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Abstract: The microbiota inhabiting the intestinal tract provide several critical functions to its host.
Microorganisms found at the mucosal layer form organized three-dimensional structures which are
considered to be biofilms. Their development and functions are influenced by host factors, host-
microbe interactions, and microbe-microbe interactions. These structures can dictate the health of
their host by strengthening the natural defenses of the gut epithelium or cause disease by exacerbating
underlying conditions. Biofilm communities can also block the establishment of pathogens and
prevent infectious diseases. Although these biofilms are important for colonization resistance, new
data provide evidence that gut biofilms can act as a reservoir for pathogens such as Clostridioides
difficile. In this review, we will look at the biofilms of the intestinal tract, their contribution to health
and disease, and the factors influencing their formation. We will then focus on the factors contributing
to biofilm formation in C. difficile, how these biofilms are formed, and their properties. In the last
section, we will look at how the gut microbiota and the gut biofilm influence C. difficile biofilm
formation, persistence, and transmission.

Keywords: Clostridioides difficile infection; commensal microbiota; dysbiosis; mucosal-biofilm; biofilm
inducers; persistence; colonisation resistance; CDI relapsing

1. Introduction

The human gastrointestinal tract (GIT) harbors a great diversity of microorganisms
known as the gut microbiota [1,2]. The gut microbiota forms complex communities that
coexist in an intimate relationship with the host, providing great benefits such as metabolic
products and favoring the development of the immune system [3,4]. These gut microbial
communities are present as planktonic cells or biofilm communities [5].

2. Biofilm Formation in the Gastrointestinal Tract: The Blurry Line between Health
and Disease

Biofilm formation is the differential process of planktonic cells to bacterial communities
embedded into a thick enclosed-matrix that may or may not be attached to a surface [6].
Biofilm that are not attached to a surface are typically called aggregate biofilms whereas
those attached to a surface are called attached biofilms [7]. Biofilm formation in vitro
follows a process composed of five stages. The first step includes the initial attachment
of cells to the surface [8]. These cells are surrounded by small amounts of exopolymeric
material, and many cells are capable of movement. These cells are not yet committed
to the differentiation process and can revert to a planktonic lifestyle and exhibit several
behaviors such as rolling, creeping, aggregation, and windrow formation [6]. The second
stage is the production of extracellular polymeric substances that forms the scaffold for
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the three-dimensional structure of the biofilm. This allows the cells to stick together and
protects bacteria from desiccation, antimicrobials and other stresses [8,9]. The third stage is
the early development of biofilm architecture, when many cells alter their physiological
processes in order to adapt to a particular niche. The fourth stage is the maturation of the
biofilm architecture and the last stage is the dispersion of single cells or aggregates from
the biofilm [6].

In the gut, biofilms are embedded in a biopolymer matrix composed of host and
microbial material, with the ability to adhere to food particles or mucin aggregates in the
lumen, and to a polysaccharide-rich mucus layer lining the gut epithelium [5,10]. Biofilm
communities are composed of different species, known as mixed-species or polymicrobial
biofilms, that coexist in different microhabitats or metabolic niches and are organized in
three-dimensional heterogenous structures [11–13].

For a long time, mucosa-associated biofilms have been implicated in human gastro-
intestinal diseases [11,14] such as Barrett’s esophagus [15], ulcerative colitis, Crohn’s
disease [16,17], Helicobacter pylori-induced ulcers [18], and colorectal cancer (CRC) [19,20].
However, recent studies suggest that commensal gut biofilms are present in a healthy
colon mucosa; these mucosa-associated biofilms are complex and provide advantageous
polymicrobial communities [21,22]. Indeed, interactions between the mucosa-associated
commensal microbes and the host favors maturation and activation of the immune system,
mucus production, and the growth and development of epithelial cells [12,23]. Furthermore,
microbial communities increase colonization resistance against enteropathogens and allow
the exchange of nutrients at the epithelial surface [5,12,24]. Disruption or alteration of
mucosa-associated biofilms can lead to dysbiosis, allowing adhesion and invasion of
epithelial cells by pathogenic bacteria and potentially to inflammation and disease [19,22].
Therefore, a better characterization of the mucosa-associated biofilm communities in the
gut, their effect on the host, and their relationship with health and disease is required.

3. Gut Biofilm Communities: Location, Organization, and Composition

Recent studies are starting to characterize the distribution, composition and charac-
teristics of the gut biofilm communities [23,25–30]. The microbial density and diversity
increase from the stomach (102–103) to the colon (109–1012). In the small intestine, biofilms
are found as dispersed, discontinuous and loose aggregates; while in the large intestine,
biofilms are dense, continuous and attached to a uniform mucus layer [5] (Figure 1). These
variations in biofilm composition and structure along the small intestine and colon are
explained by several factors such as chemical and nutrient gradients, as well as compart-
mentalization of the host immune activity [31]. Furthermore, the composition of biofilm
communities in the lumen differs from the communities found in the mucus layer [28,32,33].

Mucus biofilms are associated with mucin or Muc2 glycoprotein [29]. The small
intestine harbors a single, tightly attached mucus layer where bacteria are absent; while
the colon possess two mucus layers: an inner and an outer layer [34] (Figure 1). The inner
mucus layer is directly attached to the epithelium and is very thick and dense, which makes
the formation of biofilms difficult [25,35]. The outer mucus layer is less dense and contains
a high number of commensal bacteria [36]. The interfold regions contain higher amounts
of mucosa-associated microorganisms that use mucins as a nutrient source [37] and as a
binding site through specialized structures such as pili [38]. On the other hand, the biofilm
populations in the gut lumen are loosely attached to food particles [39] or encapsulated in
mucin aggregates in the colon [40] and may present aggregate biofilms.
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Figure 1. Healthy microbiota biofilms versus a dysbiotic microbiota biofilms. In a healthy microbiota (left panel), the 
microbial density and diversity increase from the stomach to the colon. In the small intestine, biofilms are discontinuous 
and loose aggregates, while in the large intestine, biofilms are dense, continuous and attached to a uniform mucus layer 
(attached biofilms). The biofilms in the gut lumen are loosely attached to food particles or encapsulated in mucin (aggre-
gate biofilms). Commensal biofilms facilitate the host barrier function by thickening the mucus layer, regulating the secre-
tion of IgA, stimulating conversion of pro-IL-1β into active IL-1β and inducing the development of Th17 cells. A dysbiotic 
microbiota (right panel) presents (1) damaged mucus-biofilm exposing epithelium cells to luminal content or (2) invasive 
biofilms where bacteria come directly into contact with the epithelium. Both scenarios expose the intestinal epithelium to 
pathogens and pathobionts which can trigger an infection. Invasive polymicrobial biofilms could trigger cellular inflam-
mation, abnormal cellular proliferation, increased epithelial permeability (activation of IL-6 and Stat3) in patients with 
colorectal cancer (CRC), increased IL-17 production and DNA damage in patients with familial adenomatous polyposis 
(FAP), and inflammatory bowel disease (IBD). Patients’ Adherent-invasive E. coli (AIEC) colonize the intestinal mucosa 
and stimulate the secretion of TNF-α and mucin degradation. 
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When the spatial organization of the intestinal microbiota in the mouse ascending 
colon was studied, it revealed that members of the Bacteroidetes (Bacteroidaceae, Porphy-
romonadaceae, Prevotellaceae and Rikenellaceae), and Firmicutes (Lactobacillaceae) are 
found mostly in the lumen whereas members of Firmicutes such as Lachnospiraceae and 
Ruminococcaceae are found mostly in the interfold regions closer to the gut epithelium 
[28] (Figure 1). Using laser capture microdissection to isolate mucosa-associated microbes 
from different regions of the human colon, another study found that the ascending colon 
was dominated by Proteobacteria, whereas the descending colon was dominated by mem-
bers of the Proteobacteria and Actinobacteria, followed by Firmicutes [23]. In support of 
these observations, Fluorescence In Situ Hybridization (FISH) of thin bacterial biofilms 
found on normal colonoscopy biopsies revealed that the ascending colon is mainly com-
posed of Bacteroidetes, Lachnospiraceae and Enterobacteriaceae, and the descending co-
lon is mainly composed of Bacteroidetes and Lachnospiraceae [19] (Figure 1). 

Figure 1. Healthy microbiota biofilms versus a dysbiotic microbiota biofilms. In a healthy microbiota (left panel), the
microbial density and diversity increase from the stomach to the colon. In the small intestine, biofilms are discontinuous and
loose aggregates, while in the large intestine, biofilms are dense, continuous and attached to a uniform mucus layer (attached
biofilms). The biofilms in the gut lumen are loosely attached to food particles or encapsulated in mucin (aggregate biofilms).
Commensal biofilms facilitate the host barrier function by thickening the mucus layer, regulating the secretion of IgA,
stimulating conversion of pro-IL-1β into active IL-1β and inducing the development of Th17 cells. A dysbiotic microbiota
(right panel) presents (1) damaged mucus-biofilm exposing epithelium cells to luminal content or (2) invasive biofilms
where bacteria come directly into contact with the epithelium. Both scenarios expose the intestinal epithelium to pathogens
and pathobionts which can trigger an infection. Invasive polymicrobial biofilms could trigger cellular inflammation,
abnormal cellular proliferation, increased epithelial permeability (activation of IL-6 and Stat3) in patients with colorectal
cancer (CRC), increased IL-17 production and DNA damage in patients with familial adenomatous polyposis (FAP), and
inflammatory bowel disease (IBD). Patients’ Adherent-invasive E. coli (AIEC) colonize the intestinal mucosa and stimulate
the secretion of TNF-α and mucin degradation.

When the spatial organization of the intestinal microbiota in the mouse ascending
colon was studied, it revealed that members of the Bacteroidetes (Bacteroidaceae, Porphy-
romonadaceae, Prevotellaceae and Rikenellaceae), and Firmicutes (Lactobacillaceae) are
found mostly in the lumen whereas members of Firmicutes such as Lachnospiraceae and
Ruminococcaceae are found mostly in the interfold regions closer to the gut epithelium [28]
(Figure 1). Using laser capture microdissection to isolate mucosa-associated microbes from
different regions of the human colon, another study found that the ascending colon was
dominated by Proteobacteria, whereas the descending colon was dominated by members
of the Proteobacteria and Actinobacteria, followed by Firmicutes [23]. In support of these
observations, Fluorescence In Situ Hybridization (FISH) of thin bacterial biofilms found
on normal colonoscopy biopsies revealed that the ascending colon is mainly composed
of Bacteroidetes, Lachnospiraceae and Enterobacteriaceae, and the descending colon is
mainly composed of Bacteroidetes and Lachnospiraceae [19] (Figure 1).

4. Health and Disease: Non-Invasive versus Invasive Gut Microbial Biofilms

In a healthy gut, a beneficial microbial biofilm formed by a complex ecological com-
munity will interact with the mucus layer and epithelium without invading the epithelia
layer. This allows essential functions such as microbiota stability and resilience, which
contribute to gut homeostasis and protect against infections [4,5]. Commensal biofilms
offer a protective barrier against the proliferation and colonization of enteric pathogens, as
well as of opportunistic pathobionts [41]. The resistance mechanisms offered by commensal
communities against enteropathogens include the use of bacteriocins and short-chain fatty
acids production, which inhibits the growth of pathogens and pathobionts [42–44]. Fur-
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thermore, commensal bacteria facilitate the host barrier function by thickening the mucus
layer, inducing the expression of antimicrobial molecules and regulating the secretion of
IgA [45–48]. Moreover, commensal microorganisms stimulate conversion of pro-IL-1β
into active IL-1β [49] and induce the development of Th17 cells in the intestine, allowing
protection against pathogens [50] (Figure 1).

On the other hand, when dysbiosis occurs, the physiological conditions in the gut
are altered, which affects the organisation of the mucosal biofilm. These changes can
result in two possible scenarios: (1) the mucosal biofilm is damaged and forms aggregates
of different sizes which leads to the exposure of epithelial cells to luminal content; or
(2) an invasive biofilm is formed, bacteria colonize the inner sterile mucus layer and
potentially come directly into contact with the epithelium (Figure 1). Both scenarios expose
the intestinal epithelium to pathogens and pathobionts which can trigger an infection [5].
For example, changes in diet, such as fiber deficiency, promote the expansion of colonic
mucus-degrading bacteria in mice, leading to the erosion of the colonic mucus barrier and
facilitating the access to epithelial cells for enteric pathogens that cause colitis in mice such
as Citrobacter rodentium [51], a surrogate pathogen for enterohemorrhagic E. coli (EHEC)
and enteropathogenic E. coli (EPEC) [52].

Dysbiosis can also lead to invasive polymicrobial biofilms that induce cellular inflam-
mation and abnormal cellular proliferation [19]. Invasive biofilms are associated directly
with tumors. A signature of invasive biofilms is the reduction of E-cadherin on the surface
of colonic epithelial cells and the high activation of IL-6 and Stat3, which increase epithelial
permeability and tissue inflammation [19] (Figure 1). H. pylori is able to form biofilms in
patients with peptic ulcer disease [18]. H. pylori forms biofilm-like microcolonies deep in the
stomach glands and interacts directly with gastric progenitor and stem cells in tissues from
mice and humans. These gland-associated bacteria accelerate stem cell proliferation and
up-regulate the expression of stem cell–related genes, leading to glandular hyperplasia [53].

Bacterial biofilms present in the colon may also alter the host tissue microenvironment
and induce metabolic changes in patients with colon cancer, as evident in metabolomic
studies demonstrating changes in polyamine metabolite, including an upregulation of N1,
N12-diacetylspermine. Increased polyamine concentrations are correlated with eukaryotic
proliferation, potentially affecting cancer growth, development and progression [54].

Furthermore, invasive polymicrobial biofilms associated with diseases are composed
of specific bacterial species or groups. For example, invasive biofilms associated with the
colonic mucosa of familial adenomatous polyposis (FAP) patients, an inherited disorder
characterized by cancer of the large intestine, were predominately composed of Escherichia
coli and Bacteroides fragilis. These bacteria can secrete oncotoxins named colibactin (ClbB)
and B. fragilis toxin (BFT), respectively, and these toxins were enriched in FAP patients.
Furthermore, mice co-colonized with oncotoxin-producing strains had an increase in IL-17
production in the colon and increased DNA damage in colonic epithelial cells leading to
faster onset of tumor [55] creation. Specifically, the BFT toxin triggers a pro-carcinogenic
multi-step inflammatory cascade that increases the production of genotoxic oxygen radicals
in colonic epithelial cells [56] (Figure 1).

Patients with colorectal cancer (CRC) have a higher number of Fusobacterium nucleatum
and Streptococcus gallolyticus that surround the carcinoma or the adenoma tissues [57,58].
Both bacteria possess virulence factors that stimulate inflammatory and oncogenic re-
sponses [59]. Other bacteria that have been found in invasive biofilms in CRC patients are
Campylobacter jejuni, Parvimonas micra, and Peptostreptococcus stomatis [60,61] (Figure 1).

Similarly, invasive biofilms are also associated with inflammatory bowel disease
(IBD) such as Crohn’s disease (CD) and ulcerative colitis (UC) [16,17]. In patients with
IBD, B. fragilis is responsible for more than 60% of the biofilm mass [62]. Another study
found a high proportion of pro-inflammatory bacteria on the colonic mucosa of a young
patient with ulcerative colitis such as Enterobacteriaceae, B. fragilis and P. aeruginosa [63].
Adherent-invasive E. coli (AIEC) were isolated from ileal biopsies of 36.4% of patients
with CD. AIEC colonize the intestinal mucosa, survive and then replicate in epithelial
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cells and macrophages, which stimulate the secretion of large amounts of TNF-α [64]
(Figure 1). Interestingly, AIEC possess a protease called Vat-AIEC that favors mucosa
colonization by degrading mucins and decreasing mucus viscosity [65]. Also, an increased
prevalence of mucolytic bacterial species such as Ruminococcus gnavus and Ruminococcus
torques were found in CD and UC patients [66]. Furthermore, Enterococcus virulence factors
were detected in children with IBD, and biofilm production was more frequent among
Enterococcus strains isolated from children with IBD than in control strains [67] (Figure 1).

Overall, certain intestinal pathologies create an ideal environment which foster enrich-
ment of specific bacterial groups. Bacteria associated with disease will form low diversity
biofilm communities that exacerbate underlying conditions whereas bacteria associated
with health will form a highly diverse biofilm community that strengthens the natural
defenses of the gut epithelium [5]. Development and function of these biofilm commu-
nities will be influenced by host factors, host-microbe interactions, and microbe-microbe
interactions [5].

5. Diversity of Interactions and Phenotypes in the Gut Biofilm Communities

Interactions in mixed-species biofilm communities of the gut can be neutral, positive
or negative. Positive interactions are characterized by cooperation, commensalism and
cross-feeding, whereas negative interactions are characterized by competition, exploitation
and interference [68]. Cooperation involves one species that increases the fitness of another.
Cooperation is not always reciprocal; however, if the interaction has a cost for one partner,
an indirect benefit should be received for the interaction to be stable [69]. Competition is
an indirect interaction between two species competing for a common resource. For exam-
ple, Salmonella enterica induces inflammatory host responses that change the microbiota
composition and suppress the microbiota’s growth [70]. In the case of exploitation, one
species gains a fitness benefit at the cost to another, and this is also known as predation or
parasitism [68]. Interference is a direct interaction where one species affects the fitness of
another [68]. Interference includes the use of bacteriocins [71], type V, type VI and type VII
secretion systems [72–74]. Overall, different types of interactions are occurring in biofilms
and these will shape the properties and the special arrangement of biofilm communities.

5.1. Competitive and Cooperative Behaviors in a Biofilm

Microbial biofilm communities are spatially organized and can be formed by hundreds
of strains and species [75,76]. The arrangement of cells in space is important to define
in terms of whether competitive or cooperative behaviors are advantageous in a specific
environment [77]. Biofilms can be organized as segregated lineages or mixed lineages.
Segregated lineages at a high population density favor cooperative behavior because neigh-
bor cells are almost exclusively clonemates. On the other hand, mixed lineages at a high
population density will favor antagonistic interactions, but inter-strains commensalism or
mutualism is also observed [75]. Segregation can occur when growing cells are spatially
constrained. Mixed lineages can be produced by physical perturbation, diffusive cell
movement, spatially homogeneous growth rates, migration and mutualistic cross-feeding
interactions [75].

The competitive behaviors will be stimulated when encountering different species,
and this strategy favors kin selection [78]. Nutrient scarcity can also lead to bacterial
competition against their own kin and other species [79]. Interspecies competition has led
to the evolution of competitive strategies [80] such as rapid growth [81], adhesion, matrix
production [82], bacteriocins, and toxins production to outcompete neighbors inside a
biofilm matrix [83].

The cooperative behaviors can evolve despite their costs [84]. Groups with cooper-
ative behaviors can increase productivity and this increased productivity is sufficient to
overcome the costs of cooperation [85]. Cooperative behaviors allow the exploitation of
public goods by nonproducing cells or cheating cells [86]. In biofilms, the secretion of
extracellular substances allows bacteria to capture nutrients from the environment [21].
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For example, cooperative behaviors are present in enteropathogens such as Vibrio cholerae,
which uses extracellular chitinases to digest its primary food source, the polymer chitin,
into N-acetylglucosamine (GlcNAc). In thick biofilms, the chitinases producers confine
the goods exclusively to producers. However, fluid flow can wash out the chitin prod-
ucts, allowing cheating cells to benefit from neighbor producer cells [87]. The presence of
cheaters alters the structure and properties of biofilms by reducing the population fitness
in bacterial biofilms. The population fitness is affected by a decrease in the population
growth, a decrease in biofilm thickness, and an increase in the susceptibility of the biofilm
to antibiotics [86].

Cooperation could be as extreme as self-sacrifice or altruism where fitness of other
members in the biofilm is improved at the expense of the fitness of the producer cells
resulting a reduction in the growth rate [69]. Altruism includes the secretion of extracellular
enzymes and siderophores that benefit surrounding cells [88]. Also, the prophage-mediated
cell death in P. aeruginosa allows the differentiation and dispersal of surviving cells inside
biofilm microcolonies [89]. Collective behavior is often regulated by quorum sensing (QS),
leading to a switch of social behaviors at high densities when specific traits will be more
effective and beneficial [90].

Cooperative and competitive behaviors will shape gene expression and, as a result,
cellular phenotypes found within a biofilm. This will create sub-populations and hetero-
geneity within a biofilm.

5.2. Phenotypic and Metabolic Heterogeneity Inside a Biofilm

In biofilms, adhesion of cells on a surface results in environmental and cellular hetero-
geneity [91]. A stratified biofilm has internal gradients with diverse metabolic activities,
growth rates, oxygen and tolerance to antibiotics [92]. The bacteria that are in the outer
layers of the biofilm have a fitness advantage because oxygen and nutrients are readily
available while populations inside the biofilm will have higher tolerance to antibiotics,
lower growth rates, low oxygen concentration and low metabolic activity [93]. The creation
of nutrient gradients, chemical gradients or waste products within the biofilm can induce
the differentiation of cells into diverse phenotypic states and into heterogeneous geno-
types [93]. This phenotypic and genetic diversity allows task differentiation better known
as the division of labor. This is defined by bacteria specializing in performing different
tasks during their cooperative interactions [91]. For example, the biofilm matrix of the soil
bacterium Bacillus subtilis consists of two major components: exopolysaccharides (EPS)
and the cell wall associated protein TasA. Clonal groups of B. subtilis segregate phenotypi-
cally into three subpopulations composed of matrix non-producers, EPS producers and
generalists that produce EPS and TasA. This allows maximum group productivity [94].

As a consequence of environmental heterogeneity, biofilm cells exhibit different ranges
of phenotypes and metabolic capabilities than their planktonic counterparts [95,96]. This
can be observed among the human gut bacteria found in biofilms, which are more effi-
cient at digesting polysaccharides and the main fermentation product is acetate, whereas
nonadherent populations are more efficient at digesting oligosaccharides and the main fer-
mentation product is butyrate. This demonstrates that both communities are metabolically
different [97].

The properties of in vitro biofilm may not, however, represent the biofilms observed
in vivo because these biofilm communities appear to be smaller and do not share the
3D structure of in vitro biofilms [98]. In vitro models have limits when used to study
infectious biofilms because in vivo biofilms seem to be deprived of oxygen and nutrients,
are embedded in host derived components, such as pus and wound-bed slough, and are
often surrounded by inflammatory cells [99,100]. Indeed, in vivo studies demonstrated that
gene expression patterns and metabolic adaptations from human infection samples greatly
differ from those obtained under laboratory conditions [101,102]. For in vivo biofilms,
decreased virulence, and increased antibiotic resistance and persistence were observed in
cystic fibrosis patients with chronic P. aeruginosa lung infections [103]. There is a great need
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to improve techniques and strategies to study in vivo biofilms, but there is also a need to
implement new in vitro models that better mimic the in vivo conditions. This would help
reduce the discrepancies and improve the biological relevance of in vitro studies.

6. Diverse Gut and Microbiota-Derived Signals Induce Biofilm Formation in
Commensal Bacteria and Enteropathogens

The transition from a planktonic state to sessile growth is regulated by multiple steps
and regulation cascades, and includes QS-dependent genes, the type IV pili (T4P), and the
flagellum [104–106]. Biofilm formation is also guided by several environmental signals,
which include mechanical signals, nutritional and metabolic cues, inorganic molecules,
osmolarity, the presence of antimicrobial molecules, quorum-sensing derived signals, and
host-derived signals [107].

Bacteria can initiate the transition from a planktonic state to biofilm in vivo to im-
prove their survival against harmful conditions present in the host, to exploit a nutrient
rich area that facilitates colonization, or to use the cooperative benefits of multicellular
structures [108]. Biofilm formation can be controlled by stress response regulators that
are activated by different stresses present in the host such as nutrient limitation, iron
deprivation, sub-inhibitory concentrations of antibiotics, and osmotic stress [109–111].
Specific environmental conditions such as calcium concentration can increase the sec-
ond messenger c-di-GMP concentrations that could trigger biofilm formation [112]. In
some cases, biofilm formation is dependent on the nutritional conditions that will trigger
metabolic adaptation and thus stimulate biofilm formation [106]. In the next section, we
will focus on host-derived signals that induce biofilm formation in gut commensal bacteria
and enteropathogens.

6.1. Host-Derived Factors and Biofilm Formation

Bile salts present in the intestinal tract of the host can induce biofilm formation in
several enteropathogens and improve their survival against the toxic effects of bile [113].
Bile salts promote biofilm formation in V. cholerae by increasing the intracellular levels
of c-di-GMP, which are caused by an increase in c-di-GMP synthesis by 3 diguanylate
cyclases (DGCs) and decreased expression of one phosphodiesterase (PDE) [114]. The
enteropathogen Shigella flexnerii also forms biofilm in response to the presence of deoxy-
cholate (DOC), and this is mediated by the secreted protein IcsA, which is involved in
cell-cell contacts and aggregative growth [115]. Similarly, vancomycin-resistant Enterococ-
cus (VRE) is able to form biofilms in the presence of physiological concentrations of bile
acids, which facilitates colonization and persistence. In VRE, the ability to form biofilms
in response to bile salts is controlled by the histine kinase YycG/Walk of the WalRK two
component system and the response regulator LiaR of the three-component regulatory
system LiaFSR [116]. Likewise, B. fragilis treatment with bile salts increased bacterial
co-aggregation, adhesion to intestinal epithelial cells and biofilm formation [117]. Exposure
to bile salts induced morphological and transcriptional changes in B. fragilis, including
overproduction of fimbria-like appendages and outer membrane vesicles, and increased
expression of genes encoding RND-type efflux pumps and the major outer membrane
protein, OmpA [117].

Additionally, Acinetobater baumannii, Cronobacter malonaticus, and Bifidobacterium formed
more biofilms when exposed to bile salts [118–120]. In Bifidobacterium breve, bile-salt-
induced biofilm formation involved QS, EPS production and eDNA release, and increased
its viability when exposed to porcine bile salts [118]. In A. baumannii, exposure to bile
salts increased expression of virulence factors associated with surface motility, biofilm,
and type VI secretion systems, and these are also associated with activation of the QS
system [119]. In the case of C. malonaticus, bile salts exposure induced an upregulation
of the AcrAB-TolC system, but the molecular mechanisms involved in biofilm formation
remain unknown [120].

When the commensal microbiota species B. breve and B. animalis were grown in
taurocholic acid or porcine bile, the bacteria bound more effectively to mucin and formed
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more biofilm but the molecular mechanism is unknown [121]. Similarly, bile salts can
induce biofilm formation in the commensal bacteria Bacteroides thetaiotaomicron, and this
biofilm formation is dependent on the BT3563 DNAse that degrades extracellular DNA in
the biofilm matrix [122].

Human secretory IgA (SlgA) appears to facilitate biofilm formation of the normal gut
microbiota in vitro and of E. coli on the surface of cultured epithelial cells [123]. SlgA is a
key factor that allows agglutination of bacteria and prevents their translocation to the gut
epithelial cells, a process known as immune exclusion [124]. It was observed that mucin
facilitated biofilm formation by E. coli by an unknown mechanism [123]. Similarly, type-2
mucin increased bacterial adhesion and biofilm formation in Listeria monocytogenes. This
is mediated by the cell-surface protein InlL, which binds directly to Muc-2 [125]. Mucins
are also used by C. jejuni as a signal to modulate the expression of virulence genes such
as mucin degrading-enzymes, flagellin A and toxins [126]. Moreover, C jejuni is able to
use fucose as a carbon source and shows chemotaxis towards fucose. C. jejuni biofilm
formation decreased in the presence of fucose, suggesting that C. jejuni in a biofilm is
able to coordinate fucose use based on its availability [127]. Mucus production in the
colon is stimulated by the presence of hydrogen sulfide (H2S), which also promotes the
establishment of biofilms in the GIT. H2S not only promoted biofilm formation by human
microbiota ex vivo but also reduced the growth of planktonic bacteria [128].

Many studies have reported that several hormones and vitamins can affect biofilm for-
mation and subsequent colonization. These factors include peptide hormones, steroid hor-
mones such as catecholamine, and vitamin K [129]. For example, the hormone epinephrine
was found to induce QS in EHEC [130]. In this study, a luxS deletion strain, which is unable
to produce the EHEC autoinducer AI-3, responded to the host signal epinephrine and
activated the expression of genes involved in biofilm formation [130]. Furthermore, E. coli
biofilm formation is induced by insulin and is increased when glucose is present [131].
Indeed, the presence of insulin increased E. coli hydrophobicity and adherence to epithelial
cells [132]. The gut commensal and opportunistic pathogen Enterococcus faecium can sense
and respond to norepinephrine, a human hormone abundant in the gut, by inducing physi-
ological changes, survival and colonization of the host tissues, and biofilm formation [133].
Catecholamines can also increase adhesion and biofilm formation in the enteropathogens
Salmonella enteritidis and E. faecalis [134,135]. The specific molecular mechanisms of bac-
terial recognition of the hormones and the activation of regulatory pathways leading to
increased biofilm formation have yet to be elucidated. Altogether, these studies show that
there is cross-signaling between the host and the microbiota to allow maintenance of the
gut homeostasis.

6.2. Antibiotics Affecting Biofilm Formation

Exposure to sub-inhibitory concentrations of antibiotics can induce or inhibit biofilm
formation in bacteria. In E. faecalis, sub-inhibitory concentrations of tigecycline decrease
biofilm formation [136], but sub-inhibitory concentrations of gentamicin significantly in-
creased biofilm formation [137]. Similarly, sub-inhibitory concentrations of antibiotics that
target the cell wall induced biofilm formation in E. faecalis [138]. The increase in biofilm
formation was associated with an increase in cell lysis, extracellular DNA (eDNA) levels
and cell density within the biofilm. This study included a mathematical model that pre-
dicted the changes in antibiotic-induced biofilms due to external alterations, showing that
perturbations that reduce eDNA or decrease the number of living cells decreased biofilm
induction, while compounds that increased cell lysis and cell wall inhibitors increased
biofilm formation [138]. Similar results are also observed in gram-negative bacteria. For
example, sub-inhibitory concentrations of aminoglycosides induced biofilm formation in E.
coli [139]. However, sub-inhibitory concentrations of ceftazidime inhibited E. coli biofilm
formation by increasing the extracellular concentration of indole [140].

Antibiotic resistance and tolerance can be mediated by efflux pumps and recent studies
have suggested that efflux pumps may play a role in biofilm formation [141]. In E. coli, efflux
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pump genes such as isrA were highly expressed in biofilm bacteria compared to planktonic
bacteria [142]. IsrA mediates the transport of the AI-2 signaling molecule involved in QS,
suggesting that efflux pumps may play a role in the transport of the AI in E. coli biofilms,
facilitating QS and promoting biofilm maturation [143]. Other multidrug efflux pumps
such as AcrB and MdtABC were also involved in biofilm formation since corresponding
mutant strains decreased biofilm formation and antibiotics resistance [144,145]. Similarly,
the efflux pumps of S. enterica play an important role in biofilm formation. Indeed, the
inactivation of efflux pumps inhibited the expression of the S. enterica curli, a surface protein
filament that is an essential component of the biofilm matrix [146]. It was suggested that
efflux pumps are involved in the activation of the regulator of curli gene expression [141].
In E. coli, some drug-induced stresses repressed production of curli and thus repressed
biofilm formation [147].

6.3. Microbiota Metabolites and Biofilm Formation

Microbiota-produced metabolites can prevent infections and influence the host intesti-
nal homeostasis. Among these, short-chain fatty acids (SCFA) are metabolic products of
gut commensals from the Clostridia genera such as Ruminococcus and Faecalibacterium [148].
SCFA protect against enteric pathogens [149]. Moreover, SCFA such as butyric acid, acetic
acid, lactic acid, propionic acid, formic acid, and valeric acid are implicated in biofilm
formation [148]. Butyric acid and propionic acid induced FimA-dependent biofilm forma-
tion by the oral bacteria Actinomyces oris [150]. In A. oris, biofilm formation is mediated by
type-2 Fimbriae composed of the shaft fimbrilin FimA and the tip fimbrilin FimB, which
mediate co-aggregation and, subsequently, biofilm formation [150]. Likewise, butyric acid
increased biofilm formation in Actinomyces naeslundii [151]. On the other hand, SCFA can
inhibit biofilm formation in several Salmonella species [152].

The signal molecule indole is produced in large quantities by gram-positive and gram-
negative bacteria and can act as intra-species, inter-species and interkingdom signal. Indole
controls several processes including bacterial physiology, virulence, cell cycle regulation,
acid resistance, and biofilm formation [153,154]. Indole was able to activate genes involved
in polysaccharide production which are essential for V. cholerae biofilm formation [155].
Indole was also able to influence the expression of other genes including those involved in
motility. In E. coli, indole produced by the tryptophanase TnaA from L-tryptophan, and
transported mainly by TnaB, acts as an extracellular signal that regulates the expression of
adhesion and biofilm-promoting factors [156]. The tryptophanase TnaA is also present in
other species such as F. nucleatum, where a tnaB homolog was also identified and encodes
for a low-affinity tryptophan permease. In F. nucleatum, the exogenous concentrations
of tryptophan increased indole concentration in the supernatant and biofilm formation
in a dose-dependent manner [157]. However, other studies have reported inhibition of
biofilm formation by indole. For example, indole significantly diminished L. monocytogenes
biofilm formation and its virulence genes involved in motility, cell aggregation, and EPS
production. In addition, indole regulates many genes involved in virulence and global
regulatory genes suggesting that L. monocytogenes uses indole from the gut microbiota as a
signal to adapt to a new environment [158].

6.4. Bacterial and Phages Interactions Affect Biofilm Formation

The gut microbiome contains bacteria, fungi, and viruses, including bacteriophages.
These can have an important role in shaping the bacterial population in the gut [159]. For
example, exposure of E. coli strain MG1655 to environmental bacteriophages results in
the selection of phage-tolerant sub-populations that show increased biofilm formation.
Interestingly, phage tolerant strains produce large amounts of the DNA-binding protein
Dps in the outer membrane and fimbria-like structures [160]. In S. Typhimurium, phage
predation leads to increase in biofilm formation as a result of non-evolutionary mech-
anisms, but no phage resistance was observed [161]. On the other hand, some phages
mediate biofilm dispersal of E. coli under high concentrations of the autoinducer AI-2. In
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E. faecalis, the absence of one prophage resulted in reduced dispersion and the absence of
several prophages increased biofilm formation and biofilm dispersal upon induction with
AI-2 [162]. In E. coli, the transcriptional regulator HhA decreases biofilm formation by re-
pressing the transcription of some tRNAs which inhibit fimbriae production by repressing
the genes fimA and ihfA. The repression of tRNAs by HhA leads to cell lysis and biofilm
dispersion due to the activation of prophage lytic genes [163].

As mentioned above, the V. cholera QS regulates biofilm formation. In V. cholera,
the factor VqmAVC, a cytoplasmic receptor transcription factor, binds the autoinducer
3,5-dimethylpyrazin-2-ol (DPO) and the DPO-VqmA complex activates the sRNA VqmR,
which represses genes required for biofilm formation [164]. Interestingly, a vqmA homo-
logue exists in the vibriophage VP882 (VqmAPhage). When VqmAPhage binds to DPO
produced by the host, the active VqmAPhage-DPO allows the transcription of the phage
protein Qtip that inactivates the cl repressor, a lytic gene repressor, leading to the induction
of the phage lysis program. This lysis program is only favoured under high cell density
and high DPO concentrations. Thus, high DPO inhibits biofilm formation and favors
bacterial dispersal. On the other hand, when the cell density is low, the phage favors
lysogeny. Overall, this allows phage VP882 to integrate host-derived information into its
lysis-lysogeny decision based on the state of the QS system and cell-density of its bacterial
host [165].

7. The Case for C. difficile

Clostridioides difficile, formerly Clostridium difficile, is a gram-positive strict anaerobic
bacterium which can be found in the gut of various mammals. This bacterium is an
opportunistic pathogen that causes infection, with symptoms ranging from mild diarrhea
to pseudomembranous colitis. C. difficile infections (CDI) are estimated to cause more than
450,000 infections per year in the United States of America (USA), with an annual cost to
the health system of approximately $4.8 billion [166,167]. The more severe cases of CDI
can be life-threatening, as the 30-day mortality rate is as high as 21% of diagnosed patients,
which results in 15,000 to 30,000 deaths annually in the USA [168]. This opportunistic
pathogen is currently one of the rising public health threats as more clinical strains become
resistant to the usual antibiotic treatments, including metronidazole and vancomycin [169].
Moreover, several risk factors are associated with CDI including antibiotic therapy and
hospitalizations as well as age (≥ 65 years) [170]. Thus, C. difficile is the most common
cause of nosocomial diarrhea [171], and healthcare associated CDI cases represent more
than half of all cases [166].

This bacterium is transmitted by spores through the oral-fecal route. Spores are shed
by infected patients and are resistant to both disinfectants and oxygen [172]. Ingested
spores usually do not germinate and do not cause CDI because a healthy gut microbiota
confers colonization resistance, primarily through the action of bile acids [170]. Primary bile
acids are secreted by the host and the highest concentration is found in the small intestine,
as 95% of the bile acids are reabsorbed before entering the colon. Primary bile salts are
known to promote C. difficile spore germination into vegetative cells, while secondary bile
acids synthesized from primary bile acids by the microbiota generally inhibit germination
and C. difficile growth [170]. Disruption of the gut microbiota resulting in dysbiosis is thus
necessary to decrease secondary bile acid concentrations and increase the primary bile
acid levels. Broad range antibiotics like clindamycin are a primary cause of dysbiosis, as
most members of the gut microbiota are sensitive to this treatment and it is more likely to
affect the bacteria that convert primary bile salts into secondary bile salts. The changes
in bile acid concentrations and profiles allow both spore germination in the ileum and
survival of vegetative cells in the colon. Once C. difficile starts to colonize the dysbiotic
colon, it can overgrow and may start to express virulence factors such as enzymes, which
can disrupt the gut barrier (collagenase, hyaluronidase), and toxins (TcdA, TcdB, CDT) to
access host-derived nutrients [173]. The toxins are secreted into the extracellular medium
and are internalized by the epithelial cells through endocytosis. The toxins can escape
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the acidified endosome either by creating pores in the endosome membrane (CDT) or
by inserting and translocating to the outer layer of the endosome [174]. These events
deliver active toxins and lead to the disruption of the tight junctions and inhibition of actin
polymerization. These actions break the gut barrier apart and cause pseudomembranous
colitis and toxic megacolon. Spore formation is also triggered, allowing the spread of the
bacterium to new hosts through shedding in the feces.

One of the particularities of CDI is its high rate of recurrence that can reach 64% for
healthcare associated CDI and 28% for community-associated CDI [175]. This recurrence
can be either from a newly acquired strain or from the initial strain [176]. Relapses were
suggested to be linked to spore formation, as a spo0A mutant displayed no recurrent
infections in a mouse model [177]. Spores were recently shown to enter intestinal cells,
allowing them to survive CDI treatments and ultimately leading to a relapse in CDI [178].
However, spores may not be the only cause of recurrence in CDI. For other bacterial
infections such as those involving Staphylococcus aureus or P. aeruginosa [179,180], recurrent
or chronic infections are thought to be mediated by biofilm formation. Thus, biofilm
formation by C. difficile is hypothesized to be a contributor to recurrent CDI [181]. However,
C. difficile biofilm formation has only received attention since 2012, and the role of biofilm
in the infectious cycle has yet to be identified [182,183].

8. Biofilm Formation in C. difficile

Interest in C. difficile biofilm formation is recent, but it has gathered momentum. From
the onset, researchers adapted methods and techniques from other bacterial fields to lay
the current foundation. This yielded new tools and models to study C. difficile biofilm
formation; however, optimization remains an ongoing process. Biofilm formation models
and findings for C. difficile have been summarized in Figure 2. In the next sections, we
discuss the progress in the field.

8.1. In Vitro Models, Quantification, and Visualization

Various in vitro models are used to study biofilm formation in C. difficile. Closed sys-
tems using liquid cultures (cell culture flasks or well-plates) are the most commonly used
system because they allow high-throughput experiments [183,184]. However, open system
microfermentors characterized by continuous flow are also used, as these are thought to
be more physiologically relevant than closed systems in studying gut anaerobic bacte-
ria [185,186]. A chemostat gut model composed of several compartments that represent
different parts of the gut with their specific physical and chemical characteristics was also
developed and adapted to study gut infections [187,188]. These latter two methods have
the advantage of incorporating physiologically relevant conditions of a CDI; however, these
types of models can be difficult to set up and require specialized material when compared
to their closed systems counterparts. Colony model biofilms are also used to study and im-
age C. difficile biofilms [189–191]. As a recent study demonstrated, biofilms grown on agar
plates had different characteristics in terms of cell-surface protein expression, metabolism,
and regulations than biofilms obtained from liquid culture [189].

The typical liquid medium used for in vitro biofilm formation is a rich and complex
medium such as Tryptone Yeast extract (TY) or Brain Heart Infusion (BHI) supplemented
with yeast extract or casein hydrolysates, L-cysteine and/or glucose [15,18,19,23,29,30].
Biofilms are grown for various periods of time, ranging from 12 h to 7 days [30,31]. Earlier
time points allow the study of the early steps of biofilm formation to identify factors
involved in the induction of biofilm formation. Later time points allow the study of late
stages of biofilm formation to identify factors affecting maturation and dispersion. The
use of different time points and growth conditions is one way to demonstrate the plasticity
of biofilm formation in C. difficile and can provide answers to find pathways involved in
biofilm formation. However, the diversity of conditions also makes it difficult to compare
studies and draw accurate conclusions. The recent development of a semi-defined medium
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that supports biofilm formation may help bridge those gaps in knowledge and resolve
current discrepancies [192].
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Figure 2. Model for C. difficile aggregate/attached biofilm formation in vitro. The first step toward biofilm formation is
either attachment of the cells to a surface or cellular aggregation. In both cases a shift in surface structures controlled by
rising c-di-GMP levels results in the replacement of the flagella by T4P and adhesins (collagen and fibronectin binding
proteins). Autolysin-mediated cell lysis is likely the main mechanism contributing to the formation of the extracellular
matrix by releasing chromosomal DNA and cellular proteins in the medium, and exopolysaccharides may be synthesized
and contribute to the matrix. Quorum sensing may induce prophage lysis that would also contribute to the biofilm
matrix. Furthermore, c-di-GMP levels remain relatively high, ensuring consistent T4P and adhesins expression. C.
difficile biofilm formation is characterized by a metabolic shift from glycolysis and the pentose phosphate pathway to the
Stickland fermentation pathways and the Wood-Ljungdhal pathway, which are less efficient at producing energy. The table
summarizes information about the main mechanisms involved in biofilm formation. Up-regulated mechanisms are indicated
by the red upward arrows and the down-regulated mechanisms are indicated by the blue downward arrows. Abbreviations:
aa: amino acids; QS: quorum sensing; eDNA: extracellular DNA; EPS: exopolysaccharides; DOC: deoxycholate; FOS:
fructooligosaccharides.

When grown in a complex medium, biofilm formation by C. difficile is strain dependent
and varies greatly [32]. In most studies, the reference strain 630 or its derivative 630∆erm
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and the clinically-relevant strain R20291 are used as the models for biofilm research, since
these are genetically tractable and were the first C. difficile strains used for biofilm charac-
terization [15]. In vitro, strains 630∆erm and R20291 form a relatively weak biofilm [193]
when compared to most clinical strains, which are strong biofilm producers [31–33]. The
benefits of having strains forming different levels of biofilms are that conditions inducing
or preventing biofilm formation can be easily identified using crystal violet staining. These
conditions can be then finely tuned to identify factors that are critical for biofilm forma-
tion. Biofilms can be further characterized using different techniques such as microscopy
that involves direct staining of the extracellular matrix or cells within the matrix. These
images are typically acquired using fluorescence microscopy and specialized stains such
as DAPI or BOBO-3 for DNA, calcofluor white for β-1,3 or β-1,4 exopolysaccharides, and
Sypro Ruby for proteins [184]. Images acquired using confocal scanning laser microscopes
(CSLM) can be analyzed to provide quantitative data on the biofilm. Qualitative images
can also be obtained for biofilm formed in well plates and stained with crystal violet [183]
or using scanning electron microscopy [182].

8.2. In Vivo Models and Clinical Data

The typical infection models for CDI are conventional hamsters or mice whose mi-
crobiota was depleted with antibiotic treatments, or germ-free mice (GFM). Imaging of
in vivo biofilms can be performed after collecting the samples from the animal models or
after a biopsy [172,194–197]. The intestinal tract samples are fixed, sectioned and stained to
visualize the location of the bacteria and epithelial cells. Using this strategy and antibodies
against C. difficile PS-II and Muc-2, researchers inferred that biofilm-like structures were
formed at the mucus layer coating the gut epithelium of GFM, and these biofilms were
embedded in mucus and PS-II [196]. In addition, recent studies used clinical isolates
and clinical data to identify potential associations between recurrent infections, antibiotic
resistance, and in vitro biofilm formation. When tested, the majority of the clinical iso-
lates were strong in vitro biofilm producers [198,199]. Moreover, increased resistance to
metronidazole and vancomycin was detected in clinical isolates [200], and these antibiotics
are known to induce in vitro biofilm formation [201,202]. Additionally, treatments with
metronidazole and vancomycin are associated with a higher rate of recurrent CDI when
compared to other treatments, despite metronidazole and vancomycin having higher rates
of clinical success [203]. Taken together, these data suggest that biofilms may have an
important function in antibiotic resistance in the gut leading to treatment failure, as well as
recurrent CDI.

8.3. Composition of the In Vitro Biofilm Matrix

Although the exact composition of the matrix of in vivo biofilms might be difficult
to determine, precise analysis can be done for the in vitro biofilms. The biofilm matrix is
typically composed of DNA, polysaccharides, and proteins, but the composition varies
according to species. For C. difficile, eDNA is an essential structural biofilm component
under all conditions tested [184,192,201,204]. Specifically, adding DNAse I before biofilms
were formed prevented their formation [184,201], and DNAse I dispersed pre-formed
biofilms [184,204]. Fluorescence staining of eDNA demonstrated its presence in the extra-
cellular space [184]. All these data strongly support the hypothesis that eDNA contributes
to the development and structural integrity of C. difficile biofilms.

Using fluorescent staining and immuno-staining, the presence of EPS was observed
in C. difficile biofilms. Based on the localization of the stain, it was suggested that the EPS
associated with the bacterial cells were different than those in the intercellular space [190].
For example, the teichoic-like acid PSII, a cell-wall associated polysaccharide, was detected
in the intercellular structures as well as on the cellular surface. However, it is not clear
how PS-II is organized into the biofilm matrix [201]. Cellulose might also contribute to the
biofilm matrix because homologs of the cellulose synthase genes were recently identified
in C. difficile. Furthermore, a secreted polysaccharide composed of acetylated glucose
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subunits and hypothesized to be cellulose was detected in culture supernatants [205,206].
C. difficile biofilms can be stained with calcofluor white, which is often used to detect
cellulose [184,190]. However, calcofluor is not specific for cellulose as it also recognizes
β-1,3 or β-1,4 exopolysaccharides, which includes PS-II. Moreover, deletion of the bscA
orthologue (ccsA) encoding a glycosyltransferase involved in cellulose synthesis did not
significantly alter DOC-induced biofilm formation [192]. Despite evidence that EPS may
contribute to the biofilm matrix, treatment with NaIO4 hydrolyzing polysaccharides did
not disrupt pre-formed biofilms in vitro [184]. This indicates that EPS are probably not an
essential structural part of the biofilm matrix. Further investigations are needed to identify
the precise polysaccharides and their role in the biofilm matrix of C. difficile.

In addition to eDNA and EPS, proteins were detected in the biofilm matrix of C. diffi-
cile. Like EPS, proteins are probably not essential for the stability of the biofilm because a
treatment with proteinase K did not disperse pre-formed biofilms [184]. However, biofilms
formed in a semi-defined medium were sensitive to the proteinase K treatment [192].
Furthermore, adding proteinase K before biofilms are formed prevents biofilm forma-
tion [184,201]. A recent systematic analysis of the biofilm matrix showed that the proteins
present are intracellular proteins, cell surface, and pathogenicity-associated proteins [204].
Intracellular proteins include transcriptional regulators as well as proteins involved in
metabolism. It is likely that the presence of intracellular proteins is the result of cellular
lysis. Taken together, the current experimental data suggest that surface or extracellular
proteins are essential during the early stages of biofilm formation and may be important
for structural stability under specific conditions.

Although proteins and EPS are detected and may play a role in the biofilm matrix
of C. difficile, eDNA remains a major and essential component that is universal across the
growth conditions that were tested.

8.4. How Is eDNA Released into the Biofilm Matrix?

Although eDNA is necessary for the formation of C. difficile biofilm, it does not
appear to be actively secreted given the absence of a secretory system homologous to the
one identified in E. faecalis [207]. As suggested from the proteomic data of the biofilm
matrix, cellular lysis probably supplies the eDNA for biofilm formation. Lysis might
occur through four different routes, including (1) prophage-induced lysis; (2) lytic toxin
(i.e., programmed cell death); (3) during sporulation; or (4) autolysis. Early lysis may
involve prophage production by the vegetative cells, triggered by LuxS and AI2 dependent
QS [208]. However, data from our laboratory indicate that deleting the prophages in both
strains 630∆erm and R20291 does not significantly change the ability of these strains to
form biofilm (Garneau et al., unpublished data). Therefore, the contribution, if any, of
eDNA from prophage-induced lysis is probably marginal. A recently discovered type I
toxin-antitoxin (TA) system, induced under biofilm growth, [209] has not yet been tested
for its contribution to biofilm formation, and no lytic toxin that induces programmed cell
death has yet been identified in C. difficile.

Recent data revealed a correlation between eDNA content of the biofilm matrix and
sporulation frequency [204], while the conclusions relied on biofilm data from a spo0A-
inactivated strain. Therefore, there is a need for biofilm data for strains lacking specific
sigma factors of sporulation (i.e., sigE, sigF, sigG or sigK) to provide direct evidence for the
role of sporulation as an eDNA contributor. As a preliminary answer, we recently reported
that the effect of spo0A inactivation was independent of sporulation since inactivation of
sigE or sigF did not prevent DOC-induced biofilm formation (18).

Finally, current evidence strongly supports the idea that autolytic enzymes are prob-
ably the main mechanism contributing to eDNA. Indeed, transglycosylases involved
in autolysis, such as Cwp19, [210] are more expressed in biofilms than in planktonic
cells, [184,189] and inactivation of cwp19 in the strain 630∆erm inhibited biofilm forma-
tion in the presence of DOC [184]. Cwp19 requires glucose for its activity [211] and is
dispensable for biofilm formation when a different sugar is used (Tremblay and Dupuy,
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unpublished data). However, C. difficile has several autolytic enzymes whose role in biofilm
formation has not yet been evaluated.

8.5. Surface Structures and Their Importance in Biofilm Formation

In addition to Cwp19, proteins and structures at the cell surface are associated with
biofilm formation, and some were found in the biofilm matrix. Among them, T4P are
important during the early steps of biofilm formation and dispensable during the later
stages [212]. The pilA1 locus [212], and not the pilA2 locus [212], appears to be involved
in biofilm formation given that deletion of the entire machinery associated with the pilA1
locus significantly reduced DOC-induced biofilm formation [192]. Furthermore, there is
probably a redundancy in the pilin found in the different loci, since deleting a major or
minor pilin in any pil locus had limited effect or no effect on biofilm formation [185,192,212].
We anticipate that T4P are probably important for biofilm formation in vivo since these
surface structures are involved in epithelial adhesion and infections [213].

Since deletion of the pilA1 locus never fully abolished biofilm formation, adhesion
to the substrate and intercellular adhesion, which are important in the early stages of
biofilm formation, could be mediated by other surface structures or proteins. In fact, other
proteins were identified as contributing to biofilm formation and adhesion to epithelial
cells. These include the fibronectin-binding protein FbpA [214], Cwp66, GroEL and the
collagen binding proteins CbpA [215] and CD630_28310 [34,49]. In addition, several of
these are controlled by c-di-GMP, an important regulator of biofilm formation in C. difficile
(see below).

One of the surface proteins that had the strongest effect on biofilm formation is the
cell wall associated cysteine protease Cwp84. This protease is known to process and cleave
the SlpA precursor protein in two sub-units to form the mature S-layer, which is involved
in cell adhesion [195,201]. The exact reason why Cwp84 affects biofilm formation remains
ambiguous because there are conflicting results in the literature. In strain 630∆erm, inacti-
vation of Cwp84 increased biofilm formation [195], whereas in the strain R20291, a 3′end
deletion of the cwp84 gene reduced biofilm formation [201]. The reason for this difference
has yet to be resolved, and it remains possible that Cwp84 cleaves other proteins [25].
Overall, S-layer processing is critical for cellular hydrophobicity and proper processing of
surface proteins. These could have major effects on cell attachment and biofilm formation.

Another surface structure having a significant impact on biofilm formation is the
flagella, which plays an important role as an adhesion factor [216]. There is also an inverse
relationship between motility and biofilm formation of clinical isolates, as non-motile
isolates were not able to form strong biofilms [193]. In some cases, the flagella appear to
affect the maturation of the biofilm. A strain lacking FliC, the main protein component of
the flagellum, displayed a wild type phenotype for early biofilm formation, but biofilms
appeared to disperse as time progressed [201]. The complemented strain displays the
opposite phenotypes: no biofilm production in the early stages, and a normal biofilm
production in later stages. Other studies showed that lower glycosylation of the flagellar
proteins altered cellular motility, and this was associated with higher levels of biofilm
formation. Overall, a non-motile flagellum led to more biofilm biomass than a motile
flagellum [216,217]. In the presence of DOC, the absence of FliC or the sigma factor SigD,
which regulates flagella expression, did not affect biofilm formation or its kinetics [192];
however, DOC impacts motility and flagella synthesis, and could impact its role during
biofilm formation [218].

All of these results are consistent with transcriptional data performed during biofilm
formation which show that the genes encoding the flagella components are less expressed,
while those of the T4P are more expressed [184,185,192]. Moreover, a recent systematic
proteomics study showed that flagella and pili proteins were more abundant in biofilm
formed in liquid cultures than in biofilm formed on agar [189]. This confirms that pili and
flagella are expressed and produced under biofilm forming conditions but are dependent
on the model and conditions used. On the one hand, the absence of a flagella might help C.
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difficile settle to the bottom in static models and a different adhesin would help with early
adhesion. The flagella might also act as one of the initial adhesin that triggers a signaling
cascade to initiate biofilm formation.

9. Regulation of Biofilm Formation

Several regulation pathways and cascades are involved in C. difficile biofilm formation,
and those involved vary according to the growth conditions. Every study using biofilms
from liquid cultures has identified the transcriptional regulators CcpA, CodY, Spo0A and
SigL/RpoN as key transcriptional factors involved in biofilm formation [184,185,189,192,219].
CcpA, CodY and SigL/RpoN are global regulators of the metabolism and support the idea
that biofilm formation is dependent on a metabolic shift in planktonic cells. Furthermore, the
transition phase sigma factor SigH and the master regulator of the sporulation Spo0A are
also important for biofilm formation independent of the sporulation process [184]. Addition-
ally, SigH and Spo0A are associated with the metabolism of C. difficile [183,192,201]. Other
regulators have also been studied in more details and are discussed below.

9.1. Are SinR and SinR’ Involved?

C. difficile carries two SinR homologs, SinR and SinR’, which interact in a similar
manner as SinR and SlrR of Bacillus subtilis [219]. In B. subtilis, SinR is considered a master
regulator of biofilm formation and represses pellicle biofilm formation [220]. When biofilms
are induced, Spo0A is phosphorylated, and induces the expression of the SinR antagonist
SinI, lifting the repression on gene encoding proteins involved in the synthesis of the
biofilm matrix (eps and tasA) [221]. SlrR and SinR are paralogues that interact to regulate
autolysis in B. subtilis. In contrast, SinR regulates sporulation and biofilm formation
without interacting with SlrR. In C. difficile, SinR’ seems to antagonize SinR, as observed
for SinI-SinR in B. subtilis, and repress the expression of CodY, CcpA and the diguanylate
cyclase DccA, leading to a reduction of c-di-GMP levels [222]. Although SinR appears to
repress C. difficile biofilm formation [219], the effects are not as drastic as those observed in
B. subtilis [220]. The detail of this repression has yet to be determined.

9.2. Is Quorum Sensing Important for Biofilm Formation?

C. difficile encodes a homologue LuxS QS system that affects biofilm formation under
certain conditions [201,208], while LuxS is dispensable in DOC-induced biofilm forma-
tion [192]. LuxS is also associated with prophage induction, and prophage-mediated lysis
was suggested as a critical mechanism for biofilm formation. However, under some condi-
tions, prophage induction was high despite the low abundance of LuxS [189]. Based on the
presence of luxS, it is often assumed that this system acts as an AI-2 based QS. However,
there is a lack of genetic evidence for an AI-2 receptor in C. difficile and the observed effect
might be due to a change in sulfur metabolism [223].

C. difficile also encodes an Agr-type QS system that regulates virulence and coloniza-
tion genes [224]. Strain R20291 has a complete (Agr2; agrACDB) and an incomplete (Agr1:
agrD1B1) Agr system whereas strain 630 only has an incomplete system [224]. In strain 630,
the agr1 system was not required for DOC-induced biofilm formation [192], and further
studies are required to fully assess the role of the agr systems.

9.3. The Important Role of c-di-GMP in C. difficile Biofilm Formation

C-di-GMP levels are important for C. difficile biofilm formation. Indeed, overpro-
duction of c-di-GMP induces autoaggregation and biofilm formation, suggesting that
c-di-GMP is critical for the transition from free-living motile state to biofilm communi-
ties [225]. Biofilm formation in response to c-di-GMP appears to be controlled through
surface proteins regulated by c-di-GMP riboswitches such as those preceding the pilA1 and
flgB operons [213,226]. In the case of pilA1, the binding of c-di-GMP to type II riboswitch is
required for maximum transcription, whereas in the case of the flgB operon, the binding of
c-di-GMP to the type I riboswitch prevents transcription [213,226]. Similarly, the collagen
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binding proteins CD630_28310 and CbpA are expressed when c-di-GMP levels are high,
which enables the binding of C. difficile to collagen. In contrast, when c-di-GMP levels
are low, the metalloprotease ZmpI is expressed and exported to the cell wall, allowing
cleavage of CbpA and CD630_28310. This cleavage releases the surface proteins from the
cell wall and detaches the bacteria from the surface [227,228]. This suggests that c-di-GMP
also intervenes for cell detachment or biofilm dispersion.

Despite the rapid effect of the c-di-GMP overproduction, there was no difference in
biofilm formation at 72 h [204]. This supports the idea that increased c-di-GMP levels are
critical for transition from planktonic cells to biofilm.

9.4. Post-Transcriptional Regulation and Phenotypic Heterogeneity in Biofilms

In addition to genetic regulation and riboswitches, post transcriptional regulations
by the RNA chaperone Hfq might also influence biofilm formation, since Hfq depletion
increases biofilm formation [229]. Factors that control cell homeostasis and cell division
or other cellular properties may also influence eDNA release and by extension biofilm
production. For example, a strain lacking the Ser/Thr kinase PrkC, known in C. difficile to
participate in cell wall homeostasis and antibiotic resistance, formed more biofilm in the
presence of DOC at earlier time points (24 h) [70]. This strain was also more sensitive to
DOC and released more eDNA [230]. Additionally, the absence of the protein chaperone
DnaK and the SOS-response regulator LexA in strains 630∆erm and R20291, respectively,
increase biofilm formation. This is consistent with the fact that flagellum and motility
were affected by the absence of DnaK or LexA and might explain the increase in biofilm
formation [231,232].

Among the other regulation mechanisms that might also be involved in controlling C.
difficile biofilm formation, epigenetics may influence biofilm formation, as DNA methyla-
tion by the methyltransferase CamA repressed biofilm formation [233]. Phase variation
mechanisms controlling flagellar motility, colony morphology, and phosphodiesterases
(PDEs) involved in the homeostasis of c-di-GMP and the surface protein CwpV may also
influence biofilm formation [234–238]. Indeed, creation of heterogeneity in c-di-GMP levels
and surface proteins by phase variation could generate sub-populations within the biofilm,
leading to division of labor or dispersion [239].

10. What Induces Biofilm Formation?

Despite the identification of genetic regulators, regulation mechanisms and growth
conditions controlling biofilm formation, very little is known about specific signals or
inducers involved in biofilm induction. Here we present what has been studied so far.

10.1. Induction of Biofilm Formation by Antibiotics

In several bacterial species, various stresses induce biofilm formation, in particular
antimicrobial and antibiotic stresses [139,240–242]. In the case of C. difficile, sub-inhibitory
concentrations of two antibiotics were found to increase biofilm formation in two clin-
ical strains, vancomycin [201] and metronidazole [202]. Currently, metronidazole and
vancomycin are the most commonly used treatments against mild CDI; however, metron-
idazole is only recommended as an alternative treatment because metronidazole-resistant
strains are emerging [200,243]. In addition, berberine chloride, which is used to treat
diarrhea, also synergistically induced biofilm formation with vancomycin [244]. Unlike
vancomycin and metronidazole, the recently approved antibiotic to treat CDI, fidaxomicin,
was able to disrupt in vitro colony biofilms [191]. This is consistent with the reduction in
the rate of recurrent CDI with this antibiotic, while metronidazole and vancomycin treat-
ments have limited effects on the rate of recurrent CDI [245]. These data would support
the role of biofilm formation as a mechanism for recurrent CDI.
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10.2. Induction of Biofilm Formation by DOC

Deoxycholate (DOC) is a secondary bile salt synthesized from primary bile salts by the
gut commensal bacteria including Clostridium scindens [246,247]. DOC has antimicrobial
properties, is implicated in colonization resistance against C. difficile and was recently
shown to induce biofilm formation in strain 630∆erm and clinical strains [18]. The induction
requires a fermentable carbon source, such as glucose or N-acetyl glucosamine in excess,
and cysteine [184,192]. Several genetic determinants were also identified as important
for this induction, including an uncharacterized lipoprotein CD630_1687 whose role is
currently characterized [184]. Other determinants include the metabolic regulation factors
CcpA, CodY, and SigL and the transition phase regulator SigH [184,192]. The need for
excess sugars and metabolic regulation factors highlights the importance of metabolism for
switching from a planktonic state to C. difficile biofilms.

Analysis of biofilm spent culture medium in the presence of DOC allowed for the
identification of an excreted metabolite, pyruvate, as important for the induction of biofilms.
The role of pyruvate was confirmed when enzymatic depletion of extracellular pyruvate in-
hibited DOC-induced biofilm formations [192]. Furthermore, medium supplemented with
pyruvate can induce biofilm formation without DOC, and glucose is dispensable at higher
concentrations of pyruvate [192]. Pyruvate-dependent induction of biofilm formation
requires a specific two-component system and at least one transporter (CstA) [192].

It was proposed that DOC induces a metabolic shift leading to overflow metabolism
and excretion of excess pyruvate. When glucose is depleted, extracellular pyruvate is
detected and imported in the cell, which drives survival during the stationary phase. This
provides time for eDNA to accumulate in the medium and enhance cellular adhesion
promoting biofilm formation [192].

11. The Importance of Metabolism in Biofilm Formation

To study biofilms, two global approaches are generally used: transcriptomics or
proteomics analysis. Transcriptomics provides a snapshot of gene expression and non-
coding RNA in the recent past and proteomics provides data on the proteins produced
during the process. However, neither technique gives information on protein activity.
Both omics analyses were performed to study C. difficile biofilms. The data collected
provided some consensus on surface proteins and regulation factors involved in biofilm
formation [185,189,192,195,219]. These analyses were also used to identify metabolic
pathways required in biofilms and inferred their properties. However, results are often
conflicting because the data were generated from biofilms grown in different conditions.

Another difficulty was that in vitro C. difficile biofilms are typically grown in rich and
complex media with excess amino acids and fermentable carbohydrates when added to
the medium. In closed systems, preferred sources of nutrients will be used first and then
depleted. In addition, toxic metabolic waste might also accumulate in the culture medium.
Depletion of preferred energy sources will lead to the down-regulation of the metabolic
pathways involved and up-regulation of alternative pathways. This has been observed
under different conditions that support biofilm formation in C. difficile [189,192,219]. For
example, glycolysis and the pentose phosphate pathway were downregulated as early as
14 h in cells grown in the presence of DOC despite supplementation of excess glucose [192].
These metabolic pathways remained downregulated after several days of biofilm forma-
tion [189,192]. Growth under biofilm inducing conditions also involved butanoate and
propanoate fermentation that probably used acetyl-CoA, oxaloacetate and pyruvate, which
might be produced by glycine metabolism [192,219]. Furthermore, proteins involved in
the Wood-Ljungdhal pathway and glyoxylate shunt were upregulated, as well as the two
enzymes, GlyA and TdcB, that convert glycine to pyruvate [219]. In the absence of glucose
or DOC, C. difficile relies on the activation of the Wood-Ljungdhal pathway to produce
energy to induce biofilm formation [23]. Protein degradation and peptide and amino acid
intake were upregulated, along with the Stickland fermentation pathways, especially those
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using branched chain amino acids [192]. Overall, pyruvate production from the available
precursors was found to be central for biofilm formation [189,192,219].

Unlike closed systems, continuous flow systems constantly replenish nutrients, and
this has a significant effect on the metabolism (Figure 2). Specifically, the Wood-Ljungdahl
pathways, fermentation pathways and most Stickland reactions were down-regulated [185].
Instead, glycolysis genes and the pentose phosphate pathway were up-regulated [185].
Interestingly, pyruvate remained a key metabolite but was produced by glycolysis, the
pentose phosphate pathway and cysteine metabolism [185]. Unlike the metabolism of
biofilms formed in closed systems, pyruvate was mostly used to form acetyl-CoA and then
fatty acids to regenerate NAD+. C. difficile can also use succinate to restore NAD+ levels.
Activation of fatty acid biosynthesis and succinate catabolism are typically required when
glycolysis is highly active because it produces more NADH.

Although glucose is often used to support biofilm formation, other carbohydrates
can induce biofilm formation as well. Indeed, mannose and fructooligosaccharides, which
are toxic at high concentrations, were able to induce biofilm formation in C. difficile at
sub-inhibitory concentrations [248]. In the gut, C. difficile would use mucin-derived sugars
such as N-acetylglucosamine and sialic acid. These can be used by C. difficile to sustain its
metabolism and form biofilms [192]. C. difficile colonization is impaired when these sugars
are used by other gut microorganisms [249]. Furthermore, mucus-derived sugars act as
a chemoattractant for C. difficile and direct its movement towards the mucus layer [250].
Taken together, the data reinforce the model of a C. difficile biofilm associated with the
colonic mucus layer as observed in vivo [196] and in mucus-degrading microorganisms.

12. Role of the Microbiota-C. difficile Interactions in Biofilm Formation

Enteropathogens are often able to form single and mixed biofilms in the gastrointesti-
nal tract. FISH and 16rRNA sequencing confirmed that C. difficile can integrate communities
of the cecum, and these communities were associated with the outer mucus layer [194].
The predominant members of these communities are Bacteroidetes and Firmicutes in which
C. difficile is in the minority [194].

Bacteria such as C. scindens are known to limit C. difficile colonization in in vivo
models, but it can enhance C. difficile biofilm formation in vitro by producing DOC from
cholate [184,251]. This indicates a more complex relationship between these two bacteria
than previously thought. Depletion of C. scindens in the gut during an antibiotherapy
promotes CDI by stopping production of DOC. After the CDI is treated, C. scindens may
produce sub-inhibitory concentration of DOC as its population is restored, and these
concentrations could induce biofilm formation by C. difficile.

Other bacteria can also enhance biofilm formation when co-cultured with C. difficile.
Specifically, Finegoldia magna and Fusobacterium nucleatum enhanced biofilm formation in
co-cultures with C. difficile [26,182]. The synergy with the latter is based on an interaction
between C. difficile flagella and F. nucleatum adhesin RadD [26]. This interaction is relevant
because there is a positive correlation between the presence of F. bacterium in the gut and
CDI [26]. Additionally, a consortium of B. thetaiotaomicron, B. fragilis, S. warneri and C.
parapsiloris also supported mixed-species biofilm formation with C. difficile [252]. On the
other hand, B. fragilis co-cultured with other bacteria such as L. rhamonosus, B. longum and
B. breve can also reduce C. difficile biofilm formation [253].

In addition to bacteria, fungi may play a role in the development of CDI, as recent
studies identified a fungus-associated bacteriome affecting this infection. In addition,
fungus-associated bacteriome enhanced E. coli and P. aeruginosa biofilms [254]. Specific
metabolic and communication pathways were associated with these microbiomes, and
included linoleic acid metabolism and autoinducer-3 mediated quorum sensing, suggesting
trans-kingdom communication [254]. Overall, complex interactions from consortia will
dictate the outcome of C. difficile colonization and biofilm formation and these might be
strain-specific and not predictable from dual-species interactions.
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13. Gut Biofilm: A Shelter against Stresses for C. difficile

The ability of bacteria to form biofilms is often associated with stress adaptation and
chronic infections. Indeed, the National institute for health (NIH) estimates that 65% of
microbial infections and 80% of chronic infections are mediated by biofilms [253]. This is
mainly due to the strong competitive advantages offered by biofilms when bacteria are
exposed to various environmental challenges [255]. Specifically, cells inside biofilms are less
sensitive to antibiotics and host immune responses than planktonic cells. The mechanisms
mediating these changes are hypothesized to reflect the expression of biofilm-specific genes
and the ability of bacteria to persist in vivo [142,256–258].

As observed for other pathogens, C. difficile cells grown as biofilms are less sensitive
to antibiotics commonly used to treat CDI. For example, C. difficile strain R20291 had a
10 times higher survival rate than planktonic cells when exposed to vancomycin [201].
This was confirmed with various C. difficile clinical strains using different biofilm-forming
conditions [184,187]. Similarly, C. difficile clinical isolates grown as biofilms were 100-
fold more tolerant to metronidazole than cells grown in liquid culture [184,187]. Unlike
fidaxomicin, vancomycin and metronidazole were less effective in penetrating and killing
vegetative cells within established biofilms and cannot reduce the number of spores inside
a biofilm [191]. This is also consistent with the fact that fidaxomicin is more effective at
reducing recurrent CDI rates than vancomycin and metronidazole. Recently, a larger set of
antimicrobial compounds, including thuricin CD, tigecycline, teicoplanin, rifampicin, and
nitazoxanide were assayed for their activity against biofilms formed by a collection of C.
difficile strains. Combined antimicrobial therapies were more effective against biofilms of
strain R20291 than treatments with a single antibiotic. Furthermore, sensitivity to different
antimicrobial drugs or combinations was strain-dependent and varied according to the
amount of biofilm formed by each strain [259].

Based on the observation described above and studies with other bacteria, the biofilm
matrix probably mediates the decrease in antibiotic sensitivity of C. difficile biofilms. The
biofilm matrix can act as a physical barrier that reduces penetration of antibiotics resulting
in a decrease in the antibiotic concentration inside the biofilm [201,260]. This is supported
by recent data where DNase I treatment increased the effectiveness of vancomycin against
biofilm formation [204]. Multiple mechanisms are also involved in the decreased antibiotic
sensitivity of biofilms, and these will be dependent on the bacterial species and the type of
antibiotic used. For example, the low penetration of antibiotic resulting in sub-inhibitory
concentrations can induce expression of genes mediating antibiotic resistance [261,262].
Additionally, low metabolic activity of cells in the deeper layer of the biofilm can reduce
antibiotic killing activity. Moreover, the presence of antibiotic-degrading enzymes in the
biofilm matrix can decrease the antibiotic concentration within biofilm [260,263]. Finally,
the establishment of persisters could lead to the creation of microbial reservoirs that are
protected from antibiotics inside biofilms. Persisters can survive antibiotics treatment
by adapting their metabolism and/or promoting the appearance of antibiotics resistance
through the spread of resistance plasmids [264]. It was demonstrated that C. difficile formed
persister-like cells in response to antibiotic treatment [265]. The mechanisms described
above are all potential explanations for the change in sensitivity to biocidal agents for C.
difficile biofilms, but further studies are required.

In addition to reduced antibiotic susceptibility, C. difficile biofilms are less sensitive
to oxygen [183], DOC and antimicrobial peptides [184], but these resistance mechanisms
are not yet understood. Altogether, current evidence suggests that biofilms might play an
important role in the adaptive response and persistence of C. difficile in the gut leading to
asymptomatic carriage and relapse after antibiotic therapy.

14. Persistence in the Gut: Spores, Biofilms, or Both?

Initially, persistence of C. difficile in the gut of mice was associated with the formation
of spores. It is generally accepted that spores will form during the infection, survive the
antibiotic treatment, and germinate once the antibiotic treatment is ceased. Evidence for
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this model is partly based on studies demonstrating the ability of spores to enter epithelial
cells [178] and the inability of a non-sporulating spo0A-inactivated strain to persist in the
intestinal tract of mice and cause relapses [177]. However, inhibiting spore entry into
epithelial cells only delayed relapsing CDI [178], and inactivation of spo0A has pleiotropic
effects on metabolism and biofilm-formation [183,266]. Overall, these findings suggest that
C. difficile persistence and recurrence may not be solely dependent on spores.

C. difficile persistence in the intestinal tract may be driven by multispecies biofilm
communities, which may contribute to recurrence of CDI [181]. In support of this mech-
anism, several studies have demonstrated that multi-species biofilms formed by the gut
microbiota can harbor C. difficile and act as a reservoir for recurring infections [182,187,190].
Furthermore, we showed that C. difficile can form dual-species biofilm when grown with
C. scindens, a bacterium that converts primary bile salts to secondary bile salts, and in the
presence of cholate [184]. Biofilm-like structures have also been observed on the epithelium
of hamsters and mice, or on the cecum mucus layer of mice [172,196,197]. Overall, these
studies provide good evidence that C. difficile can form biofilm communities in the gut;
however, there is a lack of direct evidence that these biofilm communities are a source of
vegetative cells and spores for recurring C difficile infections.

Based on the current evidence, it is possible that both sporulation and biofilm forma-
tion are important for persistence and recurrence, but their contribution could be different
(Figure 3).
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Figure 3. Proposed model for the persistence of C. difficile. In this model, spores (circles) and biofilms
contribute to short term and long-term relapses, respectively. Spores encased in mucus, biofilm
communities or engulfed by epithelial cells, would eventually be eliminated by the renewal of the
mucus and epithelial cells. The vegetative cells (rods) would keep a small viable population resulting
in a biofilm that would be resistant to renewal of the mucus layers and epithelial cells. Sporulation
could occur in the deeper layers of the biofilm, keeping a continuous supply of spores and leading to
long-term relapses.
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Spores are dormant and passive passengers that would not react or adapt to changing
conditions, whereas biofilms are composed of vegetative cells that can actively adapt and
maintain a population under changing conditions. Because of their state, spores are at
risk of being cleared by the normal physiological processes occurring in the gut (Figure 3).
Specifically, epithelial cells are renewed every four to five days under healthy condi-
tions [267], and spores inside epithelial cells could be quickly shed and eliminated within a
week. Furthermore, the inner mucus layer of the colon is renewed every 1–2 h [268] and
this continuous renewal could eliminate spores that are trapped within the mucus and/or
biofilm communities (Figure 3). However, the microbiota composition and diversity, the
inflammation processes and antibiotic treatments will affect these natural protective mecha-
nisms and their renewal process [269]. It is more likely that spores participate in short-term
recurrence than those that occur weeks later. Vegetative cells in a biofilm community would
be the population responsible for long-term relapses (Figure 3). Multiple factors would
contribute to population maintenance in the outer mucus layer, including a generation
time equivalent to the rate of mucus renewal, the colonization coverage by C. difficile and
the mucolytic activity of the microbiota. Perturbation to this equilibrium could affect
generation time leading to localized population collapse and, if it becomes generalized,
could lead to eradication of C. difficile from the gut via the normal protective mechanism.

A well-established biofilm community would be able to keep a small viable C. difficile
population, but toxin production and population blooms would be kept in check by the
microbiota. In this scenario, the vegetative cells would continuously generate spores to
replace those eliminated by mucus renewal (Figure 3). This renewing stock of spores could
contribute to a relapse after an antibiotic treatment.

Overall, the current evidence does not support an exclusive role for sporulation or
biofilm formation as the mechanism behind persistence or recurrence for C. difficile. To
move forward, there is a need for studies that investigate recurrent CDI with strains lacking
genes only affecting sporulation, namely sigE, sigF, sigG, and sigK. This would help define
the role of spores in recurrent CDI given that we have evidence that, unlike spo0A or sigH,
sigE and sigF do not affect biofilm formation in the presence of deoxycholate [184,192].
It will, however, be more difficult to define the role of biofilms in recurrent CDI. Recent
studies provide evidence that biofilm formation is dependent on metabolism and excreted
metabolites [192,270]. Therefore, we think there is a need to refine our view on the infectious
cycle of C. difficile.

15. Refining the Infectious Cycle of C. difficile: Metabolic Landscape as a Determinant
of Biofilm Formation, Pathogenesis or Sporulation

During an infection, metabolic adaptation is an important aspect that will shape the
outcome of colonization and symptoms. The composition of the microbiota will greatly
influence the concentration of available nutrients that can favor or prevent C. difficile
colonization [271], and recent in silico modeling suggests that virulence and sporulation
have specific metabolic intake and output [272]. Furthermore, computer-generated models
of CDI support the idea that changes in specific nutrients such as amino acids and glucose,
combined with a decrease in butyrate and an increase in acetate, drive disease progression
and recurrence [273,274]. Therefore, the life cycle of C. difficile should be centered around the
metabolic landscape of the gut rather than microbiota dysbiosis. We suggest that metabolic
intake should lead to three different outcomes when colonization is successful: stay put
and under the radar (i.e., biofilm/persistence), fight (i.e., virulence/toxin production), or
flight (i.e., sporulation) (Figure 4).
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For the stay put and under the radar outcomes, the microbiota have to produce
sub-inhibitory concentrations of antibacterial compounds that prevent C. difficile bloom,
but there would be minimum competition for microbiota-derived metabolites essential
for C. difficile survival, such as mucus-derived sugars, branched-chain amino acids and
proline. Sub-inhibitory concentration of antibacterial compounds like DOC would trigger
a metabolic adaptation in C. difficile to use the available metabolites such as pyruvate to
sustain its viability. Therefore, C. difficile could persist in the gut by forming a multispecies
biofilm associated with the mucus layer. Under these conditions, C. difficile would be
difficult to detect in feces because few bacteria would be in the lumen and the colonization
would be asymptomatic due a lack of toxin production.

The fight response would be induced by a major change in the microbiota such as
an antibiotic-treatment. These changes would remove competitors and the production
of antibacterial compounds. C. difficile would grow unchecked and bloom which would
deplete microbiota-derived nutrient sources. This forces C. difficile to use its toxin to induce
inflammation and change the nutritional landscape to its advantage. This excludes com-
petition and makes certain host-derived nutrients available, such as sorbitol [173,275,276].
These host-derived nutrients would eventually be depleted and this, in addition to elevated
oxygen concentration and the immune response, would induce the flight response (i.e.,
sporulation). Alternatively, sporulation could be induced in specific biofilm subpopulations
that are in the deeper layers of biofilm because these bacteria may have restricted access to
microbiota-derived nutrients. The spores produced in the biofilm could then contribute to
recurrence and transmission.
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In summary, there is a need to refine our view on the C. difficile lifecycle and it should be
centered on the metabolic landscape of the gut. Specifically, virulence and toxin production
should be viewed as a response to nutritional stress, sporulation as a response to starvation,
and biofilm formation as a response to ecological competition.
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