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Simple Summary: The immunopathogenesis of leishmaniasis is not completely understood.
Exosomes are extracellular vesicles produced by most eukaryotic cells, containing various molecular
constituents with biological effects (e.g., proteins, peptides, RNA). They play an important role in
cell-to-cell signaling. Recently, exosomal microRNA were demonstrated to be able to regulate gene
expression and protein production in mammalian cells, serving as potential biomarkers of disease.
The microRNA miR-122 is a biomarker of hepatic damage widely studied in mice in the course
of Leishmania infection. Leishmania organisms can interfere with miR-122 production leading to a
dysfunction in cholesterol metabolism ensuring its proliferation in the infected host. In this study, we
suggest that such a phenomenon may also occur in dogs affected by Leishmania infection.

Abstract: Current knowledge on the role of exosomal microRNA (miRNA) in canine leishmaniasis
(CL), with particular regards to the interaction between miR-122 and lipid alterations, is limited. The
aim of this study was to isolate/characterize exosomes in canine serum and evaluate the expression
of miR-122 in ten healthy and ten leishmaniotic dogs. Serum exosomes were isolated using a
polymer-based kit, ExoQuick® and characterized by flow cytometry and transmission electron
microscopy, whereas miR-122-5p expression was evaluated by quantitative reverse-transcriptase
polymerase chain reaction. A significant decreased expression of exosomal miR-122-5p, decreased
serum levels of high-density lipoproteins, and increased serum levels of low-density lipoproteins
were seen in leishmaniotic dogs when compared with healthy dogs. These results suggest that hepatic
dysfunctions induced by the parasite interfere with lipoprotein status. The decreased expression of
exosomal miR122 represents an additional effect of Leishmania infection in dogs as in people.

Keywords: canine leishmaniasis; microRNA; miR-122; lipoprotein; exosomes

1. Introduction

Leishmaniasis is a zoonosis caused by intracellular protozoa of the genus Leishmania transmitted
by phlebotomines. During the initial phase of the infection, Leishmania spp. can survive within
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the Kupffer cells without affecting the hepatic parenchyma [1]. A high tolerability of such cells to
Leishmania spp. promotes a parasite survival in the canine liver leading to a perturbation of liver
function and, in particular, cholesterol and lipoprotein metabolism [2,3]. In fact, Leishmania parasites
are able to modulate the expression of genes associated with cholesterol biosynthesis, uptake, and
efflux [2,4]. Cholesterol plays an important role in Leishmania infection since amastigotes are not able
to synthesize it de novo [5], however, the mechanistic links between Leishmania infection and lipid
changes are complex, multifactorial, and not completely understood. Important differences between
promastigotes and amastigotes of Leshmania chagasi have been observed regarding uptake through
lipid rafts, subdomains of the plasma membrane that contain high concentrations of cholesterol and
glycosphingolipids. A transient disruption of lipid rafts in cell membranes affected promastigote
uptake, but not amastigote uptake by macrophages. These findings indicate a difference in the needs
of Leishmania parasites regarding both the availability and origin of cholesterol. Leishmania protozoa
can alter the metabolism of cholesterol directly or through the effect on lipoproteins; trypanosomatids
are able to acquire cholesterol from low-density lipoproteins (LDLs) and high-density lipoproteins
(HDLs) by endocytosis [6–8].

As in people, Ghosh et al. [9] showed that an inverse association between blood levels of cholesterol
and susceptibility to Leishmania donovani infection was present in mice. Contrarily, in leishmaniotic
dogs, while hyper/normal cholesterolemia has been detected, high levels of low-density lipoproteins
(LDLs) and low levels of high-density lipoproteins (HDLs) have been reported [10–12].

Recently, microRNAs (miRNAs) have been used to investigate both lipid metabolism and function
in animals [13]. miRNAs are small, 20–22 nucleotides long, posttranscriptional regulators identified in
tissues and blood in healthy and diseased people and dogs [14,15]. They act on mRNA primarily as
inhibitors (translational repression or degradation) affecting several physiological processes [13]. While
in circulation, serum miRNAs are highly degradable, however, when transported in microvesicles
(exosomes) these molecules are more stable and can serve as reliable diagnostic biomarkers in diseased
patients [16–18]. Exosomes being small extracellular mycelial vesicles [19] protect RNA from RNAse
degradation [20]. In 2013, Ghosh et al. [21] explored, for the first time, the role played by exosomes
in miR-122 expression, the most common miRNA present in the liver tissue, in L. donovani infection
in mice. The authors showed that, the glycoprotein gp63, present in Leishmania exosomes, was able
to degrade Dicer1 in the hosts’ hepatic cells, reducing the synthesis of miR-122. Considering these
premises, the aim of this study was twofold: evaluate the expression of serum exosomal miR-122 and
the lipoprotein profile in dogs naturally infected by Leishmania infantum.

2. Materials and Methods

2.1. Animals

Ten mixed breed dogs, naturally infected by L. infantum, and ten mixed breed healthy dogs
were recruited in the present study. The diagnosis of CL was based on compatible clinical signs and
confirmed by visualization of amastigotes in lymph nodal aspirates and serologically by a positive
indirect fluorescent antibody test (IFAT) greater than 1:160 [22,23]. All dogs were also tested for
presence of Dirofilaria immitis, Anaplasma phagocytophylum, Borrelia burgdorferi, and Ehrlichia canis
antibodies using SNAP® test (Canine SNAP 4Dx, IDEXX laboratories). In order to be enrolled, the
dogs with leishmaniasis had to be untreated at the moment of diagnosis and negative to the SNAP test.
The healthy dogs had to be clinically healthy, negative to IFAT (<1:40) [22,23] and the SNAP test.

2.2. Samples Collection and Hemato-Biochemical Analysis

Ten mL of peripheral blood were collected from the jugular vein of each dog and put into tubes
without anticoagulant (5 mL) and in tubes containing ethylene diamine tetraacetic acid (EDTA) (5 mL). A
complete blood cell count was performed within 30 min from the collection using a semi-automatic cell
counter (Genius S; SEAC Radom Group, Florence, Italy). Serum was also collected after centrifugation
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at 327× g for 15 min and it was stored at −20 ◦C. Serum urea, creatinine, aspartate aminotransferase
(AST), alanine aminotransferase (ALT), bilirubin, alkaline phosphatase (ALP), and total protein (TP)
were analyzed using commercially available kits (Reactivos Spinreact S.A. OLOT, Gerona, Spain). Total
serum cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL) were measured using
a Dimension EXL analyzer (Siemens Healthcare Diagnostics s.r.l., Milan, Italy); low-density lipoprotein
cholesterol (LDL) was calculated using the Friedewald equation [24].

2.3. Exosomes Isolation and Mirna Detection

Exosomes were extracted from the serum using a polymer-based kit, ExoQuick® (System
Biosciences Mountain View, Palo Alto, CA, USA) according to a previous study [17]. Exosomes
were analyzed by flow cytometry (FC) and characterized by transmission electron microscopy (TEM).
Dynamic light scattering and zeta potential determinations were also performed with a Nano ZS 90
(Appendix A).

Isolated exosomes were processed for miRNA isolation using a commercially available kit
(exoRNeasy Serum Plasma Kit; Qiagen, Hilden, Germany). Subsequently, the cDNA was amplified by
quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) following the manufacturer’s
instructions (Appendix A).

2.4. Statistical Analysis

The data were tested for normal distribution using the Kolmogorov–Smirnov test (alpha = 0.05).
The unpaired two samples Student’s t-test or Mann–Whitney test was performed to evaluate the
behavior of each data variable between the two groups (healthy vs. CL). All statistical comparisons
were performed using the GraphPad Prism6 Software (GraphPad Software Inc., La Jolla, CA, USA). A
p < 0.05 was considered statistically significant.

3. Results

3.1. Clinical Examination and Blood Tests

The median age at the moment of enrollment was four years (range: 1–6) for the healthy group
and four years (range: 1–8) for the CL group. The mean body weight was 22.3 ± 5.4 kg and 20.4 ± 4.3
kg for healthy and CL group, respectively. There were four males and six females (three spayed) in
the healthy group, whereas five males (one castrated) and five females (two spayed) were present in
the CL group. There were no differences in age (Mann–Whitney; p = 0.37), weight (t-test; p = 0.39),
or sex (Fisher’s exact; p = 1) between the two groups. The more frequent clinical signs observed in
the CL group were lymphadenopathy (80%), weight loss (70%), skin lesions (70%), and splenomegaly
(30%). The skin lesions included seborrhea sicca (5) and alopecia (2). The results of hematological and
biochemical tests are presented in Table 1.
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Table 1. Hematological and biochemical parameters in healthy and affected dogs.

Parameter Healthy Leishmaniotic Reference Range [25–27] p-Value

RBC (×106/dL) 6.5 ± 0.6 5.5 ± 1.6 5.5–8.5 0.01
Hb (g/dL) 14.9 ± 1.5 10.7 ± 3.1 12–18 0.0001

Hct (%) 44.3 ± 3.2 34.4 ± 9.6 37–55 0.0009
MCV (fL) 69.2 ± 3.4 63.4 ± 4.8 60–77 0.008
MCH (pg) 21.1 ± 1.4 19.6 ± 1.4 20.5–24.2 <0.0001
MCHC (%) 33.8 ± 1.1 30.9 ± 0.9 32–36 <0.0001

PLT (×103/mm3) 295.4 ± 89.5 279.3 ± 74.4 200–500 0.7
WBC (×103/mm3) 10.3 ± 1.9 10.9 ± 1.5 6–17 0.5

Azotemia (mg/dL) 42.2 ± 6.0 48.0 ± 17.6 21–59 0.7
Crea (mg/dL) 0.8 ± 0.2 1.4 ± 1.0 0.5–1.5 0.7

ALT (U/L) 41.9 ± 11.8 35.1 ± 8.3 21–102 0.1
AST (U/L) 34.6 ± 10.2 34.3 ± 12.9 23–66 0.9
ALP (U/L) 111.8 ± 28.2 110.3 ± 32.1 20–156 0.9

BIL (mg/dL) 0.3 ± 0.1 0.3 ± 0.1 0.1–0.5 1
GGT (U/L) 3.0 ± 1.4 2.4 ± 1.2 1.2–6.4 0.4

GLU (mg/dL) 73.8 ± 12.0 74.1 ± 13.5 65–118 0.9
TRIG (mg/dL) 80.0 ± 23.0 86.1 ± 22.3 20–112 0.5

CHOL (mg/dL) 193.6 ± 49.3 223.7 ± 63.8 135–270 0.3
HDL (mg/dL) 89.7 ± 19.1 47.4 ± 26 49–165 <0.0001
LDL (mg/dL) 87.9 ± 49.5 159.1 ± 51.1 5–86 0.01

TP (g/dL) 6.2 ± 0.5 9.1 ± 1.7 5.4–7.1 0.0003
Alb 3.4 ± 0.4 2.9 ± 0.5 2.6–3.3 g/dL 0.02

RBC: red blood cells; Hb: hemoglobin; Hct: hematocrit; MCV: mean corpuscular volume; MCH: mean corpuscular
hemoglobin; MCHC: mean corpuscular hemoglobin concentration; Plt: platelet; WBC: white blood cells; Crea:
creatinine; ALT: alanine aminotransferase; AST: aspartate aminotransferase; ALP: alkaline phosphatase; BIL: total
bilirubin; GGT: gamma glutamil transferase; GLU: glucose; TRIG: triglycerides; CHOL: total cholesterol; HDL:
high-density lipoprotein cholesterol; LDL: low density lipoprotein cholesterol; TP: total protein; Alb: albumin.

In particular, 70% of affected dogs had a non-regenerative normocytic normochromic anemia. In
addition, CL dogs had a significant reduction in total red blood cells (p = 0.01), hematocrit (p = 0.0009),
hemoglobin (p = 0.0001), mean corpuscular volume (MCV, p = 0.008), mean corpuscular hemoglobin
(MCH, p < 0.0001), and mean corpuscular hemoglobin concentration (MCHC, p < 0.0001). The
biochemical parameters were also altered in the CL group compared to the healthy dogs. In particular,
levels of TPs (p = 0.0003) and LDLs (p = 0.01) were significantly increased, whereas the level of HDLs
was significantly decreased (p < 0.0001).

3.2. Exosomes Isolation and miRNA Detection

Serum exosomes were detected as round vesicles of heterogeneous sizes via negative stain
observed by TEM (Figure 1).
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Figure 1. Transmission electron micrograph of exosomes isolated from serum. The morphology is 
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The size determination was further investigated using a Zetasizer Nano resolved in an average 
size of 131 ± 4 nm with a Z potential of −27 ± 0.5 mV. Fluorescein isothiocyanate (FITC) positive 
singlets were 99.5%, 100%, and 94.4% for CD63, CD9, and CD81, respectively (Figure 2). 

 
Figure 2. Identification of canine exosomes. Exosomes, obtained from canine serum, were labeled 
with Exo-FITC and incubated respectively with anti-CD63, anti-CD9 and anti-CD81 Exo-Flow FACS 
magnetic beads. The data percentage of captured exosomes is shown. 

A total of 12 ng/μL of miRNA was isolated from serum exosomes. Using qRT-PCR, both miR-
122 and RNU6-2, with Ct values of 35.3 ± 0.4 and 32.5 ± 0.6 respectively, were detected. When 
exosomal miR122 levels were compared between healthy and leishmaniotic dogs, a significantly 
lower (p = 0.004) expression was seen in the latter group (Figure 3). 

Figure 1. Transmission electron micrograph of exosomes isolated from serum. The morphology is
observed by negative staining.

The size determination was further investigated using a Zetasizer Nano resolved in an average
size of 131 ± 4 nm with a Z potential of −27 ± 0.5 mV. Fluorescein isothiocyanate (FITC) positive
singlets were 99.5%, 100%, and 94.4% for CD63, CD9, and CD81, respectively (Figure 2).
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Figure 2. Identification of canine exosomes. Exosomes, obtained from canine serum, were labeled
with Exo-FITC and incubated respectively with anti-CD63, anti-CD9 and anti-CD81 Exo-Flow FACS
magnetic beads. The data percentage of captured exosomes is shown.

A total of 12 ng/µL of miRNA was isolated from serum exosomes. Using qRT-PCR, both miR-122
and RNU6-2, with Ct values of 35.3 ± 0.4 and 32.5 ± 0.6 respectively, were detected. When exosomal
miR122 levels were compared between healthy and leishmaniotic dogs, a significantly lower (p = 0.004)
expression was seen in the latter group (Figure 3).
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4. Discussion

Although in the present study, a significant modification of the level of serum cholesterol was not
present, a significant alteration of serum LDL and HDL levels were seen in the CL group, in agreement
with previous studies [10–12,21]. Such alterations may suggest a lipid perturbation associated with
Leishmania infection. These data are also in agreement with Carvalho et al. [28] showing that people
with clinical manifestation of visceral leishmaniasis have high triacylglycerol and very-low-density
lipoprotein (VLDL) levels, but low HDL levels. Different mechanisms may be implicated in the
reduction of HDL levels during Leishmania infection; these may include decreased hepatic synthesis
and secretion of apolipoproteins [29], increased endothelial lipase activity [30], and displacement of
apoA-I by serum amyloid A [31]. In addition to their primary role in lipid transport, HDLs have also
been associated with anti-inflammatory and anti-oxidant activity, vascular endothelial cell activation,
nitric oxide (NO) production, expression of inflammatory mediators, and endothelial progenitor
cell proliferation [32–35]. A reduction of HDL levels could represent a mechanism of defense that
the protozoa uses to contrast the leishmanicidal activity of NO in infected macrophages [36]. In a
recent study, Rodrigues Santos et al. [37] showed that human monocytes, experimentally infected
by L. infantum, had two times higher parasitism in the presence of VLDL and HDL than when these
lipoproteins were absent.

This is the first study in leishmaniotic dogs showing higher levels of serum exosomal miR-122,
a microRNA recently indicated as a good candidate marker for liver diseases in the absence of
liver-specific biochemical markers [15]. In leishmaniotic dogs, liver damage can be present with or
without specific clinical signs as well as with a low or high parasitic burden. Indeed, liver granulomas
(effector T cells, macrophage/dendritic cell) have been described in asymptomatic dogs with low
parasite burdens while not organized granulomas were detected in the liver of symptomatic dogs
with high parasite burdens [38]. In this study, liver biopsies were not performed (absence of increased
cytopathic markers of liver toxicity, e.g., ALT), however, a lower level of albumin and exosomal miR-122
in the absence of renal and enteric signs, suggests liver dysfunction rather than liver damage. This
dysfunction associated with a reduction of circulating miR-122 in leishmaniotic dogs may lead to the
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hypothesis that, like in mice [21], Leishmania parasites may play a potential role in the regulation of
specific miRNA through the gp63 in dogs.

Future research should consider enrolling a significantly higher number of dogs naturally infected
by L. infantum in order to study the connection of exosomal miR-122 obtained both from serum and
from liver biopsies with the levels of circulant gp63.

5. Conclusions

In summary, the results of the present study suggest that alterations of the lipid metabolism, low
HDL and high LDL serum levels along with a lower miR-122 expression may indirectly mirror hepatic
alterations induced by L. infantum in dogs. However, because of the low number of animals enrolled,
further studies are warranted to better define the role of miR-122 as a potential biomarker of hepatic
damage/disfunction during canine leishmaniasis.
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Appendix A.

Appendix A.1. Ethical and Regulatory Approval

This study was approved by the Organism Proposed to Animal Welfare control (OPBA) at the
investigators’ institution.

Appendix A.2. Exosomes Isolation

Exosomes from all the blood samples collected (healthy and affected dogs) were treated with
RNase A at 37 ◦C for 10 min (100 ng/ mL, Qiagen, Hilden, Germany) and then exosomes were isolated
using a polymer-based kit, ExoQuick® (System Biosciences, Palo Alto, CA, USA) according to the
manufacturer’s protocol. Briefly, 250 µL of serum were centrifuged for 15 min at 3000× g to remove
cell debris. The supernatant was transferred to a sterile tube and 63 µL of ExoQuick® precipitation
solution was added. After brief vortexing, the sample was incubated for 30 min at 4 ◦C, and then
centrifuged at 1500× g for another 30 min at room temperature. After removing the supernatant, the
pellet was re-suspended in 1/10 of the original volume using nuclease-free water.

Appendix A.3. Characterization

After isolation, the serum exosome pellets were re-suspended in 1 mL of phosphate buffer solution
(PBS) at pH 7.4 at a protein concentration of 1 µg/µL. Then 500 µL of the exosome suspension were
labeled with 50 µL of 10× Exo-FITC for 10 min at 37 ◦C. The exosomes were then re-isolated, using
an additional 100 µL of ExoQuick® and incubated for 30 min on ice. Finally, the labeled exosome
pellets were re-suspended in 500 µL of PBS and ready to be labeled with specific anti-canine antibodies
on magnetic beads. In particular, anti- CD63-, CD9-, and CD81-coupled magnetic beads from SBI’s
Exo-Flow IP® kit (System Biosciences, Palo Alto, CA, USA), used at 1:3 dilution, were used for exosomal
characterization as previously described [39]. Briefly, 50 µL of magnetic beads were incubated with
100 µL of the labeled exosomes overnight at 4 ◦C on an agitator. The following day, the beads/labeled
exosomes were placed on a magnetic plate for 5 min, washed with 100 µL of 1× wash buffer once and
analyzed by flow cytometry (FACSCalibur, BD Biosciences, San Jose, CA, USA).
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Appendix A.4. Analytical Methods

Exosomes were confirmed by TEM analysis and 5 µL of exosomes were resuspended in PBS
containing 2% glutaraldehyde to fix them. The sample was applied to formvar 100-mesh grids and
incubated for 10 min. Grids were washed twice with filtered distilled water and stained using 1.5%
UA in water for 10 min; after that, they were washed with water to remove the excess staining solution
and grids were air-dried. Images were acquired from grids using a FEI Tecnai 12 transmission electron
microscope (FEI Company, Hillsboro, OR, USA) equipped with a Veleta CCD digital camera (Olympus
Soft Imaging Solutions GmbH, Münster, Germany) and operating at 120 kV. Images were collected at
magnifications of 30,000×, 49,000×, and 120,000×.

Dynamic light scattering and zeta potential determinations were performed with a Nano ZS
90 (Malvern Instruments, Orsay, France), which allowed the analysis of particles with sizes ranging
from 10 nm to 3 µm. Exosomes derived from canine serum were diluted in 1 mL of PBS and
zeta potential (electronegativity) and size distribution were analyzed at 37 ◦C according to the
manufacturer’s instructions.

Appendix A.5. Exosomal Protein Isolation and Quantification

The blood of ten affected and ten healthy dogs was used for this experiment. Purified exosomes
were treated with 200 µL of lysis buffer (1% Triton X-100, 0.1% SDS, 0.1 M Tris HCl, pH 7) and protease
inhibitors (Sigma-Aldrich, St. Louis, MO, USA). Protein concentration was determined by Bradford
microassay (Bio-Rad Laboratories, Hercules, CA, USA) using BSA as standard and normalized to the
starting amount of serum.

Appendix A.6. miRNAs Isolation and miR-122-5p and RNU6 Analysis

Exosomes isolated from the serum of ten healthy and ten affected dogs were processed for
miRNA isolation using a commercially available exoRNeasy® Serum Plasma Kit (Qiagen) following
the manufacturer’s instructions. In the lysis buffer were added 1 × 108 copies of synthetic Caenorhabditis
elegans microRNA (miRNA) oligoribonucleotides. Purified miRNAs were reverse transcribed using
the miRCURY LNATM Universal cDNA synthesis kit II (Exiqon, Vedbaek, Denmark). Briefly, 50 ng of
total RNA was combined with 2 µL of 5× reaction buffer, 1 µL of enzyme mix, and nuclease-free water
up to a final volume of 10 µL. The reverse transcriptase PCR (RT-PCR) reaction was set as follows:
incubation at 42 ◦C for 1 h, heat inactivation at 95 ◦C for 5 min, and immediately cooled to 4 ◦C using a
thermocycler GeneAmp® PCR System 2700 (Applied Biosystems, Foster City, CA, USA).

To verify the reliability of the developing protocol, one hundredth of the cDNA of six healthy dogs
was amplified by quantitative RT-PCR (qRT-PCR). SYBRTM Green master mix 2X (Promega, Madison,
WI, USA) and miRCURY LNATM RNU6 reference gene specific PCR primer set (Exiqon, Vedbaek,
Denmark) or miRCURY LNATM hsa-miR-122-5p specific PCR primer set (Exiqon) were used following
the manufacturers’ instructions. Reactions were performed in triplicate and in a total volume of 20 µL.
qRT-PCR reactions were performed using a BioRad iQTM 5 apparatus (Bio-Rad Laboratories) with the
following conditions: initial denaturation step at 95 ◦C for 10 min, followed by 40 cycles of 10 s at
95 ◦C, and 1 min at 60 ◦C. Specificity of PCR products was checked by melting curve analysis. The
same protocol was adopted to analyze the miR-122-5p expression profile of the remaining four healthy
and ten diseased dogs. Cel-miR-39 was used to normalize between samples in the analysis. The results
were analyzed using the comparative CT (cycle threshold) method and the relative mRNA expression
of miR-122-5p was determined using the CT method comparing healthy and affected dogs.
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