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Abstract: Sorghum/sorghum–sudangrass hybrids (SSgH) have been used as a cover crop to improve
soil health by adding soil organic matter, enhancing microbial activities, and suppressing soil-
borne pathogens in various cropping systems. A series of SSgH were screened for (1) allelopathic
suppression and (2) improvement of soil edaphic factors and soil microbial profile against plant-
parasitic nematode (PPNs). The allelopathic potential of SSgH against PPNs is hypothesized to
vary by variety and age. In two greenhouse bioassays, ‘NX-D-61′ sorghum and the ‘Latte’ SSgH
amendment provided the most suppressive allelopathic effect against the female formation of
Meloidogyne incognita on mustard green seedlings when using 1-, 2-, or 3-month-old SSgH tissue,
though most varieties showed a decrease in allelopathic effect as SSgH mature. A field trial was
conducted where seven SSgH varieties were grown for 2.5 months and terminated using a flail mower,
and eggplant was planted in a no-till system. Multivariate analysis of measured parameters revealed
that increase in soil moisture, microbial biomass, respiration rate, nematode enrichment index, and
sorghum biomass were negatively related to the initial abundance of PPNs and the root-gall index at
5 months after planting eggplant in a no-till system. These results suggested that improvement of
soil health by SSgH could lead to suppression of PPN infection.

Keywords: allelopathic; biofumigation; microbial profile; no-till; root-knot nematode; soil health;
Meloidogyne incognita; Rotylenchulus reniformis

1. Introduction

Root-knot nematodes (Meloidogyne spp.) are the most aggressive and damaging plant-
parasitic nematodes (PPNs) on many crops [1]. The nematode-infected plants exhibit root
galls where different life stages can be feeding inside. These sedentary endoparasites
establish specialized feeding cells [2] that withdraw nutrients from the plants leading to
a reduction in crop yield and quality [3]. Soil fumigation with synthetic chemicals is a
popular and effective method of managing PPNs. However, the ban of potent fumigants
such as methyl bromide and increasing restrictions on the use of other effective fumigant
and non-fumigant nematicides have led to the search for more environmentally friendly
and economically viable alternatives in recent years [4,5].

Brassicaceous cover crops such as brown mustard (Brassica juncea), rapeseed (B. napus),
Ethiopian mustard (B. carinata), and white mustard (Sinapis alba) are known to produce
biocidal isothiocyanates, volatile allelopathic compounds that can be used as biofumi-
gants to suppress PPNs including root-knot nematodes (RKNs) [6], lesion nematodes
(Pratylenchus spp) [7], and potato cyst nematodes (Globodera spp) [8,9]. Although the term
biofumigation originally referred to brassica cover crops that release volatile compounds
suppressive to soil-borne pests and pathogens [10], this practice has been extended to
include non-brassica plants in recent years [11]. Sorghum (Sorghum bicolor) and its relatives
contain dhurrin, a secondary metabolite in leaf tissues that can be converted to a highly
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toxic volatile compound known as hydrogen cyanide (HCN) or prussic acid [12]. Prussic
acid poisoning in animals is related to the high affinity of cyanide ions to bind with the iron
component of cytochrome oxidase molecule, thus preventing cellular respiration [13]. A
similar mechanism of inhibition is also responsible for HCN’s nematicidal property [14,15].

Dhurrin (p-hydroxy-(S)-mandelonitrile-,8-D-glucoside) is a cyanogenic glucoside
stored in the leaf epidermal cells of sorghum. It produces free HCN upon hydrolysis
by an endogenous enzyme, β-glucosidase, in the mesophyll cells [16]. Sorghum and su-
dangrass (S. sudanese) have been used as biofumigant crops to control PPNs [11,17,18],
particularly RKNs [19–27]. However, there are inconsistent abilities of sorghum varieties
against root-knot nematode [28–30]. These could be due to the varieties tested, the envi-
ronmental conditions, and cropping systems. Viaene and Abawi [31] discovered that the
allelopathic effect of ‘Piper’ sudangrass against northern RKNs (Meloidogyne hapla) or their
dhurrin content is higher at 1 and 2 months old compared to 3 months old, indicating
that sorghum/sorghum–sudangrass hybrids (SSgH) have less allelopathic potential as the
plant matures. However, terminating SSgH at 1 to 2 months old accumulates less carbon
(C) biomass than at 3 months old. Identifying SSgH varieties that produce high dhurrin
content independent of age would be beneficial.

Sorghum has been bred for photoperiod insensitivity to ensure a longer vegetative
phase, which allows for more biomass production than conventional cultivars [32]. Energy
sorghums are efficient at scavenging nitrogen in the soil and tolerant to environmental stress
and accumulate a large amount of C, making them ideal for the biofuel industry [32,33].
Apart from industrial use, energy sorghum can also serve as a good soil builder, adding a
large amount of organic matter into the soil [34]. Soil organic matter increases the biological
activities in the soil and provides substrates and nutrients to soil microbes [35,36], which
have a propensity to enhance nematode antagonistic microorganisms [37] or promote plant
growth [38]. Adding soil organic matter can also alter soil edaphic properties such as
soil carbon, cation exchange capacity, soil structure, and soil moisture [37]. Changes in
soil edaphic factors by growing SSgH cover crops and how these changes shape the soil
microbe–nematode relationship, which can lead to better suppression of PPNs, has hitherto
not been studied and will be the foci of this research.

Soil health assessment is often performed by evaluating the physical, chemical, and
biological properties of the soil. In the last few decades, nematodes have been used as bio-
indicators of soil health [39,40]. The rationales for using nematodes as soil health indicators
include the presence of nematodes in a different hierarchy of the soil food web; their ability
to respond to changes in food resources; soil physical and chemical environment, soil
disturbances such as tillage, fertilizer, or extreme climates; and the grouping of nematodes
based on their trophic level and life-strategy [41]. Monitoring nematode abundance and
community structure over time can help to provide insights into the ecological processes
occurring in the soil and their impact on soil health [39,40,42,43]. Currently, the maturity
index (MI), enrichment index (EI), channel index (CI), and structure index (SI) are used
to describe soil food web-based on nematode faunal analysis. The channel index (CI)
measures the weighted abundance of fungal feeders among the opportunistic nematode
grazers on bacteria and fungi [44]. Thus, it represents the major decomposition pathway in
the soil food web. The MI is calculated based on the colonizer–persister (cp) classification of
the nematodes and provides an indication of the maturity of a soil food web [39], whereas,
through calculation of weight abundance of nematodes with different cp values, EI assesses
the soil food web response to resource enrichment, and SI shows the abundance of trophic
linkages in the soil food web [45].

On the other hand, bacteria and fungi are the most abundant microorganisms in the
soil, and they play a direct role in soil nutrient cycling, soil aggregation, antagonism to soil-
born pests, and maintaining plant productivity. Therefore, besides assessing nematodes as
soil health indicators, assessing soil microbial biomass could also provide additional infor-
mation on the ecosystem functioning in the soil. Soil-dwelling bacteria are mostly involved
in nitrogen cycling [46], whereas fungi are responsible for decomposing organic substrates
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with higher C: N ratios [47]. These microorganisms determine the process of organic matter
synthesis and turnover [48]. In addition, plant-growth-promoting rhizobacteria (PGPR)
and mycorrhizal fungi are widely studied for their ability to suppress soil-borne pathogens
and improve plant health [49].

Microbial abundance or biomass in the soil can be estimated using culture-independent
methods such as phospholipid fatty acid (PLFA) analysis and DNA-based approaches [50].
Using PLFA as biomarkers for microbial identification [48] provides information on the soil
microbial community biomass and a quantitative indicator of soil health. Gram-positive
bacteria are represented by saturated PLFAs, whereas Gram-negative bacteria are rep-
resented by monounsaturated PLFAs. Actinomycetes are characterized by mid-chain
branching saturated PLFAs. The estimation of arbuscular mycorrhizae involves the use of
a monounsaturated fatty acid biomarker [51]. PLFA analysis has been used to study the
soil microbial community affected by different agricultural management practices [52]. Al-
though metagenomic analysis resolves soil microbiomes to a finer taxonomic level, it often
could not provide a full understanding of the ecosystem functioning of each taxon. Geisen
et al. [53] recommended PLFA analysis for distinct ecosystem functioning in the soil and
DNA amplicon sequencing for ecosystem diversity analysis. The current research further
explores the relationships between nematode community indices with microbial profil-
ing and potential association between PPN suppression with soil physical and chemical
properties.

It was hypothesized that (1) the allelopathic potential of SSgH is affected by the age
and variety of SSgH; (2) cover cropping with SSgH can improve soil edaphic properties
and nematode soil health indicators; and (3) more abundant microbial activities and a more
diverse microbial profile would lead to better suppression of PPNs. Specific objectives
of this research were to (i) understand the effect of SSgH variety and plant age on the
allelopathic effect of SSgH against M. incognita, (ii) examine the effects of no-till SSgH cover
cropping on the population dynamic of soil microbial profiles and nematode soil health
indicators, and (iii) investigate the relationship between soil health indicators and PPN
suppression.

2. Materials and Methods
2.1. Effect of SSgH Variety and Age on the Allelopathic Effect against M. incognita

Two greenhouse pot experiments were conducted to screen SSgH varieties that are
most suppressive against M. incognita. The first greenhouse trial (Trial I) was conducted
on 27 March 2020 where residues of 11 SSgH varieties: ‘Elite Brown Mid Rib’, ‘Bundle
King’, ‘Monster II’, ‘Big Kahuna Plus’, ‘Cow Vittles II’, ‘512 × 14’, ‘Latte BMR’, ‘535 × 14’,
‘Latte’, ‘NX 4264’, and ‘NX-D-61’ along with ‘Tropic Sun’ sunn hemp (Crotalaria juncea)
were amended into the soil. A no-amendment treatment was included as a negative
control. The second trial (Trial II) was conducted on 8 June 2020, repeating Trial I with
additional sudangrass varieties, ‘Piper’ and forage sorghum ‘EBMR’. All test plants were
grown in the field at Magoon Teaching Facility, University of Hawaii at Manoa. Shoot
biomass of all test plants was collected at 1, 2, and 3 months after planting and brought
in to set up the greenhouse trials. Fresh shoot tissues were chopped into small pieces
of 1 cm consistency prior to amending into the soil at 1% (w/w) dry weight equivalent.
Each 80 cm3 Ray Leach Cone-tainer (Stuewe and Sons, Inc., Tangent, Oregon) consisted
of 103 g dry weight of sterile sand: soil mix (1:1 v/v). For both trials, sterile soil was an
autoclaved Wahiawa soil (Tropeptic Eutrustox, clayey, kaolinitic, isohyperthermic soil)
collected from Poamoho Experiment Station. Shoot tissues and sterile soil were placed
in a plastic bag and thoroughly mixed before transferring into each pot. Experiment was
arranged in a 12 × 3 (amendment × plant age) factorial design with four replications on
a greenhouse bench. Five-week-old ‘Hirayama’ kai choi (Brassica juncea) seedlings were
transplanted into each pot, representing a replication, and 220 J2 of M. incognita/plant
was inoculated on the same day. The 1-, 2- and 3-month age experiments were conducted
from 29 May 2020, 14 July 2020, and 12 August 2020, respectively, for Trial I and from 8
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August 2020, 20 September 2020, and 14 November 2020, respectively, for Trial II. Average
day/night hours were 13:10/10:50 and 11:58/12:02 for Trial I and Trial II, respectively.
A WatchDog temperature data logger was buried at 5 cm deep in the soil inside a Cone-
tainer during both trials. The average, maximum, and minimum temperatures for Trial I
were 26.3, 31.2, and 21.4 ◦C; whereas those in Trial II were 27.5, 33.0, and 22.7 ◦C. Plants
were watered daily using a sprinkler irrigation system. Pure culture of M. incognita was
obtained from ‘Orange Pixie’ tomato (Solanum lycospersicum) plants grown at Magoon
Greenhouse, University of Hawaii at Manoa. Nematode eggs were extracted from tomato
roots using a 0.6% sodium hypochlorite solution [54] followed by a centrifugal sugar
flotation method [55]. Eggs were hatched in Baermann trays at 24 ◦C for 14 days before
use [56]. Root penetration by the nematodes was observed 1 month after soil amendment
by staining a 0.3 g random subsample of kai choi roots per pot using acid fuchsin [57].
Stained roots were observed under a dissecting microscope (Leica Microsystems Company,
Wetzlar, Germany) to quantify the numbers of J2, J3–4, and females per sample (Figure 1).
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Figure 1. Roots were stained at 1 month after inoculation to quantify infection rates of female RKNs.

2.2. Effect of SSgH Varieties on Soil Edaphic Factors, Nematode Community, and Microbial Profile

A field trial was conducted on 28 May 2020 at Poamoho Experiment Station, Waialua,
HI (21◦33′08.3′ ′ N 158◦06′08.4′ ′ W) to compare SSgH varieties for their potential to improve
soil health. The soil at the test site was a Wahiawa Soil Series described in Section 2.1 with
18.6% sand, 37.7% silt, 43.7% clay, and pH 6.7. The field site was naturally infested with M.
incognita, M. javanica, and Rotylenchulus reniformis (Table S1). Seven SSgH varieties with an
assortment of allelopathic effects against RKN penetration and development based on the
greenhouse experiment results were tested (Table 1). A bare ground (BG) was included
as an untreated control. Each SSgH variety was seeded at 56 kg seeds/ha in 3.6 × 1.2 m2

plots. Experimental plots were arranged in a randomized complete block design (RCBD)
with four replications. Based on the results from the greenhouse studies, cover crops were
grown for 2.5 months and terminated in a no-till system using a flail mower operated by a
BCS walk-behind tractor (Model 853, BCS America, LLC, Portland, OR, USA). The mower
had a plastic flap to contain the flailed tissues within each plot. Prior to the termination
of SSgH, the biomass from each plot was estimated using three 0.1 m2 quadrants. Each
plot was 0.5 m away from the adjacent rows, with a 1.5-m bare area between plots in a row.
A total of 32 plots were established. Six-week-old ‘Shikou’ eggplant (Solanum melongena)
seedlings were transplanted on 10 August 2020 with minimal disturbance to the soil. Each
plot had seven eggplant seedlings planted in alternate at 0.5 m spacing between plants in a
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plot. Eggplants were fertilized using 73 kg N/ha of Suståne 8-2-4 organic fertilizer (Suståne
Natural Fertilizer, Inc., Cannon Falls, MN, USA) and drip-irrigated. The experiment was
terminated at 4.5 months after eggplant transplanting as the plants began to senesce.

Table 1. SSgH varieties and their characteristic features.

Cultivar Type Characteristics

Big Kahuna Plus BMR (BKP) Forage sorghum
Brown mid-rib trait with less lignin for increased

digestibility in cattle, photoperiod sensitive,
2.4–2.7 m tall, late maturing.

Cow Vittles II (CV) Forage sorghum High yield potential, early seedling vigor.

Bundle King (BK) Forage sorghum
Male sterile (no grain head), exceptional

sweetness, large stems (less lodging), 2.4–2.7 m
tall.

Latte (LA) Sorghum–sudan hybrid Late maturing, drought resistance, 2.1–2.4 m tall.

512 × 14 (512) Sorghum–sudan hybrid Conventional, excellent anti-lodging ability, hay
grazing silage, long season.

NX 4264 (NX1) Energy sorghum Large biomass, long season hybrid, 4.5–6.1 m tall,
dry stalk at the time of harvest.

NX-D-61 (NX2) Energy sorghum Large biomass, photoperiod neutral, 3–3.9 m tall,
medium early maturing.

2.2.1. Nematode Community Analysis

From the field trial described in Section 2.2., approximately 1000 cm3 soil samples
were systematically collected from four cores per plot in a zigzag pattern from the top
10 cm of soil using a GroundShark shovel (Forestry Suppliers Inc., Jackson, MS, USA) at the
initiation of the experiment and at monthly intervals thereafter from cover crop planting
and throughout eggplant growth. All soil samples collected were sieved through a 0.5 cm2

mesh screen and homogenized, and one 250 cm3 soil subsample per plot was extracted for
nematodes using elutriation and the centrifugal floatation method [55,58]. All nematodes
extracted were identified to the genus level wherever possible and counted under an
inverted microscope (Leica DMIL, Leica Microsystems Company, Wetzlar, Germany).
Nematodes were assigned to respective trophic groups (algivores, bacterivores, fungivores,
herbivores, omnivores, or predators) according to Yeates et al. [59]. Nematode richness was
calculated as the total number of different taxa recorded per sample. The Simpson index of
diversity [60]; the maturity index (MI) [39]; and EI, SI, and CI [45] were then calculated.

2.2.2. Soil Quality Analysis

Soil subsamples collected 2 weeks after cover crop termination and 3 months after
planting eggplant were submitted to the Agricultural Diagnostic Services Center (ADSC)
of the University of Hawaii, Honolulu, Hawaii to analyze for total C and N content using
LECO TruSpec CN (LECO Corporation, Saint Joseph, MI, USA).

FieldScout TDR 100 Soil Moisture Meter (Spectrum Technologies INC., Aurora, IL,
USA) was used to measure volumetric soil moistures twice during the eggplant growing
season with 12 cm rods buried 10 cm deep in the rhizosphere from three randomly selected
spots per plot. Soil from each plot was measured for infiltration rate at 2 months after
growing sorghum and 3 months after planting eggplant using a double-ring infiltration
method [61].

2.2.3. Soil Microbial Profiling

A soil sample was collected from the rhizosphere of SSgH or eggplants from three
plants/plot at 2 weeks after SSgH termination and 3 months after planting eggplant for
PLFA analysis. To obtain rhizosphere soil, roots were dug out and shaken in a bucket
to remove major soil clumps and collect rhizosphere soil by screening through a 0.5 cm2

mesh metal sieve. A 10 g subsample from the composited rhizosphere soil of each plot
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was placed in a 14 mL Falcon tube (Becton Dickinson, Lakes, NJ, USA) and immediately
stored in a cooler packed with dry ice. Soil samples were transported to the laboratory and
stored at −80 ◦C (PHCBI, cat. No. MDF-DU702VHA-PA, PHC corporation, Wood Dale, IL,
USA) before shipping to Microbial ID Laboratory (MIDI Inc., Newark, DE, USA) for PLFA
analysis.

2.2.4. Eggplant Plant Response

Following the termination of the SSgH, eggplant plant height was monitored at
5 weeks after transplanting eggplant. Eggplant fruits were harvested from four plants per
plot beginning at 2 months after planting, and weekly thereafter. Total fruit numbers and
fruit weight per plot were recorded. Fruits were sorted into marketable and unmarketable
categories. Unmarketable fruits were due to thrips and mites damage. At the end of
the experiment, around 4.5 months after transplanting, three plants from each plot were
uprooted, and roots were washed, weighted, and rated for root-gall index (RGI) based on a
0–10 scale by Netscher and Sikora [62].

2.2.5. Statistical Analysis

All data were checked for normality using PROC UNIVARIATE in SAS 9.4 (SAS
Institute Inc., Cary, NC, USA). Data were log(x + 1) or square root transformed when
needed. Data from the greenhouse trials were subjected to a 12 × 3 factorial analysis of
variance (ANOVA) in Trial I and 14 × 3 ANOVA for Trial II. For the field trial, soil quality
parameters and nematode community analysis data after initiation of the experiment were
subjected to repeated measure and one-way analysis of variance (ANOVA) using PROC
GLM in SAS 9.4. If no interaction between treatment and sampling date occurred, the means
of treatment were separated by Waller–Duncan k-ratio (k = 100) t-test wherever appropriate.
Since PLFA data were only collected twice, once at 2 weeks after cover crop termination
and another at 3 months after eggplant planting, these data were subjected to one-way
ANOVA by date. All parameters collected were subjected to canonical correspondence
analysis (CCA) twice using CANOCO for Windows 4.5 [63]. The first CCA was from data
collected from the initiation of the experiment (28 May 2020) to 2 weeks after cover crop
termination (27 August 2020), whereas data from 28 May 2020 to 20 January 2021 (3 months
after eggplant planting) were subjected to the second CCA.

3. Results
3.1. Effect of SSgH Variety and Plant Age on M. incognita Suppression

In both greenhouse experiments terminated at 1 month after M. incognita inoculation,
no significant differences (Trial 1: F = 1.22, df = 11, p > 0.05; Trial 2: F = 1.53, df = 13, p > 0.05,)
in the number of J2 or J3–J4 juveniles per g roots were detected by varieties, but significant
differences were detected among varieties in numbers of females developed. Thus, only
the numbers of females/g root were presented. Two-way ANOVA revealed significant
differences in females/g root by plant age, but no significant interaction (p > 0.05) between
plant age and SSgH variety was detected in both trials. In Trial I, energy sorghum ‘NX2’
was most suppressive (F = 6.19, df = 11, p ≤ 0.05) to M. incognita female development
for all three ages of sorghum biomass amended compared to the no-amendment control
(Figure 2a). ‘LA’ was suppressive to M. incognita when using 1- and 2-month-old tissue;
however, it could not suppress the number of females when using 3-month-old biomass
(Figure 2a). In Trial II, ‘NX2’ and ‘LA’ were again the most suppressive to M. incognita
female development compared to the control (Figure 2b). Interestingly, ‘NX2’ and ‘LA’
suppressed the number of females more effectively than the sunn hemp amendment
(Figure 2a,b). Results from both trials showed a clear trend of a decrease in the allelopathic
effect of SSgH against M. incognita as the age of the biomass increased (Table 2).
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green in the greenhouse trials.
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At the termination of the cover crop in the no-till field trial, significant differences in
cover crop biomass were detected among the varieties (F = 6.33, df = 6, p ≤ 0.05). Energy
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(BK, BKP, and CV), with biomass of sorghum–sudangrass hybrids (512 and LA) weighted
in between.
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Soil carbon was significantly higher (F = 2.39, df = 7, p ≤ 0.05) in ‘NX2’ sorghum
compared to the BG control at 2.5 months after planting SSgH cover crop (Figure 4a). All
other SSgH treatments did not increase soil carbon at the time of termination of the cover
crop. At 3 months after eggplant planting, soil carbon was not different (p > 0.05) among
SSgH varieties, and all SSgH treatments were not different from the BG control (Figure 4b).
No significant interaction was found between treatments and dates for soil respiration,
volumetric soil moisture, or infiltration rate. Thus, data were pooled across dates. Energy
sorghum ‘NX2’ and forage sorghum ‘BKP’ had higher (F = 3.25, df = 7, p ≤ 0.05) soil
respiration rates compared to the BG control (Figure 5a). Soil moisture was higher in ‘NX2’,
‘NX1’, and ‘CV’ sorghum compared to the BG control (Figure 5b). However, the water
infiltration rate, though highly variable, was not different between treatments (Figure 5c).
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3.3. Effect of SSgH on Soil Nematode Communities

No significant interaction was found between treatments and sampling date; thus, all
nematode data throughout the SSgH–eggplant cropping cycle were pooled and subjected
to repeated measure analysis. Whereas SSgH treatment did not affect the abundance of
reniform nematodes (Rotylenchulus reniformis), the population density of RKNs (Meloidogyne
spp.) was numerically lowest in the BG, but statistically lower in ‘CV’ than BG (Table 3).
However, the abundance of root-knot nematodes was only higher in most SSgH than BG
toward the end of the eggplant growing cycle (Figure 6). The number of RKNs in the soil
remained low in ‘CV’ until 3 months after eggplant planting. The abundance of bacterivo-
rous nematodes was increased by ‘512’ (F = 2.05, df = 7, p ≤ 0.05), whereas omnivorous
nematodes were increased by ‘NX2’, ‘BKP’, ‘BK’, and ‘512’ (F = 2.38, df = 7, p ≤ 0.05) com-
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pared to BG (Table 3). In general, all SSgH treatments numerically increased the abundance
of omnivorous nematodes compared to BG. In terms of nematode community indices,
SSgH treatments only affected richness and CI. All SSgH treatments increased nematode
richness compared to BG (F = 3.95, df = 7, p ≤ 0.05) except for ‘CV’ and ‘BKP’. There was
also a trend that all SSgH increased CI compared to BG, but this was most significant in
‘BK’, ‘BKP’, and ‘NX2’ (F = 1.71, df = 7, p ≤ 0.05). Though not significant, all SSgH also
increased SI compared to the BG (Table 3).

Table 3. Effect of SSgH cover crop on the abundance of nematode trophic groups and nematode community indices
throughout the SSgH–eggplant cropping cycle.

Parameters Treatments

BG 512 LA BK BKP CV NX1 NX2

Abundance - - - - - - - - - - -250 cm3- - - - - - - - - - -
Root-knot 447 ± 153 ab y 966 ± 374 bc 1556 ± 570 a 957 ± 312 a 966 ± 361 ab 923 ± 330 c 812 ± 276 a 725 ± 232 ab
Reniform 800 ± 193 a 666 ± 86 a 595 ± 90 a 376 ± 43 a 568 ± 115 a 709 ± 118 a 466 ± 64 a 489 ± 82 a

Bacterivores 164 ± 30 b 293 ± 57 a2 206 ± 45 ab 179 ± 34 b 224 ± 50 b 325 ± 98 ab 220 ± 46 ab 310 ± 66 ab
Fungivores 69 ± 8 a 134 ± 22 a 82 ± 12 a 99 ± 17 a 90 ± 11 a 105 ± 15 a 117 ± 22 a 148 ± 28 a
Herbivores 1249 ± 234 a 1636 ± 415 a 2161 ± 594 a 1335 ± 330 a 1534 ± 389 a 1642 ± 391 a 466 ± 64 a 489 ± 82 a
Omnivores 4 ± 1 b 16 ± 6 a 15 ± 5 ab 16 ± 5 a 18 ± 6 a 8 ± 2 ab 11 ± 4 ab 19 ± 6 a

Indices
Richness 8 ± 0 c 10 ± 1 a 9 ± 0 ab 10 ± 1 ab 9 ± 1 bc 9 ± 1 bc 10 ± 1 ab 10 ± 1 a
Diversity 2.57 ± 0.26 a 2.84 ± 0.27 a 2.48 ± 0.25 a 2.77 ± 0.27 a 2.78 ± 0.20 a 2.41 ± 0.20 a 3.03 ± 0.29 a 2.99 ± 0.26 a
EI (%) z 1.96 ± 0.03 a 2.02 ± 0.05 a 2 ± 0.04 a 2.02 ± 0.05 a 2 ± 0.04 a 1.97 ± 0.05 a 1.96 ± 0.04 a 1.99 ± 0.06 a
SI (%) 45.58 ± 2.72 a 47.19 ± 3.47 a 48.52 ± 3.04 a 50.75 ± 3.39 a 50.51 ± 3.97 a 53.02 ± 3.74 a 54.81 ± 3.02 a 52.18 ± 4.05 a
MI (%) 0.36 ± 0.04 a 0.33 ± 0.03 a 0.37 ± 0.04 a 0.38 ± 0.04 a 0.39 ± 0.05 a 0.4 ± 0.04 a 0.39 ± 0.04 a 0.37 ± 0.04 a
CI (%) 11.39 ± 3.87 b 23.97 ± 4.29 ab 20.52 ± 4.13 ab 24.34 ± 4.33 a 24.49 ± 4.27 a 22.33 ± 4.34 ab 20.31 ± 4.79 ab 25.42 ± 4.43 a

y Means ± standard error (n = 28) are averaged from repeated measures over seven sampling dates. Values followed by the same letter(s)
in a row are not different based on Waller–Duncan k-ratio (k = 100) t-test. z EI = Enrichment index; SI = Structure index; MI = Maturity
index; CI = Channel index.
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with 92% and 60% higher microbial biomass, respectively, than BG. Energy sorghum 
‘NX2’ significantly increased microbial biomass of non-arbuscular mycorrhizal fungi and 
% eukaryotes compared to BG (Table 4). BG had higher GP/GN, S/U, and M/P ratios, 
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Figure 6. Number of Meloidogyne spp. (n = 4) juveniles in the soil at each sampling date from
sorghum/sorghum–sudangrass cover crop plots throughout cover cropping and eggplant growing
period in a no-till field trial.
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time.

3.4. Effect of SSgH on Soil Microbial Profile

At 2 weeks after SSgH termination, microbial biomass represented by total phospho-
lipid fatty acids (TPLFA) was increased (F = 5.53, df = 7, p ≤ 0.05) by six SSgH treatments
excluding ‘NX1’ sorghum (Table 4). ‘LA’ and ‘NX2’ showed the most promising results
with 92% and 60% higher microbial biomass, respectively, than BG. Energy sorghum ‘NX2’
significantly increased microbial biomass of non-arbuscular mycorrhizal fungi and % eu-
karyotes compared to BG (Table 4). BG had higher GP/GN, S/U, and M/P ratios, whereas,
‘NX2’ had the highest F/B and PD/PR.



Microorganisms 2021, 9, 1831 10 of 18

Table 4. Effect of SSgH on soil microbial profile based on PLFA.

Parameters Treatments

BG 512 LA BK BKP CV NX1 NX2

- - -27 August 2020- - -
Abundance

TPLFA(nmole/g) z 40.7 ± 4.8 c y 55.6 ± 4.6 b 78.1 ± 3.5 a 55.1 ± 6.2 b 60.4 ± 7.6 b 60.1 ± 3.6 b 53.4 ± 2.5 bc 65.4 ± 7.5 ab
GN (%) 34.6 ± 0.4 b 36.3 ± 0.8 ab 36.7 ± 0.5 ab 36.8 ± 1 ab 35.2 ± 1.5 b 34.7 ± 0.7 b 38 ± 0.9 a 36.1 ± 1.2 ab
GP (%) 38.7 ± 0.7 a 36.9 ± 1.2 a 36.8 ± 0.2 a 39.4 ± 2.9 a 38 ± 0.8 a 37.1 ± 0.4 a 38.5 ± 2.9 a 35.5 ± 0.7 a

AMF (%) 3.9 ± 0.1 a 3.9 ± 0.1 a 4.2 ± 0.2 a 4 ± 0.2 a 4.1 ± 0.3 a 3.9 ± 0.2 a 4.2 ± 0.1 a 4 ± 0.1 a
non-AMF (%) 2.9 ± 0.7 b 3.9 ± 0.8 ab 4 ± 0.2 ab 3.7 ± 0.4 ab 4.1 ± 0.8 ab 5.4 ± 0.9 a 3.7 ± 0.5 ab 5.4 ± 1.2 a

EUK (%) 0.9 ± 0.3 b 1.4 ± 0.3 ab 2.3 ± 0.4 ab 0.9 ± 0.1 b 1.6 ± 0.3 ab 1.7 ± 0.2 ab 1.4 ± 0.3 ab 2.5 ± 0.6 a
Ratios

GP/GN 1.5 ± 0 a 1.3 ± 0 b 1.2 ± 0 b 1.3 ± 0 b 1.3 ± 0 b 1.3 ± 0 b 1.2 ± 0 b 1.2 ± 0 b
F/B 0.09 ± 0.01 b 0.11 ± 0.01 ab 0.11 ± 0 ab 0.11 ± 0.11 ab 0.12 ± 0.01 ab 0.13 ± 0.01 a 0.11 ±0.01 ab 0.13 ± 0.02 a
S/U 1.7 ± 0.1 a 1.4 ± 0.1 ab 1.3 ± 0 b 1.5 ± 0 ab 1.4 ± 0 b 1.4 ± 0 ab 1.4 ± 0 ab 1.4 ± 0.1 b
M/P 12.1 ± 3 a 7.2 ± 1.2 ab 5.8 ± 0.5 b 7.6 ± 1.1 ab 6.7 ± 1.1 ab 5.1 ± 0.7 b 7.3 ± 1.1 ab 4.9 ± 0.7 b

PD/PR 0.01 ± 0.01 a 0.02 ± 0.01 a 0.04 ± 0 a 0.02 ± 0 a 0.03 ± 0 a 0.03 ± 0 a 0.02 ± 0 a 0.04 ± 0.01 a
- - -10 December 2020- - -

Abundance
TPLFA(nmole/g) 41.5 ± 2.9 b 51.7± 10.7 ab 77.6 ± 18.2 a 52.6 ± 6.1 abc 54.2 ± 12.3

abc 60.1± 11.2 ab 34.8 ± 3.5 c 57 ± 10.7 abc
GN (%) 33.6 ± 0.4 a 33.2 ± 1.2 a 33.7 ± 1.5 a 33.3 ± 0.7 a 33.7 ± 1.1 a 33.9 ± 0.7 a 32.7 ± 0.1 a 35.6 ± 0.4 a
GP (%) 47.4 ± 0.5 a 39 ± 1.5 d 35 ± 1.8 e 39.7 ± 2 cd 39.4 ± 2.9 d 37.4 ± 0.9 de 45.8 ± 0.7 ab 43.2 ± 1.4 bc

AMF (%) 4.9 ± 0.2 a 2.8 ± 0.5 bcd 3.6 ± 0.4 ab 1.6 ± 0.2 d 3.1 ± 0.6 bc 3.3 ± 0.5 bc 3.8 ± 0.7 ab 2.1 ± 0.7 cd
non-AMF (%) 9.7 ± 1.3 a 4.5 ± 0.8 a 6.1 ± 0.9 a 3.5 ± 1.1 a 5.2 ± 1.3 a 4.6 ± 0.8 a 17.2 ± 10.4 a 3.5 ± 2.1 b

EUK (%) 1.8 ± 0.3 c 4 ± 0.6 abc 8 ± 3.3 a 6.1 ± 1.3 ab 5.5 ± 1.3 ab 4.4 ± 0.4 abc 1.1 ± 0.4 d 3.3 ± 0.7 bc
Ratios

GP/GN 1.9 ± 0 a 1.5 ± 0.2 bc 1.3 ± 0 c 1.6 ± 0.1 b 1.6 ± 0.2 b 1.5 ± 0.1 bc 2 ± 0a 1.6 ± 0.1 b
F/B 0.2 ± 0 a 0.1 ± 0 abc 0.1 ± 0 ab 0.1 ± 0 bc 0.1 ± 0 abc 0.1 ± 0 abc 0.4 ± 0.3 a 0.1 ± 0 c
S/U 7.8 ± 0.8 ab 2.4 ± 0.6 de 1.5 ± 0.2 e 2.9 ± 0.6 cd 4.9 ± 2.8 cd 2 ± 0.3 de 9 ± 0.7 a 5.4 ± 1.9 bc
M/P 6.6 ± 0.8 b 3.1 ± 0.2 bc 2.5 ± 0.5 c 2.5 ± 0.6 c 2.7 ± 0.4 c 3.1 ± 0.2 bc 10.6 ± 2.4 a 4.6 ± 1.2 bc

PD/PR 0.02 ± 0 b 0.1 ± 0 ab 0.1 ± 0.07 a 0.1 ± 0 a 0.1 ± 0 a 0.1 ± 0 ab 0.02 ± 0 c 0.1 ± 0 ab

y Means (n = 4) followed by the same letter(s) in a row are not different based on Waller–Duncan k-ratio (k = 100) t-test. z TPLFA
= Total phospholipid fatty acid representing total microbial biomass in nanomoles per gram of soil; Microbial groups such as GN =
Gram-negative bacteria; GP = Gram-positive bacteria; AMF = Arbuscular mycorrhizal fungi; non-AMF = non-arbuscular mycorrhizal
fungi; EUK = Eukaryotes are percentage of signature fatty acid peaks; GP/GN = ratio of Gram + ve bacteria to Gram − ve bacteria; F/B =
ratio of fungi to bacteria; S/U = ratio of saturated to unsaturated fatty acids; M/P = ratio of monounsaturated to polyunsaturated fatty
acids; PD/PR = ratio of predator to prey (Protozoa/bacteria).

Three months after eggplant planting, ‘LA’ still increased (F = 2.38, df = 7, p ≤ 0.05)
total microbial biomass by 87% more than BG (Table 4). Although not statistically signifi-
cant, ‘CV’ and ‘NX2’ showed 45% and 38% increases in microbial biomass, respectively,
compared to BG. Relative abundance of Gram-positive bacteria was highest (p ≤ 0.05) in
BG. Abundance of eukaryotes was increased (F = 9.81, df = 7, p ≤ 0.05) by ‘LA’, ‘BK’, and
‘BKP’. In terms of microbial ratios, all SSgH had lower GP/GN than ‘BG’ (F = 7.01, df = 7,
p ≤ 0.05) except for ‘NX1’. ‘NX1’ also had higher M/P compared to BG. A higher (F = 5.35,
df = 7, p ≤ 0.05) PD/PR ratio was found in ‘BK’, ‘BKP’, and ‘LA’.

3.5. Relationships between Soil Health Indicators and Plant-Parasitic Nematode

Canonical correspondence analysis (CCA) was performed between 13 species variables
and 17 environmental variables collected at the time of cover crop termination (Figure 7a)
and 13 species variables and 21 environmental variables recorded at 3 months after eggplant
planting (Figure 7b). The first two canonical axes explained 87.4% and 86% of the variation
for the two ordination plots, respectively (Figure 7a,b). At 2 weeks after SSgH termination,
most of the soil health indicators including total microbial biomass (TPLFA), soil microbial
respiration rates, soil moisture (GSM, VSM), soil carbon (SC), nematode enrichment index
(EI), maturity index (MI), structure index (SI), and abundance of omnivorous nematodes
were negatively related to the abundance of PPNs and reniform nematodes (Figure 7a).
Water infiltration rate (Inf) was negatively correlated to the above-mentioned soil health
indicators but positively correlated to the abundance of Gram-positive bacteria (GP), Gram-
negative bacteria (GN), and plant-parasitic nematode (Herb). At 3 months after eggplant
planting, a negative relationship between root-gall index (RGI) on eggplant with TPLFA,
soil moisture, soil carbon, sorghum biomass (BM), soil respiration, SSgH tissue nitrogen
content (TN), nematode richness (CI, EI, MI, and SI), and abundance of bacterial feeding
nematodes was observed (Figure 7b). Eggplant yield and infiltration rate, on the other hand,
were negatively correlated to many of the above-mentioned parameters. The abundance
of PPNs was positively correlated with the abundance of actinomycetes (ACT), Gram-



Microorganisms 2021, 9, 1831 11 of 18

negative stress (GNS) bacteria (i.e., a ratio of cyclopropyl fatty acids, a type of saturated
fatty acids, to unsaturated fatty acids present in G-ve bacteria), arbuscular mycorrhizal
fungi (AMF), Gram-positive (GP) bacteria, and ratios of the abundance of predators to prey
(PD/PR) and fungi to bacteria (F/B) (Figure 7b).
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(GNS). Environmental variables include reniform nematode (Reni), root-knot nematode (rk), herbivores/PPNs (Herb),
bacterivores (Bact), fungivores (Fungi), omnivores (Omni), nematode richness (Rich), nematode diversity (div), maturity
index (MI), enrichment index (EI), structure index (SI), channel index (CI), soil infiltration rate (Inf), soil carbon (SC),
eggplant yield (Yield), soil respiration (Co2), volumetric soil moisture (VSM), gravimetric soil moisture (GSM), SSgH tissue
nitrogen (TN), SSgH biomass (BM), and root-gall index (RGI).

3.6. Eggplant Growth and Yield

Eggplant height recorded at 5 weeks after transplanting was not significantly different
(p > 0.05, df = 7, F = 0.69) among treatments (Table 5). Total eggplant fruit weight was
numerically higher in all SSgH treatments compared to BG control, though not significant
(p > 0.05). A higher fruit number was observed in ‘CV’ plots. Root weight was increased
(F = 1.86, df = 7, p≤ 0.05) by ‘BK’ sorghum, and all SSgH treatments had higher root weight
than BG. On the other hand, there were no differences (p > 0.05) among treatments for
root-gall formation.

Table 5. Effect of SSgH cover cropping on eggplant growth and total yield.

Treatments

Parameters BG 512 LA BK BKP CV NX1 NX2

Plant height (cm) 11.7 ± 1.91 a y 16 ± 1.23 a 14.02 ± 1.5 a 13.9 ± 1.75 a 13.71 ± 0.86 a 14.34 ± 1.74 a 14.5 ± 2.01 a 14.45 ± 0.83 a
Total fruit wt (kg) 2.47 ± 0.33 a 3.64 ± 0.44 a 2.15 ± 0.23 a 3.4 ± 0.76 a 2.45 ± 0.52 a 3.63 ± 0.43 a 2.6 ± 0.61 a 3.63 ± 0.53 a

Total fruit no. 27 ± 3.72 a 31 ± 1.89 a 25 ± 2.1 a 28 ± 6.28 a 30 ± 4.7 a 38 ± 5.68 a 27 ± 4.56 a 29 ± 2.32 a
Root wt (kg) 0.07 ± 0.01 b 0.1 ± 0.01 ab 0.09 ± 0.01 ab 0.11 ± 0.01 a 0.08 ± 0.01 ab 0.10 ± 0.01 ab 0.11 ± 0.01 ab 0.1 ± 0.01 ab
RGI (0–10) z 5.43 ± 0.43 a 5.50 ± 0.23 a 6.13 ± 0.55 a 6.73 ± 0.22 a 5.33 ± 0.35 a 5.50 ± 0.51 a 5.98 ± 0.38 a 6.10 ± 0.41 a

y Means ± standard error (n = 4) are from repeated measures over 10 sampling dates for total fruit number/plot and total fruit weight/plot.
Means ± standard error (n = 16) for root-gall index, root weight, and plant height per plant/plot. Values followed by the same letter(s) in a
row are not different based on Waller–Duncan k-ratio (k = 100) t-test. z RGI = Root-gall index on a 0–10 scale.
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4. Discussion
4.1. Allelopathic Potential of SSgH

The decline in allelopathic effects of SSgH against M. incognita observed in this study
is consistent with previous studies that reported a decline in dhurrin concentration in
sorghum as the plants mature [20,64]. The reduction in allelopathic effect of SSgH in older
plants would suggest the need for an early termination of SSgH cover crop to ensure
effective suppression of RKNs, which could reduce the efficacy of SSgH for building soil
organic matter and improving other aspects of soil health. However, since 3-month-old
plant tissue of ‘NX2’ and ‘LA’ were equally effective in suppressing root-knot nematode
compared to younger plant tissues, this would warrant growing these cover crops for 3
months to accumulate higher cover crop biomass. Among all the SSgH tested, ‘NX2’ and
‘LA’ had the highest suppression against the development of M. incognita females; thus,
these varieties were reevaluated in the subsequent field trial. Based on the allelopathic
results from the greenhouse pot trials and the observation of biomass production of SSgH
over time where the biomass increased by up to sevenfold when grown for 2 months
compared to 1 month and up to twofold from 2 to 3 months, we determined that we should
terminate the SSgH cover crop in the field trial for more than 2 months to ensure biomass
production but less than 3 months to maximize the allelopathic effects of certain varieties
in the field trials.

Unfortunately, the allelopathic effect of SSgH including that from NX2 and LA against
RKNs was not observed in the no-till field trial. This could be because biofumigants in the
no-till condition did not get in contact with soil nematodes for long enough to provide the
same level of control as in the greenhouse pot trials where SSgH tissues were amended
in the soil. These observations are in line with previous studies using brassicaceous
cover crops for biofumigation where tissue maceration plus soil incorporation treatment
was the most effective in suppressing PPNs compared to no-till treatment [11,65]. The
biofumigant produced by SSgH is HCN, which is highly volatile [66]. Therefore, it is
important to incorporate the biofumigant into the soil to come in contact with PPNs,
as well as prolonging the allelopathic activity of HCN. Unlike the root-knot nematode
population, which showed a continuous increase toward the end of eggplant season,
the reniform nematode population did not show a clear trend. Future research should
investigate terminating the SSgH cover crop by strip-till. Nonetheless, the no-till field trial
showed that none of the SSgH tested are hosts to Meloidogyne spp., as the number of RKNs
in the soil was lower than 100 per 250 cm3 and was not different from initial sampling. This
is consistent with Djian-Caporalino et al. [20] finding that the ‘Piper’ (low dhurrin) and
sudangrass hybrid ’270911’ (high dhurrin) was a poor host of M. incognita.

4.2. Effects of SSgH Cover Crop on Soil Edaphic Properties and Soil Health Indicators

As expected, SSgH cover cropping enhanced various soil edaphic properties, micro-
bial biomass (TPLFA, non-AMF and % eukaryotes), and nematode soil health indicators
(abundance of omnivorous and bacterivorous nematodes, richness, and CI) in the no-till
field trial. Based on CCA, higher cover crop biomass in this trial led to higher soil carbon,
which would lead to a higher macroaggregate stability, which creates a suitable habitat
for various soil microorganisms [67]. Data here also showed that soil organic matter was
positively related to volumetric soil moisture and total soil microbial biomass (TPLFA).
Soil organic matter, especially in a no-till system, provides a stable food supply to the
microorganisms [68–70]. The higher total microbial biomass in SSgH compared to the BG
was observed at 2 weeks as well as at 3 months after SSgH cover crop termination.

However, a shift in microbial population over time was observed. Initially, non-
AMF, % eukaryotes, and F/B responded positively to SSgH, whereas GP/GN, S/U, and
M/P were reduced by SSgH cover cropping. This is no longer obvious at 3 months
after SSgH termination. SSgH could have released carbon and secondary metabolites
via their root exudates that could support more fungal microbial activity [67]. Soon
after cover crop termination, non-AMF was particularly higher in CV and NX2 than
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BG. These saprophytic fungi play an important role in decomposing high C: N ratio
organic residues in the soil and help in improving soil structure through the secretion of
extracellular enzymes and by physically binding soil particles together with their hyphal
mass, rendering the soil more stable [70]. Hence, the overall F/B ratio was higher in the
no-till SSgH plots compared to the BG, particularly for CV and NX2 soon after cover crop
termination. Organically managed and undisturbed ecosystems tend to have a higher
F/B of microbes than conventionally managed disturbed soil ecosystems [71,72]. This
study also concurs with that by Blaise et al. [73], where they found sorghum, sunn hemp,
or desmodium (Desmodium triflorum) intercropped with wide-row spacing Bt corn, as
living mulch supported higher soil biological activities such as basal respiration, microbial
biomass carbon, and soil enzymes than the other mulch treatments. Similarly, the current
study also showed that soil respiration was higher in SSgH (particularly NX2 and BKP)
than BG throughout the eggplant cropping cycle.

While fungi are associated with macroaggregates, the majority of the bacteria live
within microaggregates [74,75]. However, bacteria were separated into two major func-
tional groups, Gram-positive (GP) and Gram-negative (GN) bacteria. A decrease in GP/GN
by all SSgH except NX1 compared to BG in both PLFA analysis 2 weeks or 3 months after
cover crop termination is encouraging as this indicates a lower-stress soil microbial com-
munity. This is because GP bacteria are oligotrophic, utilizing recalcitrant carbon sources,
and GN bacteria tend to be copiotrophs surviving on labile carbon [76,77]. SSgH must have
been conditioning the soil with more labile C, thus increasing GN bacteria and reducing
GP/GN. A value of GP/GN closer to 1 indicates a balanced bacterial community and
greater diversity. At both PLFA sampling, BG had GP/GN further from 1 than most SSgH,
indicating less-balanced and lower diversity of bacterial communities.

The abundance of protists (depicted as % eukaryotes in CCA), a diverse group of
unicellular eukaryotes excluding plant, animal, and fungus, was increased by most SSgH
cover crops except for BK at 2 weeks after cover crop termination. These protists, including
amoebas, ciliates, diatoms, plasmodium, oomycetes, and slime molds, could provide rapid
nutrient turnover through the consumption of smaller microorganisms such as bacteria
and fungi, change in microbial species composition through selective feeding, and the
production of certain antibiotics that may protect plants against diseases [78,79]. Thus, an
increase in % eukaryotes is a good property to possess following SSgH termination. While
the increase in eukaryotes varied at 3 months after eggplant planting, a higher PD/PR
(i.e., predator/prey or protozoa/bacteria) observed in most SSgH treatments except NX1
suggested a continuation in more nutrient turnover (mineralization) by protists even at 3
months after SSgH cover crop termination. Haubert et al. [80] also suggested that organic
cover cropping sustained a diverse group of organisms including those in higher trophic
levels than conventional farming without much organic input.

PLFA can be calculated into a ratio of saturated to unsaturated fatty acids (S/U),
where higher ratios correspond to increasing stress [81,82]. Lower S/U in most SSgH treat-
ments except NX1 compared to BG at 2 weeks and 3 months after cover crop termination
corresponded to the increase in C and water availability by SSgH treatments compared to
BG.

4.3. Relationship between Nematode Indicators with Soil Edaphic Factors, PPNs, and Crop Yield

While microbial biomass profile responded to SSgH treatment in the no-till system
rather well within one cropping cycle of SSgH-eggplant planting, responses from the
nematode community analysis were sparse. Only the abundance of bacterivores and
omnivores and richness and CI differed between BG and some of the SSgH treatments.
This is partially expected since nematodes are higher up in the soil food web from soil
microbes and would take longer to respond to no-till organic management. Hinds et al. [83]
noticed a difference in nematode community changes using sunn hemp as a cover crop
where the response was faster in the strip-till system vs. the no-till system. Wang et al. [84]
also reported a change in nematode community structure within one cropping cycle after
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sunn hemp strip-till cover cropping. Despite the weak response of nematode community
indices to SSgH no-till treatments, the abundance of omnivorous nematodes, EI, CI, MI, and
SI, and richness (rich) and diversity (Div) were positively related to changes in soil edaphic
factors (GSM, VSM, SC, and BM) throughout the eggplant cropping cycle. However, their
negative relationship with the water infiltration rate (Inf) deviated from the assumption
that soil health improvement would lead to better water infiltration. Perhaps the short
duration of no-till SSgH practice conducted here is too short to modify the soil infiltration
rate.

Another interest in improving soil health is to examine if it can lead to the suppression
of PPNs. While no-till practice is not allowing SSgH biofumigation to perform well, the
CCA also showed no top-down regulation of the omnivorous nematodes against the PPNs.
Rather, bottom-up support from the total abundance of PPNs (Herb) was observed to
increase the abundance of omnivorous nematodes at 3 weeks after SSgH termination.
Unfortunately, no predatory nematode was present in this field, which might explain the
lack of top-down regulation of the PPNs since omnivorous nematodes were demonstrated
to be less efficient for root-knot and reniform nematode predation [85].

Despite the lack of top-down regulation, it is encouraging that soil edaphic factors and
soil health indicators (EI, SI, TPLFA, and CO2) were still negatively related to the abundance
of root-knot, reniform, and total PPNs in the soil at 2 weeks after SSgH termination and
to root-gall index (RGI) on eggplant at 3 months after SSgH termination. These could
be explained by a shift in the microbial profile over time. Initially, a positive relation
between the abundance of PPNs (reniform or RKNs) with microbial profile indices (GP/GN,
S/U, and ACT) at 2 weeks after SSgH termination. This means the abundance of PPNs
in the soil was associated with stressful soil conditions dominated by Gram-positive
bacteria or actinomycetes [71]. Gram-positive bacteria such as Bacillus spp. and Pasteuria
penetrans constitute important biological control agents against PPNs [86]. However,
usually the population densities of these bacteria occurring naturally in the field are
nematode-host-densities-dependent [87], which is why the relationship between PPN
abundance and GP or GP/GN was initially positive. However, toward the third month
after SSgH termination, the abundance of PPNs was negatively related to GP/PN, which
might suggest a suppression of PPNs by GP.

The total yield of eggplant was unexpectedly not affected by any SSgH treatments or
soil physical properties or negatively related to nematode diversity, fungivorous nematode
abundance, SSgH biomass at cover crop termination, VSM, etc. Only the abundance of
omnivorous and reniform nematodes was positively related to crop yield. This is the
short-fall of practicing no-till farming for soil health management, as it often takes time to
improve crop yield through no-till farming, similar to the meta-analysis results obtained
by Pittelkow et al. [88].

5. Conclusions

The current studies clearly demonstrated that the biofumigation potential of SSgH
cover crop could depend on various factors including the varieties, age of cover crop when
terminated, and whether the SSgH residues were soil-incorporated. Among the varieties
tested, energy sorghum ‘NX2’ (=‘NX-D-61’) and the hybrid ‘LA’ (=‘Latte’) were found
to be highly suppressive to the development of root-knot nematodes into females even
at 3 months old if the residues were soil-incorporated in the greenhouse trials. While
terminating SSgH cover crops improved soil health parameters (edaphic factors, microbial
profiling, and nematode community indices) within one cropping cycle, it did not lead to
suppression of root-knot and reniform nematode population densities in the soil nor lead
to better eggplant yield. However, there is a clear trend that (1) an increase in abundance
of omnivorous nematodes would lead to higher eggplant yield; (2) an improvement in soil
health could lead to a reduction in root-gall formation in eggplant; and (3) an increase in
GP/GN would result in a lower abundance of PPNs in the soil. Future SSgH cover crop
research should examine soil incorporation of SSgH residues in a minimum tillage system
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rather than no-till to allow for biofumigation to be performed. A longer-term study is
needed to allow changes in microbial profiles toward achieving a nematode antagonistic
effect. Nonetheless, microbial profiling using PLFA provided an indicative analysis of
changes in the microbial biomass to SSgH no-till treatment, even within one cropping
cycle. NX2 stood out to have improved the soil microbial profile toward a less stressful
environment quicker than other varieties tested, but other SSgH varieties eventually also
reduce stress in the microbial community, except for NX1. Bottom-up regulation by the
combination of all soil microbial profiles might be shaping the nematode community and
resulting in an improved soil edaphic factor in the shorter term, but a top-down control of
PPNs might not be realized until a long-term soil health management system is installed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9091831/s1, Table S1: Initial population of Meloidogyne spp. and Rotylenchulus
reniformis per 250 cm3 soil.
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