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Abstract: Toxoplasmosis is a parasitic disease caused by the globally distributed protozoan parasite
Toxoplasma gondii, which infects around one-third of the world population. This disease may result
in serious complications for fetuses, newborns, and immunocompromised individuals. Current
treatment options are old, limited, and possess toxic side effects. Long treatment durations are
required since the current therapeutic system lacks efficiency against T. gondii tissue cysts, promoting
the establishment of latent infection. This review highlights the most promising drug targets involved
in anti-T. gondii drug discovery, including the mitochondrial electron transport chain, microneme
secretion pathway, type II fatty acid synthesis, DNA synthesis and replication and, DNA expression as
well as others. A description of some of the most promising compounds demonstrating antiparasitic
activity, developed over the last decade through drug discovery and drug repurposing, is provided
as a means of giving new perspectives for future research in this field.

Keywords: anti-Toxoplasma agents; drug discovery; drug repurposing; drug targets; Toxoplasma
gondii; toxoplasmosis

1. Introduction

The parasite Toxoplasma gondii is an obligate intracellular protozoan that infects most
warm-blooded animals [1]. However, its sexual lifecycle can only occur in members of the
Felidae family, known as definitive hosts, such as domestic cats and wild felids, whose
global T. gondii seroprevalence is estimated to be 35% and 59%, respectively [2]. The rates
of T. gondii seroprevalence in humans vary greatly among different geographical areas,
ranging from approximately 30% in the American, European, and Asiatic regions, to more
than 60% in the African continent. These fluctuations may result from different cultural
practices, environmental conditions, or the socioeconomic status of the population. Overall,
T. gondii is considered one of the most successful parasites worldwide, infecting about 30%
of the world’s population [3]. Despite its ubiquitous distribution, several divergent strains
of T. gondii were detected.

Most strains isolated in Europe and North America fall into one of three genotypes,
referred to as types I, II and III. Type I are considered the most virulent strains and are
lethal in mice, displaying enhanced migratory capacity both in vitro and in vivo, the faster
growth rate being in vitro, and being capable of generating high parasite loads in the host
organism. Type II and III have intermediate and low virulence, respectively, with type II
being the most common strains among human infections, while type III are mostly found
in non-human infections. Certain strains are typically predominant in certain geographic
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locations. The three major clonal lineages are found in Asia and America, in addition
to certain specific genotypes for the former area and various recombinant strains for the
latter. Type II and III strains are isolated in North Africa, the Middle East, and the Arabic
peninsula, while in Europe, type II strains are more common. Several African genotypes,
including type II and III strains, are found in sub-Saharan Africa [4–6].

2. Toxoplasmosis

In humans, the severity of infection is mainly determined by the host immune system
efficacy. In immunocompetent individuals, acute T. gondii infection is usually asymptomatic
or may cause, in rare instances, a flu-like disease with mild symptoms. Strain virulence and
several host-cell conditions—pH, heat shock, mitochondrial inhibition, and nitric oxide
production—may also influence disease outcome [4,7,8]. Under host immune pressure,
the parasite naturally becomes dormant. In this process, tachyzoite–bradyzoite conversion
occurs, with tissue cyst formation in specific locations, such as cerebral, skeletal, and
cardiac muscle tissues, reaching the chronic phase of infection. An intact immune system
prevents cyst rupture and reactivation of infection [4,7]. However, in immunocompromised
individuals, the parasite generally remains active, causing continuous host-cell infection,
leading to acute disease. Moreover, reactivation may also occur in individuals who are
initially immunocompetent but later undergo immunosuppression, including individuals
with acquired immunodeficiency syndrome (AIDS), or subjected to immunosuppressive
therapy, as in the case of autoimmune diseases or organ transplantation. Individuals with
AIDS and not initially infected with T. gondii usually develop a severe primary infection,
whereas individuals already infected with the parasite who become immunosuppressed
are at an increased risk of disease relapse [9,10]. In fact, T. gondii encephalitis was frequently
reported in AIDS patients, especially those with low CD4 T lymphocyte cell counts. There-
fore, T. gondii may be regarded as an opportunistic parasite that contributes to the death of
AIDS patients [10]. In these situations, where T. gondii infection is acquired throughout an
individual’s life, the disease is referred to as acquired toxoplasmosis.

Toxoplasmosis may also be potentially dangerous in seronegative pregnant women
that become primo-infected during pregnancy, as it may lead to transplacental transmission
of the parasite, which may result in congenital toxoplasmosis [11]. However, the incidence
of congenital toxoplasmosis varies with the trimester during which primary infection is
acquired. The transmission rate is greater in the final stages of pregnancy, as placental irri-
gation increases, allowing for a greater area of contact with the fetus. On the other hand, the
severity of infection is greater in the early stages of pregnancy, due to fetal immunological
immaturity [12–14]. During the first trimester, there is a higher risk of abortion, stillbirth,
or premature birth. In the second trimester, the risk of miscarriage decreases, however,
in more severe cases, hydrocephaly, chorioretinitis and cerebral calcification may occur,
according to the parasite’s brain and ocular tropism. In the last trimester, although severe
clinical manifestations in the newborn are at lower risk, there is an increased probability of
congenital infection [11,15–18].

Regarding cerebral tropism, recent data suggest an association between congenital
infection and the development of neurological and psychiatric disorders later in life [9,19,20],
including Alzheimer’s disease [19,20], depression [19–21], schizophrenia [22–24], bipolar
disease [24], and even suicidal tendencies [21,24].

3. Current Treatment Options

First-line conventional treatment for acquired and congenital toxoplasmosis generally
includes a pyrimethamine-based regimen, which comprises three drugs: pyrimethamine,
sulfadiazine and folinic acid (leucovorin; Table 1) [25,26]. Pyrimethamine is a folic acid
antagonist as it inhibits the dihydrofolate reductase (DHFR) enzyme, blocking the syn-
thesis of purines and pyrimidines, essential for DNA synthesis and cell multiplication.
The action of this drug is enhanced when used in conjunction with sulfonamides, such as
sulfadiazine, which is capable of interfering with T. gondii’s folic acid synthesis, by com-
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petitively inhibiting the dihydropteroate synthetase (DHPS) enzyme. This combination
must not be used during the first trimester of pregnancy due to the teratogenic potential of
pyrimethamine, which also causes reversible myelosuppression, forcing combination with
folinic acid, to prevent hematologic adverse reactions [25–28]. Moreover, although rare,
different severe complications were reported, such as agranulocytosis, Stevens-Johnson
syndrome, toxic epidermal necrolysis and hepatic necrosis, as well as many others [29–34].
Although several alternative treatment options are available, including pyrimethamine
combined with clindamycin, clarithromycin, azithromycin or atovaquone, and monother-
apy using cotrimoxazole (trimethoprim-sulfamethoxazole) or atovaquone, no regimen
was found to be more effective than the conventional treatment [25,35]. Despite clinical
complications, standard chemotherapy has proven to reduce the risk of development
of toxoplasmosis-related sequels and symptoms associated with congenital infection in
newborns, if it is administered immediately after diagnosis of either maternal infection or
congenital transmission [25,27,36]. Alternatively, when the maternal infection is suspected,
but not confirmed, therapy with spiramycin must be implemented. Spiramycin is a potent
macrolide antibiotic, and although it does not readily cross the placental barrier, it is greatly
accumulated in the placenta, preventing transplacental transmission of T. gondii. Neverthe-
less, when fetal or neonatal toxoplasmosis is confirmed, spiramycin is discontinued and
conventional treatment is applied [36]. The use of steroids is beneficial in the treatment of
ocular toxoplasmosis in combination with antimicrobial therapy. However, excessive doses
can lead to a minimal response [25]. In fact, phase II clinical trials are currently underway
to determine the optimal dose of dexamethasone to be used as adjunctive therapy to reduce
brain edema in HIV-infected patients exhibiting cerebral toxoplasmosis [37].

Table 1. Current drugs used for toxoplasmosis treatment.

Compound Chemical Structure * Mechanism of Action References

Pyrimethamine
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Table 1. Cont.

Compound Chemical Structure * Mechanism of Action References

Spiramycin
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Table 1. Cont.

Compound Chemical Structure * Mechanism of Action References

Azithromycin
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Current treatment options are limited and not optimal regarding the harsh profile
of side effects and treatment duration (from 4–6 weeks to over 1 year), which may affect
compliance [27,38]. T. gondii-related factors, such as the increasing drug resistance, differ-
ent drug susceptibility for different strains, and the remaining unknown aspects of the
parasite’s pathogenicity, also play an important role in disease progression and treatment
failure [39–41]. In addition, no current drug can eliminate tissue cysts from the infected
host, which remain quiescent, establishing the latent phase of infection, as long as the
host’s immune system remains capable enough [27,38]. Although immunization strate-
gies are currently being studied and developed, there is no vaccine available for human
administration [42].

Thus, there is an urging need for the development of newer, safer, and more effective
treatment alternatives for toxoplasmosis, which consequently relies on rising knowledge in
T. gondii pathophysiology and the discovery of promising drug targets.

This review highlights some of the most promising drug targets in anti-T. gondii
drug discovery and the compounds discovered, developed, and repurposed over the
last decade, while focusing on their relevant features, in vitro and in vivo activity, and
future perspectives. A literature search was conducted using PubMed database and the
query “((toxoplasmosis) OR (Toxoplasma gondii) OR (anti-Toxoplasma) AND (drug) OR
(treatment)). Experimental compounds with established in vitro activity were primarily
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considered, of which those with in vivo activity or efficacy against bradyzoite-containing
cysts were prioritized.

4. Promising Drug Targets and Strategies in Anti-T. gondii Drug Discovery

In the last decade, considerable efforts have been made in the study and develop-
ment of repurposed drugs and novel compounds with new mechanisms of action. Drug
screens involved various parasite targets, including mitochondrial electron transport chain,
calcium-dependent protein kinases, type II fatty acid synthesis, DNA synthesis and replica-
tion, and DNA expression as well as many others. Drug targets and respective promising
inhibitors with interesting mechanisms of action (Figure 1) and efficient in vitro and/or
in vivo activity against T. gondii are described and discussed. Relevant experimental
in vitro and in vivo results are summarized in Table 2.

Microorganisms 2021, 9, x FOR PEER REVIEW 6 of 20 
 

 

This review highlights some of the most promising drug targets in anti-T. gondii drug 
discovery and the compounds discovered, developed, and repurposed over the last dec-
ade, while focusing on their relevant features, in vitro and in vivo activity, and future 
perspectives. A literature search was conducted using PubMed database and the query 
“((toxoplasmosis) OR (Toxoplasma gondii) OR (anti-Toxoplasma) AND (drug) OR (treat-
ment)). Experimental compounds with established in vitro activity were primarily con-
sidered, of which those with in vivo activity or efficacy against bradyzoite-containing 
cysts were prioritized. 

4. Promising Drug Targets and Strategies in Anti-T. gondii Drug Discovery 
In the last decade, considerable efforts have been made in the study and development 

of repurposed drugs and novel compounds with new mechanisms of action. Drug screens 
involved various parasite targets, including mitochondrial electron transport chain, cal-
cium-dependent protein kinases, type II fatty acid synthesis, DNA synthesis and replica-
tion, and DNA expression as well as many others. Drug targets and respective promising 
inhibitors with interesting mechanisms of action (Figure 1) and efficient in vitro and/or in 
vivo activity against T. gondii are described and discussed. Relevant experimental in vitro 
and in vivo results are summarized in Table 2. 

 
Figure 1. Graphical representation of a Toxoplasma gondii tachyzoite. Organelle and pathway targets of several experi-
mental and repurposed compounds [43–56]. AR: apical ring; Mic: microneme; R: rhoptry; DG: dense granule; A: apico-
plast; M: mitochondrion, N: nucleus; BKI: bumped-kinase inhibitor; ELQ: endochin-like quinolone. 
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Table 2. Experimental compounds with anti-Toxoplasma gondii activity.

Compound Chemical Structure * Drug Target Affected T. gondii Pathway In Vitro IC50/T. gondii
Strain/Host Cell

In Vivo Results/T. gondii Strain/Animal
Model/Infection Route References

BKI-1294
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peritoneal fluid of half 
the mice at 100 mg/kg/ 

RH/ 
CF-1 mice/ 

Intraperitoneal 
Protection against 

abortion and vertical 
transmission in sheep 

experimentally infected 
with T. gondii tachyzoites 

during pregnancy 

[43,44,57
–59] 
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TgCDPK1 
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number of brain cysts/ 
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Oral gavage 
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activity assay) 
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proliferation at 
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ME49/ 
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Oral gavage 
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3 µM/ 
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Reduction in mice 
mortality, parasite 

burden and viability. 
Poor solubility and oral 

bioavailability/ 
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Swiss albino mice/ 
Intraperitoneal 

[46,47,60] 

Triclosan-
liposomal 

 
Liposomal 

ENR FAS II ND 

Reduction in host 
mortality and T. gondii 
brain burden by 98%/ 

ME49/ 
Swiss albino mice/ 

Oral gavage 

[46,47] 

N

N N
N

NH2

O

N

O

OH

Cl Cl

Cl

TgCDPK1 Parasite microneme
secretion

60 nM/
ME49/

HFF

88.7% reduction in the number of brain
cysts/
ME49/

CBA/J mice/
Oral gavage

[44]
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in vitro-
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DNA 

expression 
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O

OH

Cl

Cl

N
N
N

N

NH

N
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HN O

HO

O

O

O

O

ENR FAS II
250 nM/

RH/
HFF

Improvement in pharmacokinetics in
comparison to triclosan

Decreased peritoneal burden of T. gondii/
RH/

Swiss albino mice/
Intraperitoneal

[61]

Thiolactomycin (and
analogs)
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vitro-induced 
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NH

N
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O

O

O

O

O

O
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O
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O
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RH/
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Table 2. Cont.

Compound Chemical Structure * Drug Target Affected T. gondii Pathway In Vitro IC50/T. gondii
Strain/Host Cell

In Vivo Results/T. gondii Strain/Animal
Model/Infection Route References
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4.1. Drug Targets Involved in Parasite Motility and Host-Cell Invasion

T. gondii belongs to the Apicomplexa family, which also includes other relevant pro-
tozoans, such as Cryptosporidium spp., a common cause of diarrhea in children, and Plas-
modium spp., the etiological agent of malaria. In fact, both T. gondii and Plasmodium spp.
share very similar organellar organization [67]. The members of this family possess well-
developed structures at the anterior end of the cell—the apical complex—responsible for
host-cell invasion [68]. Unlike Plasmodium spp., which specifically infects erythrocytes and
hepatocytes, T. gondii does not require a specific host receptor for cell invasion, allowing
it to infect all nucleated host cells [67]. The invasion process (Figure 2) requires the par-
ticipation of specific T. gondii secretory organelles, belonging to the apical complex: the
micronemes, small rod-shaped structures accumulated in the apical third of the protozoan
body, housing proteins responsible for extracellular motility and invasion; and rhoptries,
long club-shaped organelles located at the apical portion of the parasite, which accommo-
date proteins responsible for the invasion and host-cell manipulation. Proteins segregated
by micronemes (named MICs) and rhoptries (named ROPs) allow host-cell entrance while
dragging cytoplasmatic membrane around the tachyzoite, forming the Parasitophorous
Vacuole (PV)—an intracellular compartment in which T. gondii reproduces asexually. Upon
the formation of the PV, the third set of proteins derived from other secretory organelles, the
dense granules (GRAs), along with ROPs, decorate the PV membrane [68–71]. Other ROPs
and GRAs accumulate inside PV forming a tubular network of intravacuolar structures
that serves various purposes: escape from host-cell aggression, inhibit phagolysosome
formation, hinder intravacuolar acidification, metabolic exchange of compounds between
PV and host cytoplasm, among others [69,72]. Interaction between T. gondii and host
cell endocytic machinery is well described, however, the infection may occur through
other mechanisms, such as the chlathrin-mediated endocytosis or micropinocytosis [73].
These processes are essentially controlled by the host cell, revealing a successful interplay
between host cell and parasite in T. gondii infection [70].
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ments [68–72]. (A) To invade the host cell, the parasite requires the secretion of proteins from two
organelles, micronemes and rhoptries. These proteins allow the parasite to enter the host cell while
coating itself with the host cytoplasmatic membrane, forming the Parasitophorous Vacuole (PV).
(B) Upon entry, the PV is decorated with rhoptry proteins (ROPs) and proteins derived from the third
set of organelles, known as dense granules (GRAs). (C) When the parasite is established inside the
PV, it replicates asexually, generating a large enough number of tachyzoites capable of rupturing the
host cell and infecting surrounding cells or, if in specific tissues or under certain conditions, convert
into metabolically less competent bradyzoites and form tissue cysts.
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T. gondii Calcium-Dependent Protein Kinase 1

MICs secretion is essential for parasite motility, host cell invasion, and egress and
thus constitutes a potential target for drug development. In fact, the inhibition of T. gondii
calcium-dependent protein kinase 1 (TgCDPK1), a member of the serine/threonine-protein
kinase family located in the cytosol and regulates the calcium-dependent pathway, which in
turn leads to MICs secretion, impairs host-cell invasion capacity [74,75]. TgCDPK1 has thus
proven to be an interesting target for drug discovery. In comparison to mammalian kinases,
it presents a key structural difference at the “gatekeeper residue” in the ATP-binding pocket.
TgCDPK1 contains a small glycine residue, whereas human kinases possess larger residues,
providing additional space for extra interactions with the target protein, which resulted in
the development of potent and selective ATP-competitive TgCDPK1 inhibitors [75–77].

Several bumped kinase inhibitors (BKI) were found to selectively inhibit TgCDPK1,
being 15,000-fold more active against the parasite kinase in comparison to human tyrosine
kinases [43,78]. BKI-1294, a pyrazolo-pyrimidine based compound, was a promising candi-
date belonging to this class. Doggett et al. described an in vitro IC50 of 140 nM, leading
to a reduction in acute T. gondii infection by 93% when given orally, and high efficiency
against established toxoplasmosis [43]. In addition, Müller et al. demonstrated excellent
activity of BKI-1294 against congenital toxoplasmosis [57]. However, despite elevated
T. gondii specificity, BKI-1294 was found to inhibit the Ether-à-go-go-Related Gene (hERG),
which codes for the protein Kv11.1, the alpha subunit of a potassium ion channel that
is essential in cardiomyocyte repolarization. Its inhibition may ultimately result in the
development of life-threatening cardiac arrhythmias, such as torsades de pointes [44,58,79].
This occurrence halted BKI-1294 development due to the risk of cardiotoxicity. Neverthe-
less, Sánchez-Sánchez et al. recently demonstrated the safety and significant protection
provided by BKI-1294 against abortion and vertical transmission in sheep experimentally
infected with T. gondii during pregnancy. Thus, although BKI-1294 advancement for human
toxoplasmosis ceased, the reduction of infection rates among other intermediate hosts may
be a way to indirectly reduce human infection [59].

Vidadala et al. investigated BKI-1294 modifications that maintained TgCDPK1 selec-
tivity and efficacy while reducing interference with hERG channels. The authors developed
a compound (compound 32 in their series of BKIs) with an hERG IC50 > 10 µM, an in vitro
IC50 against T. gondii of 60 nM, and high in vivo efficiency regarding brain parasite load
when given orally. In fact, compound 32 reduced the number of brain cysts by 88.7% [44].

Recently, Rutaganira et al. tested other pyrazolo-pyrimidine inhibitors of TgCDPK1.
The resulting compound (compound 24 in their series of BKIs) exhibited in vitro inhibition
of the enzyme and parasite proliferation in the nanomolar and submicromolar range,
respectively. In addition, in vivo assays showed this BKI analog to exhibit excellent oral
bioavailability, decreased severity of acute infection, reduced cyst burden and delayed
chronic reactivation of disease in immunocompromised mice. Noteworthy, compound 24
was able to completely cure some of the immunocompromised animals [45].

4.2. Drug Targets Involved in Fatty Acid Synthesis

The fatty acid synthesis (FAS) pathway can provide attractive approaches in T. gondii
drug development, especially since several drug targets include enzymes absent in the host
cell. As with other metabolic pathways, FAS takes place in the apicoplast of apicomplexan
parasites [80,81]. Whilst T. gondii can effectively scavenge host cell precursors, the fatty
acids produced in the apicoplast are essential for parasite development and survival [81,82].
In fact, the parasite can sense lipid availability in the surrounding environment, allowing a
proper balance between de novo synthesis and nutrient scavenging pathways, to maintain
membrane genesis, which is important for division, growth and overall survival and
pathogenesis [83]. Elongation of nascent fatty acids in the FAS II pathway is a process
mediated by multiple enzymes located in the endoplasmic reticulum, which are also present
in bacteria and plants. In animals and fungi, the elongation process is catalyzed by the
type I FAS pathway, leading to a single large multifunctional polypeptide [80,83,84]. Since
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lipid synthesis is regarded as an essential process, especially during tachyzoite intracellular
development, for membrane genesis and lipid homeostasis and signaling, its inhibition is
of great interest in anti-T. gondii drug discovery [83].

4.2.1. The FAS II Enzyme Enoyl-Acetyl Carrier Protein Reductase (ENR)

The FAS II apicoplast-located enzyme enoyl-acetyl carrier protein reductase (ENR)
catalyzes the last step in fatty acid synthesis [46,82]. ENR is inhibited by triclosan, an
antibacterial compound, which inhibits T. gondii in vitro growth at low micromolar to
nanomolar concentrations [46]. However, triclosan has poor solubility and oral bioavail-
ability. El-Zawawy et al. described a liposomal-based delivery system for triclosan, which
was able to reduce, in vivo, both tachyzoite and cyst burden. In fact, the incorporation of
triclosan within the liposomes allowed the use of lower dosages, undermining possible
adverse effects, whilst maintaining its antiparasitic activity [47,60]. Stec et al. later reported
several promising triclosan analogs with better anti-Toxoplasma activity than the parent
compound, such as compound 16c, of this series, presenting an in vitro IC50 of 250 nM,
compared to 3 µM of triclosan. In addition, an overall improvement in pharmacokinetics
was also observed. However, despite promising in vitro results, in vivo assays only showed
decreased T. gondii proliferation in mice at much higher doses (75 mg/kg) when compared
to the most effective doses used in triclosan assays (10 mg/kg). Nevertheless, compound
16c was 10–fold less toxic than triclosan in vivo [61]. Overall, the promising in vitro activity
and interesting pharmacokinetic profile of compound 16c makes it a potential scaffold for
further development.

4.2.2. β-Ketoacyl-Acyl Carrier Protein Synthase I and II (KAS I/II)

The β-ketoacyl-acyl carrier protein synthases I and II (KAS I/II) are other drug targets
belonging to the FAS II pathway and that are essential for fatty acid elongation. In fact,
mutants that lack these enzymes are deficient in unsaturated fatty acids [48]. KAS I/II
are specifically inhibited by thiolactomycin and its analogs. Martins-Duarte et al. deter-
mined IC50 values between 1.6 and 29.4 µM, and electron microscopy studies of treated
parasites revealed serious morphological alterations in parasite shape and intracellular
organelle organization. Treatment with these compounds resulted in swollen mitochondria
with disrupted structures, enlarged Golgi complex, and expanded endoplasmic reticu-
lum throughout the whole parasite cytoplasm. The replication process (endodyogeny)
was also affected, as uncompleted division processes were observed, resulting in large
multinucleated parasites. These findings are indicative of parasite toxicity and death, so
thiolactomycin and analogs show a clear impact in parasite development and survival [62].
However, to the best of our knowledge, in vivo testing of these compounds has not yet
been reported.

4.2.3. Pantothenate Synthetase

T. gondii is capable of synthesizing FAS precursors outside the FAS II pathway, such
as pantothenate, a coenzyme A precursor. The parasite’s pantothenate pathway includes
the terminal enzyme pantothenate synthetase that converts pantoate to pantothenate.
Unlike humans, T. gondii does not require an external source of pantothenate [49]. Host
cell conversion of pantothenate to coenzyme A is rather rapid, preventing T. gondii from
scavenging the precursor from the host cell [27]. Thus, de novo pantothenic acid synthesis
can be an attractive target for drug discovery, as it avoids interference with host cell FAS.
Mageed et al. tested several acylsulfonamides, originally developed to target Mycobacterium
tuberculosis pantothenate synthetase. In order to assess parasite growth inhibition, the
commonly used drug pyrimethamine served as a positive control. Compounds SW413
and SW404 of this series demonstrated in vitro IC50 values of 20 and 130 nM, respectively,
with median toxic doses (TD50) above 1000 µM in human foreskin fibroblasts (HFF). These
inhibitors were at least as potent as pyrimethamine regarding parasite growth inhibition.
To infer whether pantothenate synthetase is the possible target of the compounds, the
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EC50 values were assessed in the presence and absence of supplemental pantothenate. The
addition of pantothenate increased the EC50 values of both SW413 and SW404, indicating
that de novo pantothenate synthesis is essential for T. gondii survival and can be effectively
targeted [49]. Regardless, in vivo experiments are needed to examine the efficacy of these
candidates in animals.

4.3. Drug Targets Involved in DNA Expression

T. gondii is capable of rapidly differentiating between the active tachyzoite stage and
the slow-growing bradyzoite stage. This tachyzoite–bradyzoite interconversion process
requires the expression and modulation of stage-specific genes. This modulation may be
performed through epigenetic mechanisms, using a post-translational modification (PTM)
of histone proteins. PTMs include acetylation or deacetylation of histone residues [85,86].
Acetylation of conserved histone lysine residues by histone acetyltransferases (HATs) gen-
erates PTMs that generally lead to increased target gene expression. Instead, deacetylation
of these residues by histone deacetylases (HDACs) removes the modification, resulting in
decreased target gene expression [50,51]. HATs and HDACs that target stage-specific genes
contribute greatly to parasite interconversion between tachyzoite and bradyzoite stages.
Modulation of gene expression in this regard may contribute greatly towards the develop-
ment of treatment options for chronic toxoplasmosis. Preventing bradyzoite differentiation
may help to avoid chronic infection, whereas preventing tachyzoite conversion may avoid
prompt reactivation of T. gondii acute infection in immunocompromised patients [38]. In
addition, this PTM is also present in other drug targets, including several proteins involved
in DNA repair, including the chaperone Hsp90 and the ATM serine/threonine-protein
kinase [87]. Therefore, epigenetic regulation of gene expression can be considered an
attractive idea for T. gondii drug development.

Histone Deacetylase Enzyme TgHDAC3

Histone deacetylase enzyme TgHDAC3 proved to be an effective drug target for
T. gondii inhibition [52]. The cyclopeptide FR235222 targets TgHDAC3, causing hyper-
acetylation of histone H4 in T. gondii. The compound demonstrated in vitro inhibition of
intracellular parasite growth with an IC50 of 9.7 nM, induced in vitro bradyzoite conversion,
and was able to reach bradyzoites within ex vivo cysts, preventing tachyzoite conversion.
This promising result was further confirmed as FR235222-pretreated bradyzoites were
found to be incapable of infecting HFF monolayers, and unable to cause toxoplasmosis
in the mouse model. However, host cell toxicity was observed in FR235222 treatment,
causing HFF cell inhibition at an IC50 of 128 nM. Further development of FR235222 analogs
led to W363 and W399, which demonstrated higher parasite selectivity in comparison to
the parent compound while maintaining equivalent parasite IC50 values in vitro [53]. The
efficacy of these three compounds in chronically infected mice remains to be described.

4.4. Drug Targets Involved in Mitochondrial Electron Transport Pathway
Mitochondrial Cytochrome bc1 Complex

The cytochrome bc1 complex (bc1), present in the mitochondrial electron transport
chain, is a drug target for several apicomplexan parasitic infections, including toxoplas-
mosis, malaria and babesiosis. Mitochondrial bc1 inhibitors bind to the hydroquinone
oxidation (Qo) or quinone reduction (Qi) site of this complex, hindering cell respiration by
inhibition of the electron transport pathway [27]. Atovaquone, which is clinically available
for alternate treatment and prophylaxis of toxoplasmosis, as well as malaria and babesiosis,
is a well-described Qo-site inhibitor. However, due to mutations in the target binding site,
the development of resistance limited its use in toxoplasmosis [88].

Endochin-like quinolones (ELQ), which are 4-(1H)-quinolone derivatives, target the Qi
site of bc1. The most promising compounds, ELQ-271 and ELQ-316, effectively exhibited
low IC50 values for parasite growth inhibition, such as 0.100 and 0.007 nM, respectively.
ELQ-271 inhibited human bc1 at 800 nM and ELQ-316 did not show human bc1 inhibi-
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tion and was not toxic to HFF or human hepatocarcinoma cells (HepG2) at the highest
concentration tested (10 µM). A reduction in the number of brain cysts by 88% in mice
treated five weeks after infection with an ME49 T. gondii strain (type II strain) was also
verified [54–56,63]. Due to the broad anti-apicomplexan activity of ELQ-316, combination
with atovaquone was suggested to overcome the resistance issues associated with the
latter [27]. Recently, McConnell et al. identified the compound ELQ-400 (also known as
MMV671636, from Neospora caninum assays) as a promising candidate, capable of inhibiting
both Qo and Qi sites of bc1 due to its structural flexibility and favorable substitution pattern.
ELQ-400 decreased acute infection with a lethal type I strain of T. gondii in mice. In this
assay, all mice survived and presented no signs of infection. ELQ-400 and ELQ-316 were
simultaneously evaluated in vivo. Results indicate that both compounds are remarkably
effective in decreasing infection in mice, however, they differ in tissue distribution and
ability to prevent T. gondii from accessing the brain tissue, due to their distinct blood-brain
barrier penetration capacity and half-life. In this regard, ELQ-400 was more effective in
preventing the parasite from reaching the brain. Therefore, this compound is thought to
effectively act on both acute and chronic phases of T. gondii infection [56,64].

5. Drug Repurposing Approach

Drug repurposing is a strategy for identifying new clinical uses for existing drugs
with specific therapeutic indications [89]. This process is becoming an interesting strategy
for drug discovery, as it involves potentially lower financial costs in drug development as
well as shorter timelines [90].

The Medicines for Malaria Venture (MMV) foundation aims to reduce the burden of
malaria by developing and facilitating access to new drug candidates. Thus, an open-access
compound library called Malaria Box was made available for academics worldwide, with
the purpose of identifying novel bioactive compounds against various pathogens. This
library contained 400 blood-stage active anti-Plasmodium compounds. The screening led
to the identification of seven potent anti-T. gondii compounds. Among these, the most
potent and selective was the piperazine acetamide MMV007791 (compounds provided
by the MMV foundation are generally designated by their MMV identifier codes) [91]. In
2015, MMV launched a novel open-access library, modeled after the Malaria Box, known
as the Pathogen Box. It consists of 400 drug-like small molecules, contained in 96-well
plates, with confirmed bioactivity against at least one of the following pathogens: Plas-
modium, Mycobacterium, Kinetoplastids (such as Trypanosoma), Schistosoma, Cryptosporidium,
helminths, and dengue virus. Eventually, since T. gondii is an apicomplexan parasite
and morphologically similar to some of the parasites contained in this list, many com-
pounds were found to have activity against this protozoan and even shed new insights
into its biological pathways [64,65,92,93]. Spalenka et al. screened all 400 compounds for
anti-T. gondii activity. Fifteen compounds demonstrated desired efficacy, of which eight
presented selectivity and favorable in vitro effects on tachyzoite proliferation. The most
active compound, MMV675968, is a diaminoquinazoline with known activity against the
enzyme DHFR of Cryptosporidium, potentially targeting the same enzyme in T. gondii. This
hypothesis was later assessed, and the compound exhibited an IC50 of 0.02 µM and high
selectivity towards parasite DHFR enzyme. Buparvaquone (MMV689480), a well-known
hydroxynaphthoquinone with described activity against N. caninum, by inhibiting several
enzymes involved in the mitochondrial electron transport pathway, was also identified as
having good in vitro anti-T. gondii activity, with an IC50 of 0.10 µM [65].

Recently, Murata et al. screened a chemical compound library, provided by the Drug
Discovery Initiative from the University of Tokyo, and two promising compounds with
anti-T. gondii activity were identified: tanshinone IIA, a compound with potential cancer
cell growth inhibition; and hydroxyzine, a well-known first-generation antihistamine drug.
T. gondii targets and mode of action are currently not known for these compounds, however,
they were identified as effective in vitro inhibitors of tachyzoite growth, with reduced host
cell toxicity. Moreover, tanshinone IIA and hydroxyzine showed inhibitory effects on the
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growth of bradyzoites. Thus, data indicate that these compounds may represent novel
lead compounds to treat acute toxoplasmosis as well as preventing reactivation of latent
infection, particularly in immunocompromised individuals [66]. However, in vivo efficacy
remains to be reported.

6. Concluding Remarks

Toxoplasmosis is widely distributed worldwide, and the current chemotherapy lacks
efficacy and safety. Clinically available options are associated with a relevant spectrum of
adverse side effects and generally induce poor compliance within patients. Drug discov-
ery has developed enormously in the last decade, with several drug candidates showing
promising results both in vitro and in vivo. This review underlines several promising
compounds, drug targets and strategies for anti-T. gondii drug development. Molecular
modifications play an important role in this regard, with the aim of improving pharma-
cokinetic characteristics, including blood–brain barrier access, bioavailability, and half-life.
The use of liposomal nanoparticles may also be applied in drugs with promising in vitro
results that lack the necessary pharmacokinetic profile. Epigenetics and modulation of
gene expression offer vast possibilities in drug discovery, as T. gondii provides a unique
HAT/HDAC system that allows various explorative strategies. Drug repurposing has been
used for several decades in many different diseases and should be continuously explored.

It is of great importance to invest in the study of novel potent drug candidates. Com-
pounds exhibiting fewer and milder side effects, being overall better tolerated in pregnant
women and newborns, specifically, in comparison to current chemotherapy, should be
prioritized. Ideally, candidates should be capable of acting on both acute replicating tachy-
zoite and latent bradyzoite stages, preventing acute disease and reactivation, and even
allowing resolution of chronic infection. In addition, the drugs should be bioavailable,
capable of reaching therapeutic concentration in all target tissues, such as the brain and eye,
as well as concentrate appropriately in the placenta and fetal compartment, while avoiding
the generation of drug-resistant strains. Finally, drug costs should be affordable, providing
treatment in all world regions. The development of such drugs would revolutionize current
T. gondii chemotherapy.
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