the reference horse genome (EquCab2.0, ftp://ftp.ensembl.org/pub/release-93/fasta/

equus_caballus/dna), using Burrows–Wheeler Aligner 0.7.17-r1188 (http://bio-bwa.sourceforge.net) [20].
The PCR duplicates were detected and removed using Picard 2.17.11 (https://broadinstitute.github.io/

picard). Recalibrating based quality score (by applying “BaseRecalibrator” and “BQRS” arguments),
detecting SNPs, and insertion/deletion (by applying “HaplotypeCaller” argument) were conducted
using suggested workflow in Genome Analysis Toolkit 3.8 [21]. After discarding X chromosomes
and insertion/deletion (in all chromosomes), in order to detect high-quality SNPs, all SNPs exhibiting
mapping quality <25, quality by depth <2, genotype quality <40, and fisher strand >60 and mapping
quality rank sum <−12.5, minor allelic frequency <0.01, Hardy–Weinberg p-value < 0.001, and
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genotype frequency <0.1, as well as individuals with more than 10% missing genotypes, were marked
and removed.

2.3. Population Genetic Structure

The neighbor-joining phylogenetic analysis was performed using VCF-kit 0.1.6 (https://vcf-kit.
readthedocs.io/en/latest) [22] and FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree), to assess
the genetic distance among all individuals. To have an overview of the population structure
for under-studied individuals and breeds, principal component analysis (PCA) and Bayesian
model-based approach were carried out, using PLINK 1.9 (https://www.cog-genomics.org/plink) [23]
and ADMIXTURE 1.3 (http://software.genetics.ucla.edu/admixture) [24] software, respectively. After
PCA visualization, a clustering approach was performed on PCA results, using k-mean clustering
algorithm in R software (https://cran.r-project.org). In addition, long runs of homozygote regions for
sport and non-sport groups were quantified using PLINK 1.9 software by homozyg command and
default options follows: homozyg-window-snp 50, homozyg-window-het 1, homozyg-window-missing
5, homozyg-gap 1000, homozyg-density 50, homozyg-snp 100, and homozyg-kb 1000 [23]. Furthermore,
linkage disequilibrium (LD) was estimated and visualized using PopLDdecay 1.01 software
(https://github.com/BGI-shenzhen/PopLDdecay) and a perl script, respectively [25].

2.4. Genome-Wide Selective Signals Scan and Gene Ontology (GO)

Here, two main approaches including fixation index (Fst) [26] and pairwise nucleotide diversity
(θπ) [27] were used to detect the signatures of selection differentiating sport breeds from non-sport
breeds. To identify more reliable selective signal regions, the Tajima’s D values [28] in sport group
were calculated for shared selective signal windows between Fst and θπ methods. A sliding window
approach (100 kb with a step size of 50 kb) was used to calculate Fst and θπ using VCFtools 0.1.15
(http://vcftools.sourceforge.net/index.html) [29], and Tajima’s D values using VCF-kit 0.1.6 [22] software.
After performing Z transformation of Fst (Z(Fst)) values using “scale” command in R software, the

shared windows in top 1% of Z(Fst) and log2 (
θπ(Non−sport)
θπ(Sport)

) values were validated using Tajima’s D
values in sport group. Also, by employing “ranges” function, a custom-made script was applied in R
software, to extract overlapped regions between long homozygous and genomic selection signature

regions (shared regions between top 1% of Z(Fst), top 1% of log2 (
θπ(Non−sport)
θπ(Sport)

), and Tajima’s D).
Gene ontology analysis was performed using Gene Ontology Consortium (http://geneontology.org),

to investigate the biological enrichment of genes under selective pressure.

3. Results and Discussion

3.1. Genomic Variants and Population Genetic Structure

The high-quality paired-end reads of 51 sport and non-sport horses obtained from NextSeq
500, Illumina MiSeq and HiSeq (2000, 2500, and 3000) platforms were aligned to equine genome
reference (94.59%–99.84%) with 14.42X average coverage (Supplementary Table S1). These data yielded
14,843,096 high-quality SNPs after variant calling and quality control steps.

The population genetic structure studies have been effective to describe the impact of evolutionary
processes such as biogeographic history and selection, and they are also spotlights to determine the
genetic variation among populations [30]. Former studies have revealed that combining the results of
different population genetic structure analyses such as PCA, phylogenetic, and Bayesian approaches
can be helpful to provide a comprehensive interpretation for genetic variation in livestock populations
e.g., horse [6,10], goat [5], and sheep [4]. Here, we utilized the abovementioned methods to unfold
population genetic structure of the studied horse breeds.

In this study, the phylogenetic analysis illustrated sport breeds including Dutch warmblood (KW),
Baden–Wurttemberg (BW), Hanoverians (HAN), Holsteins (HOL), Oldenburgs (OLD), Trakehner
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(TRA), and Westphalians (WF) in a main branch (Figure 1, red color). Similar to former studies, there
was a close genetic relationship between sport horses and Thoroughbred [10,31,32]. Arabians and
Akhal-Tekes, which were Middle Eastern horse breeds, were classified in one branch, similar to Petersen
et al. [16] and Kader et al. [10]; this might be due to their shared biogeographic history and founder
lines [10,16]. Standardbreds, Connemara ponies and Jeju ponies were properly grouped in unique
separated branches. Saxon-Thuringian Heavy Warmblood was placed between Standardbred and
Connemara pony branches in the phylogenetic tree. To the best of our knowledge, this is the first report
of Saxon-Thuringian Heavy Warmblood phylogenetic analysis showing its close genetic relationship
with these two breeds. The phylogenetic analysis demonstrated the close genetic relationship among
Connemara ponies, Dülmen pony, Sorraia, and Welsh pony. The close genetic relationships between
Dülmen pony and Sorraia had also been observed in a previous study using PCA analysis [33].
As expected, Shetland and American Miniatures were classified in one branch because of their common
ancestors [34]. Percheron, Noriker and Friesian were categorized in a branch that is similar to
the close genetic distance between Noriker and Friesian, confirmed by a previous study based on
mitochondrial-DNA data [35].
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Figure 1. Neighbor-joining phylogenetic tree for sport and non-sport horse breeds. The sport breeds
(red lines) are Baden-Wurttemberg (BW), Dutch warmblood (KW), Hanoverian (HAN), Holstein
(HOL), Oldenburg (OLD), Trakehner (TR), and Westphalian (WF). Non-sport breeds (purple lines) are
Akhal-Teke (AKT), American Miniature (AMP), Arabian (AR), Connemara pony (CONP), Dülmen
pony (DUP), Friesian (FR), Jeju pony (JEP), Noriker (NOR), Percheron (PER), Saxon-Thuringian Heavy
Warmblood (SAX), Shetland pony (SHP), Sorraia (SOR), Standardbred (ST), Thoroughbred (TH), and
Welsh pony (WP).
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In the individual-scaled PCA analysis, 3.52% and 2.20% of the genetic variation were explained
by the first two principal components, respectively (Figure 2). In contrast to the phylogenetic analysis,
Percheron, Noriker, Friesian, and Jeju ponies (PER–NOR–FR–JEP group) were classified in a cluster
by PCA analysis. Saxon-Thuringian Heavy Warmblood and Connemara ponies along with Sorraia
(SAX–CONP–SOR group), as well as, Dülmen pony and Welsh pony together (DUP–WP), were
grouped in separate clusters. Except for HAN6, all sport individuals were classified in one group
(Sport). Thoroughbreds and HAN6 were grouped in a shared cluster (TH–HAN6), probably due
to hybridization between these breeds. This close genetic relationship was also confirmed by our
phylogenetic analysis. Other clusters (AR–AKT, ST, and SHP–AMP) in the PCA analysis supported the
phylogenetic results.
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Figure 2. Principle component analysis for sport and non-sport horse breeds. The sport breeds are
Baden-Wurttemberg (BW), Dutch warmblood (KW), Hanoverian (HAN), Holstein (HOL), Oldenburg
(OLD), Trakehner (TR), and Westphalian (WF). Non-sport breeds are Akhal-Teke (AKT), American
Miniature (AMP), Arabian (AR), Connemara pony (CONP), Dülmen pony (DUP), Friesian (FR), Jeju
pony (JEP), Noriker (NOR), Percheron (PER), Saxon-Thuringian Heavy Warmblood (SAX), Shetland
pony (SHP), Sorraia (SOR), Standardbred (ST), Thoroughbred (TH), and Welsh pony (WP). The PC1
and PC2 are the first two principal components.

When K = 2 in the whole-genome admixture clustering based on the Bayesian approach, all
of horses were categorized into four main groups (Figure 3). These groups include the following:
(1) Thoroughbreds and sport breeds; (2) Noriker, Saxon-Thuringian Heavy Warmblood, Percheron,
Friesian, Sorraia, Dülmen pony, Connemara ponies, Welsh pony, and Jeju ponies; (3) American
Miniature and Shetland ponies; and (4) Standardbreds, Arabians, and Akhal-Tekes. The Standardbreds
at K = 6 and K = 8, American Miniature and Shetland ponies at K = 8 and K = 2, Arabians and
Akhal-Tekes at K = 6 and K = 8, and Connemara ponies at K = 6 were clustered as unique groups, which
were also supported by our phylogenetic tree. It should be noted that in aforementioned analyses, the
interpretation of the results related to the breeds with one individual such as Baden-Wurttemberg,
Dutch warmblood, Trakehner, Dülmen pony, Friesian, Noriker, Percheron, Saxon-Thuringian Heavy
Warmblood, Sorraia, and Welsh pony requires further investigation using larger sample size.
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Figure 3. Bayesian clustering plot for 4 K values (K = 2, K = 4, K = 6, and K = 8) in 51 horses. Each horse
is indicated horizontally which is divided into colored blocks and each color demonstrates one ancestral
population. The sport breeds are Baden-Wurttemberg (BW), Dutch warmblood (KW), Hanoverian
(HAN), Holstein (HOL), Oldenburg (OLD), Trakehner (TR), and Westphalian (WF). Non-sport breeds
are Akhal-Teke (AKT), American Miniature (AMP), Arabian (AR), Connemara pony (CONP), Dülmen
pony (DUP), Friesian (FR), Jeju pony (JEP), Noriker (NOR), Percheron (PER), Saxon-Thuringian Heavy
Warmblood (SAX), Shetland pony (SHP), Sorraia (SOR), Standardbred (ST), Thoroughbred (TH), and
Welsh pony (WP).

LD patterns are affected by a range of demographic force and evolutionary trend [36]; therefore,
investigation of LD patterns can be informative in population demography [6]. The LD patterns
between sport and non-sport groups indicated that the mean of r2 in both groups dropped rapidly
at approximately 10 Kb (Figure 4). The means of r2 at 300 Kb for sport and non-sport groups were
0.09 and 0.04, respectively. In a previous study, the mean of r2 at 300 Kb was approximately 0.08 for
Hanoverian as a sport breed, which is in agreement with our results [32].
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Size and frequencies of long contiguous segments of homozygous genotypes in the genome level
known as runs of homozygosity (ROH) are valuable for detection of genetic connectedness between
and within populations, as well as, recent inbreeding [6,14]. Additionally, identifying the ROHs can
be helpful to detect selective signals [14] and mutations related to recessive diseases in human [37].
In this study, we quantified ROHs for each individual to assess the recent inbreeding and genetic
connectedness among individuals (Supplementary Table S2). The total number of ROHs for sport
and non-sport breeds were 820 and 2400, respectively. The Supplementary Figure S1 indicates the
percentage of ROHs that are distributed in different lengths, in which the highest frequencies were
detected for 1–1.5 Mb in both sport and non-sport horse breeds. Frequency patterns and the extent of
ROHs depend on the population size, ancestry of animals, and recent or ancient selection pressures [38].
The most enriched ROHs chromosome (ECA1) had 8.65% of ROHs in the sport group and 10.79%
of ROHs in the non-sport group (Supplementary Figure S2), which might be due to the fact that
this chromosome is the largest chromosome in horse. The highest length-size of ROHs in the sport
and non-sport groups were located at ECA21: 13.12–20.41 Mb (average SNP density = 0.184) and
ECA15: 37.74–43.72 Mb (average SNP density = 0.211) in DUP and HAN3, respectively (Supplementary
Table S2).

3.2. Selective Signals Detection

The performance quality of sport breeds (e.g., show-jumping competitions) depends on various
factors such as muscular power and balance [39]. A few candidate genes related to sport performance
have been identified by previous genome-wide association studies [7]. However, assuming the sport
performance as a simple trait that is controlled by a few genes can be unrealistic [7], and, thus, signatures
of selection studies may identify novel candidate genes related to this complex trait. Additionally,
combining the results of different signatures of selection approaches can increase the reliability, because
different methods can focus on different genomic selective signals that have been subjected to selection
in varied time scales [40]. Our main selection signature tests in this study were fixation index [26] and
pairwise nucleotide diversity [27] based on population differentiation and allele frequency spectrum,



Animals 2020, 10, 53 8 of 14

respectively. Furthermore, we calculated the Tajima’s D values in sport group for shared selective
signals between fixation index and pairwise nucleotide diversity approaches to improve the reliability
and efficiency of the results.

After Z-transformation of the Fst for each window of 100 kb with a step size of 50 kb, a total
of 448 windows including 379 genes were detected as selective signals (Figure 5). The Z(Fst) values
followed the normal distribution (Supplementary Figure S3); the range of Z(Fst) values of windows
was from 3.27 to 9.13 located on ECA1: 137.75–137.85 Mb and ECA17: 71.90–72 Mb, respectively
(Supplementary Table S3). The ECA17: 71.90–72 Mb is an intragenic region. Furthermore, we identified
several candidates as selective signals including LCORL and NCAPG as wither height regulators [8],
and also, MYO5C that had been detected as a selective signal for muscular function in four German
warmblood populations in a former study [3].
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Figure 5. The distribution of absolute Z(Fst) values in 31 horse autosomes. The data points above
the horizontal line (blue line, Z(Fst) ≥ 3.26) are top 1% Z(Fst) values. The HOXDs located on ECA18:

54.55–54.65Mb were overrepresented genes in top 1% log2 (
θπ(Non−sport)

θπ(Sport)
).

The transformed pairwise nucleotide diversity ratios (log2 (
θπ(Non−sport)
θπ(Sport)

)) were calculated in

windows similar to that of Fst(Sport-Non-sport) approach (Figure 6). The log2 (
θπ(Non−sport)
θπ(Sport)

) ratios followed

normal distribution (Supplementary Figure S3). In the top 1% of log2 (
θπ(Non−sport)
θπ(Sport)

) ratios, a total number
of 448 windows including 388 genes were identified as selection signatures (Supplementary Table S3).

The highest log2 (
θπ(Non−sport)
θπ(Sport)

) ratio was observed for a window located on ECA6: 81.35–81.45Mb
containing a novel gene (ENSECAG00000026823). The ortholog of this novel gene is HMGA2 in
human and duck that is related to body height [8,41] and worth further investigation in equine
genome. Evidently, the wither height has been subjected as an economic trait by sport horse breeding
associations such as Royal Dutch Sport Horse (https://www.kwpn.org/). A signatures of selection study
on sport horse breeds revealed several candidate genes related to wither height [3].

The shared windows (n = 69) between Fst(Sport–Non-sport) and log2 (
θπ(Non−sport)
θπ(Sport)

) in the top 1%
consisting 65 genes were selected as selective signals (Figure 7). Finally, after discarding windows with
Tajima’s D values >0, a total number of 51 windows including 49 genes remained as genomic selective
signal regions (Supplementary Table S3). Although, two former studies have revealed genomic selection
signature regions using ROH approach in horse [14,42], there was no overlapped region between
ROHs and detected genomic selective signal regions in our study, that might be due to discarding some

https://www.kwpn.org/
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genomic selective signal regions by employing three approaches, various breeds, and small sample size.
The lowest Tajima’s D value (–2.82) was observed in a window located on ECA7: 0.15–0.25Mb. This
region contained ARHGAP45, POLR2E and SBNO2 genes. Additionally, HOXD gene cluster including
HOXD13, HOXD11, HOXD10, HOXD9, HOXD8 and HOXD3 located on ECA18 was detected by all
three approaches (Figure 8). In Arabian horses, a deletion of 2.7 Kb near to HOXD3 is related to
occipitoatlantoaxial malformation as craniocervical junction abnormality [43]. This phenotype is closely
related to poll angle and neck posture [44]. The attachments of the head and neck play pivotal roles
in athletic ability, movement, flexion, and balance of horses [45]. Furthermore, successes in dressage
performance depend on perfect horse balance and locomotion maneuverability [46]. The B cluster of
HOX gene was detected as a selective signal region in sport German warmblood populations [3].
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window in ECA18: 54.05–55.15Mb. The ECA18: 54.55–54.65 Mb window includes HOXDs that are
related to musculoskeletal system development processes.

A biological enrichment analysis for 49 genes under positive selective pressure revealed several GO
categories (Supplementary Figure S4) associated with cellular component organization or biogenesis
(GO:0071840), cellular process (GO:0009987), localization (GO:0051179), reproduction (GO:0000003),
biological regulation (GO:0065007), response to stimulus (GO:0050896), developmental process
(GO:0032502), multicellular organismal process (GO:0032501), metabolic process (GO:0008152), and
immune system process (GO:0002376). Significant biological processes under selective pressure in
sport breeds (Table 1) were the appendage development (GO:0048736), appendage morphogenesis
(GO:0035107), embryonic appendage morphogenesis (GO:0035113), embryonic morphogenesis
(GO:0048598), pattern specification process (GO:0007389), skeletal system development (GO:0001501),
forelimb morphogenesis (GO:0035136), limb development (GO:0060173), limb morphogenesis
(GO:0035108), and embryonic limb morphogenesis (GO:0030326). Intriguingly, HOXD9 and HOXD10
genes are related to all of these biological processes. The HOX genes have several clusters such as A,
B, C, and D [47], and they play key roles in the axial and appendicular skeleton development. The
limb skeleton along the proximodistal axis is patterned by the paralogs of HOX9, HOX10, HOX11,
HOX12, and HOX13 [48]. Recently, the effective determinant roles of HOX9 paralogs have been defined
in patterning anteroposterior axis of the forelimb [49]. The morphological variation associated with
hind limb integumentary appendages in mammals results from adaptive development in evolution
trend [50]. Considering our significant results in biological enrichment analysis, the GOs related to limb
morphogenesis and development process are highlights of our findings. Regarding the management
of selection strategies in sport horse breeding associations, the associated traits with limb such as
limb health and conformation most probably have been under selective pressure. The pivotal role of
limbs has been observed in the previous studies in dressage [46] and show-jumping horses [39,51].
Clearly, the genes related to performance and limb health are classified under potential candidate
genes for show-jumping performance [52]. Furthermore, there is a significant genetic correlation
between health of limbs and athletic performance in German warmbloods [53]. A former kinematic
study revealed that the contribution of fore and hind limbs plays an important role during the take-off

in horse jumping [51]. Moreover, the muscles of hind limbs generate the most amount of force in
jumping [39]. The role of limbs is to create the ground reaction forces during the movement and these
forces are necessary for creating balance in dressage performance [46].
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Table 1. Significant biological process under selective pressure in sport breeds.

Biological Process Genes FDR

appendage development (GO:0048736) HOXD9, HOXD10, HOXD12, HOXD13, and LNPK 0.008
appendage morphogenesis (GO:0035107) HOXD9, HOXD10, HOXD12, HOXD13, and LNPK 0.006

embryonic appendage morphogenesis (GO:0035113) HOXD9, HOXD10, HOXD12, HOXD13, and LNPK 0.006
embryonic limb morphogenesis (GO:0030326) HOXD9, HOXD10, HOXD12, HOXD13, and LNPK 0.011

embryonic morphogenesis (GO:0048598) HOXD9, HOXD10, HOXD12, HOXD13, MAFB, FBN1, and
LNPK 0.013

forelimb morphogenesis (GO:0035136) HOXD9, HOXD10, and LNPK 0.032
limb development (GO:0060173) HOXD9, HOXD10, HOXD12, HOXD13, and LNPK 0.01

limb morphogenesis (GO:0035108) HOXD9, HOXD10, HOXD12, HOXD13, and LNPK 0.008
pattern specification process (GO:0007389) HOXD8, HOXD9, HOXD10, HOXD12, HOXD13, and MAFB 0.015
skeletal system development (GO:0001501) HOXD8, HOXD9, HOXD10, HOXD12, HOXD13, and FBN1 0.03

FDR: False discovery rate.

4. Conclusions

In this study, we detected the genomic regions under selective pressure in sport horse breeds, using
whole-genome comparative analyses. By using three signatures of selection methods, 49 genes were
identified as selective signals that were enriched for ten significant biological processes. Intriguingly,
most of these biological processes were related to important musculoskeletal system development
processes, such as limb development and morphogenesis. Our findings may provide novel insights
into the current selection strategies for athletic ability and shed light on evolutionary mechanisms in
the genome of sport horse breeds, which can be helpful for future selection strategies of sport horse
breeds. Furthermore, the identified candidate genes can be employed in optimizing the SNP arrays,
which have been recently used in some sport breeding associations.
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