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Abstract: Background: The human gut microbiota is a microbial ecosystem contributing to the
maintenance of host health with functions related to immune and metabolic aspects. Relations
between microbiota and enteric pathogens in sub-Saharan Africa are scarcely investigated. The
present study explored gut microbiota composition associated to the presence of common enteric
pathogens and commensal microorganisms, e.g., Blastocystis and Entamoeba species, in children
and adults from semi-urban and non-urban localities in Côte d’Ivoire. Methods: Seventy-six stool
samples were analyzed for microbiota composition by 16S rRDNA sequencing. The presence of
adeno-, entero-, parechoviruses, bacterial and protozoal pathogens, Blastocystis, and commensal
Entamoeba species, was analyzed by different molecular assays. Results: Twelve individuals resulted
negative for any tested microorganisms, 64 subjects were positive for one or more microorganisms.
Adenovirus, enterovirus, enterotoxigenic Escherichia coli (ETEC), and Blastocystis were frequently
detected. Conclusions: The bacterial composition driven by Prevotellaceae and Ruminococcaceae
confirmed the biotype related to the traditional dietary and cooking practices in low-income countries.
Clear separation in UniFrac distance in subjects co-harboring Entamoeba hartmanni and Blastocystis
was evidenced. Alpha diversity variation in negative control group versus only Blastocystis positive
suggested its possible regulatory contribution on intestinal microbiota. Pathogenic bacteria and virus
did not affect the positive outcome of co-harbored Blastocystis.

Keywords: intestinal co-infection; biotype; virus; bacteria; G. duodenalis; Blastocystis; Entamoeba coli;
Entamoeba dispar; Entamoeba hartmanni
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1. Introduction

The intestinal microbiota consists of a complex microbial community, which exhibits a
mutualistic relationship with the host and a crucial impact on human health [1]. About
60% of its bacterial composition persists stably for decades (e.g., the phyla Firmicutes,
Bacteroidetes and Actinobacteria), while the remaining proportion is involved in transient
modifications induced by different environmental conditions.

The high diversity and the relative abundance of beneficial bacterial strains, compared
to those potentially harmful, promote the homeostasis of intestinal functions and host-
protective immunity [2], and the combinations of redundant microbial species, differing
among the human populations and geographical areas, insure fundamental metabolic
functions [3]. However, several factors, e.g., antibiotic therapies, may lead to the loss of
microbial diversity and imbalances between commensal versus pathogenic bacterial strains,
weakening the recovery of intestinal microbiota [4].

The development of advanced sequencing techniques has allowed a more comprehen-
sive understanding of the relationships between intestinal bacteria and the human host
than a culture-based analysis alone [1]. Increasing evidence suggests a distinction between
a state of balanced homeostasis, typical of healthy subjects, and different dynamic associa-
tions of microbial communities that seem to predispose to non-communicable diseases [5],
as supported by studies on animal models [6].

Pioneering microbiota studies were performed in Europe, China, and the United
States, evidencing a lower microbial diversity compared to pre-industrial populations [7,8].
Further comparisons have been carried out between different ethnic groups living in
America [9,10] and a growing number of data relating to African populations are now
available [11–14].

The characterization of human intestinal microbiota, especially in endemic envi-
ronments for enteropathy, cannot neglect the potential presence of common intestinal
pathogens, including bacteria, viruses, and parasites, and their influence on microbiota
balance [15,16]. However, the dynamics of relationships between pathogens and com-
mensals, both prokaryotes and eukaryotes, are often underestimated [17,18] or focused
on single microorganisms [19–21]. Poor water, sanitation, and hygiene conditions in low
and middle-income countries sustain the susceptibility to multiple and asymptomatic
infections [22].

The link between natural systems, human health, and infections remains an interesting
challenge. In line with these aspects, the present study investigated the gut microbiota
in children and adults living in Côte d’Ivoire. A particular, focus was on the changes
in microbiota composition related to the presence of Blastocystis, commensal Entamoeba
species, and different common enteric pathogens.

2. Materials and Methods
2.1. Study Area and Sample Collection

Human fecal samples were collected at four sites in the department of Grand-Bassam,
in the south of Côte d’Ivoire. Bonoua (5◦16′17′′ N, 3◦35′40′′ W) was the only semi-urban
locality while Assouindé (5◦09′57.1′′ N 3◦28′10.9′′ W), Kimoukro, and Yaou (5◦14′25.0′′ N
3◦37′37.9′′ W) were rural/semi-rural villages 6 to 20 km away from Bonoua. Sampling
was performed during three distinct seasons characterizing the study area: the heavy rainy
season (HRS), the low rainy season (LRS), and the heavy dry season (HDS).

2.2. Sample Management and Fecal Nucleic Acids Extraction

From each patient, one fecal sample was collected using an appropriate sterile con-
tainer. Recent or ongoing antibiotic therapy constituted an exclusion principle. After
allocation of an anonymous code, two aliquots (ca. 400 mg each) were prepared from the
sample. The first aliquot was preserved for parasitological and NGS analysis by adding
0.5 mL of Qiagen Allprotect Tissue Reagent (QIAGEN, Hilden, Germany) in a sterile
Nalgene® cryogenic vial size 2.0 mL, frozen at −20 ◦C until transported to the University
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of Rome Tor Vergata (Italy). DNA from this aliquot was extracted by QIAmp Stool Mini
Kit (QIAGEN, Hilden, Germany) [16]. The second aliquot for the xTAG GPP assay analysis
and real-time PCR was frozen at−20 ◦C, transported to the University of Rome Tor Vergata,
preserved at−80 ◦C until shipment to the Institute of Virology of the University of Cologne
(Germany). In this case, sample preparation was performed using the automated platform
VERSANT kPCR Molecular System (Siemens Healthcare Diagnostics, Erlangen, Germany),
according to the manufacturer’s instructions, as described in [23].

2.3. xTAG GPP Assay

Stool samples were investigated for 15 human enteric pathogens by the xTAG Gas-
trointestinal Pathogen Panel (xTAG GPP) (Luminex Molecular Diagnostics, Toronto, ON,
Canada), as already described [23]. The assay concurrently identified adenovirus sub-
types 40/41, norovirus genogroup I and II (GI/GII), group A rotavirus, Campylobacter
spp., Clostridium difficile toxin A/B, Escherichia coli O157, enterotoxigenic Escherichia coli
(ETEC) LT/ST, Salmonella spp., Shiga-like toxin producing E. coli (STEC) stx1/stx2, Shigella
spp., Vibrio cholerae, Yersinia enterocolitica, Cryptosporidium hominis, Cryptosporidium parvum,
Entamoeba histolytica, Giardia duodenalis.

2.4. Detection of Adeno-, Entero-, and Parechoviruses by Real-Time PCR

The molecular detection of enteroviruses (EV) and parechoviruses (PeV) was per-
formed as already described [24]. Adenoviruses (AdV) were detected by RealStar® Aden-
ovirus PCR Kit 1.0 (Altona Diagnostics, Hamburg, Germany).

2.5. Blastocystis and Commensal Entamoeba spp. Detection and Identification

End-point PCR and sequence analysis of the SSU rDNA region were carried out
for the molecular identification of Blastocystis and Entamoeba species. The detection of
Blastocystis was performed by amplification of a 600 bp fragment by nested PCR using
the primers RD5-BhRDr and Blasto2F-Blasto2R [25] as described in D’Alfonso et al. [26].
The amplification of the specific fragment of Entamoeba spp., including the pathogenic
E. histolytica, was obtained using the primers JVC and DSPR2 [27]. The amplicons were
from 622 to 667 bp long depending on the species.

All amplicons were purified using a QIAquick Gel Extraction Kit (QIAGEN, Valen-
cia, CA, USA) and sequencing was performed in the Bio-Fab Research Laboratory in
Rome (Italy). The identities of the obtained sequences were verified using the Basic Local
Alignment Search Tool (BLAST).

2.6. 16S rRNA Gene Amplicon Sequencing

PCR reactions for amplification of the V3 and V4 regions of bacterial 16S rDNA genes
contained 25 µL reaction volume per sample: 2.5 µL microbial genomic DNA (12.5 ng),
1 µL of each primer (10 µM): 16S Amplicon PCR Forward Primer

(5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-
3′) and 16S Amplicon PCR Reverse Primer

(5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTA
ATCC-3′), 4 µL HF buffer, 2 µL dNTPs (10 mM each; Axon lab, Germany), 0.4 µL BSA
(20 mg/mL, ThermoFisher Scientific, Waltham, MA, USA), 4 µL Betaine (5M, Sigma-
Aldrich), and 0.2 µL Phusion Hifi DNA polymerase (ThermoFisher Scientific, Waltham,
MA, USA). Primers for the amplification of the 16S V3 and V4 region were selected from
Klindworth et al. [28]. Illumina adapter overhang nucleotide sequences were added to the
gene-specific sequences (Illumina P5/P7 adaptor sequences in italic, see above).

Amplification was performed as follows: initial denaturation at 95 ◦C for 5 min,
25 cycles of denaturation at 95 ◦C for 40 s, annealing at 53 ◦C for 40 s, and extension
at 72 ◦C for 60 s, followed by a final extension of 7 min at 72 ◦C. Before the “library
preparation” by index-PCR, amplicons were purified using the Agencourt AMPure®XP
system on a BioMek NX workstation (Beckman Coulter, Germany) following instructions
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provided by the manufacturer. The index PCR attached dual indices using the Nextera
XT® (Illumina Inc., San Diego, CA, USA) Index Kit following instructions provided by
the manufacturer. The index PCR reaction was purified as described above followed by a
library quantification, normalization, pooling, library denaturing, and MiSeq® (Illumina
Inc., San Diego, CA, USA) sample loading in a final concentration of 10 pM, following
the protocol described by the manufacturer. Sequencing was accomplished using MiSeq
reagent kit v2 in a 2 × 250 cycle paired-end sequencing run.

2.7. 16S rRNA Amplicon Data Processing

Sequencing data were processed using the QIIME DADA2 plugin with the denoise-
paired option and standard parameters (trunc_q = 2, max_ee = 2, chimera_method = con-
sensus). Taxonomic classification was performed by a Naïve Bayes classifier (sklearn) [29],
which was trained on the SILVA database release 128 [30]. Rarefaction curves were deter-
mined based on the feature table and analysis of the relative proportion of each bacterial
taxon was made after the data were rarefied at a sequencing depth of 4000 sequences
per sample.

Statistical analyzes were carried out using R for Statistical Computing (version 3.5.1,
R Foundation for Statistical Computing, Vienna, Austria) [31] (Team RC). The QIIME biom
data were imported and diversity scores calculated using the phyloseq R package [31,32].
Rarefaction curves were determined based on the feature table and analysis of the relative
proportion of each bacterial taxon was made after the data were rarefied at a sequencing
depth of 4000 sequences per sample. All continuous data were presented as mean and
standard deviation (SD) or median and range, tested with Student’s t-test, Mann–Whitney
U test, and Kruskal–Wallis-test with Dunn’s post-test, as appropriate. In the beta diversity,
the UniFrac distances between the samples were visualized using principal coordinate
analysis (PCoA), and group effects were tested by a permutational multivariate analysis
of variance (PERMANOVA). Differentially abundant taxa were identified using linear
discriminant analysis (LDA) effective size (LefSe) [33]. All statistical tests were two-tailed,
and a p-value < 0.05 was considered statistically significant.

3. Results
3.1. Study Area and Host Population

Sixty-seven fecal samples were collected from subjects aged between 1 to 59 years
old and nine samples from infants (<1 year), representing four different localities: 53
samples from an urban area (Bonoua) and 23 samples from non-urban areas (Assouindé,
Kimoukro, Yaou; see Table 1). Fourteen samples were collected during the heavy rainy
season, 22 during the low rainy season, and 40 during the heavy dry season.

Table 1. Demographic characteristics of enrolled individuals.

Localities

Age Groups <1 year >1–5 years 6–17 years >18 years Total

n
F/M

Median
min–max

n
F/M

Median
min–max

n
F/M

Median
min–max

n
F/M

Median
min–max

n
F/M

Median
min–max

Bonoua 8
2/6

0.1
0.02–0.5

10
6/4

4.5
2–5

20
10/10

11.5
8–17

15
7/8

30
18–59

53
25/28

11
0.02–59

Assouindé 1
1/0 0.75 - - 3

2/1
11

11–15 - - 4
3/1

11
0.75–15

Kimokro - - 1
0/1 2.5 5

2/3
8

6–10 - - 6
2/4

7.5
2.5–10

Yaou - - 5
3/2

5
4–5

8
3/5

6.5
6–13 - - 13

6/7
6

4–13

Total 9
3/6

0.1
0.1–0.7

16
9/7

4.5
1.8–5

36
17/19

10
6–17

15
7/8

0.1
0.1–05

76
36/40

9
0.02–59
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3.2. Viral, Bacterial, and Protozoa Detection

Within the cohort, 12 subjects, including four infants, were tested negative for all
analyzed microorganisms; 64 subjects, including five infants, were tested positive for at
least one virus, bacterium, or protozoa; 10 subjects, including three infants, were tested
positive for a single microorganism, 20 subjects for two microorganisms, and 34 subjects,
including two infants, for three or more microorganisms.

Overall, 32 subjects, including five infants, were tested positive for at least one virus,
with adenovirus (AdV) and enterovirus (EV) being the most common, as showed in Table 2.

Table 2. Summary of detected bacterial and viral pathogens.

Viruses and Bacteria Positive Samples n (F/M) Mean Age (min–max) Detected Pathogens (n)

Adenovirus
(AdV) 17 (9/8) 13.5 (0.25–59) EV (2); NoV (2); ETEC (3); Campylobacter (1)

Parechovirus (PeV) 4 (1/3) 5.4 (0.1–14) EV (2); NoV (1); Campylobacter (1)

Enterovirus
(EV) 14 (5/9) 6.5 (0.1–14) PeV (2); AdV (3); NoV(3); Campylobacter (2); ETEC (4)

Norovirus G1/G2 (NoV) 8 (3/5) 12.7 (0.1–39) EV (3); AdV (2); PeV (1); RoV (1)

Rotavirus A
(RoV) 1 (1/0) 39 RoV (1)

Campylobacter 5 (3/2) 6.3 (9.75–9) E.coli O157 (1); ETEC (1); STEC (1); Shigella (1); EV (2);
PeV (1); AdV (1)

E.coli O157 4 (2/2) 11 (17–8) ETEC (3); STEC (1); Campylobacter (1); Shigella (1); EV (2);
PeV (1); AdV (1)

ETEC 10 (6/4) 7 (1.8–17) E.coli O157 (3); STEC (2); Campylobacter (3); Shigella (2);
EV (4); AdV (3)

Salmonella 1 (0/1) 43 -

STEC 2 (1/1) 9 (9) E.coli O157 (1); ETEC (2); Campylobacter (1)

Shigella 4 (3/1) 11.7 (0.75–24) E.coli O157 (1); ETEC (2); Campylobacter (1); PeV (1)

ETEC: enterotoxigenic E. coli, STEC: Shiga-like toxin producing E. coli.

A total of 17 subjects, including two infants, were tested positive for bacterial pathogens
with enterotoxigenic E. coli (ETEC), Campylobacter, Shigella, and E. coli O157 being the most
frequently identified (Table 2). A total of 54 subjects, including one infant, were positive
for at least one protozoa species with Blastocystis being the most common (47 out of 54).
Overall, 20 subjects were positive for Entamoeba hartmanni, 11 for Entamoeba coli (En. coli),
and two for Entamoeba dispar; Giardia duodenalis was detected in 25 individuals, including
one infant (Table 3).

Table 3. Protozoa distribution based on age and localities.

E. hartmanni En. coli E. dispar Blastocystis G. duodenalis

Localities

Sex Age Sex Age Sex Age Sex Age Sex Age

n (F/M) Mean
(min–max) n (F/M) Mean

(min–max) n (F/M) Mean
(min–max) n (F/M) Mean

(min–max) n (F/M) Mean
(min–max)

Bonoua 16
(6/10)

21
(9–50)

2
(2F)

3
(2–4)

1
(1F) 5 28

(17/11)
22

(9–59)
8 *

(6/2)
17

(2–50)

Assouindé 1
(1F) 11 - - - - 3

(2/1)
12

(11–15)
3

(2/1)
12

(11–15)

Kimoukro 1
(1M) 6 3

(1/2)
7

(2–10) - - 4
(2/2)

8
(6–10)

7
(2–10)

8
(4/4)

Yaou 2
(2F)

5
(4–6)

6
(4/2)

6
(5–7)

1
(1M) 5 12

(6/6)
6

(4–13)
8

(4/4)
5

(4–7)

Total 20
(9/11)

18
(4–50)

11
(7/4)

12
(2–59)

2
(1/1) 5 47

(27/20)
14

(4–59)
24

(14/10)
11

(2–50)

* One-month child was detected positive for G. duodenalis.
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3.3. Gut Microbiota Composition
3.3.1. Age

A marked difference in diversity was found between infants compared to the other
age groups (Figure 1A). Infants showed a significant lower alpha diversity, in particular
when compared to those aged 6–17 and >18 years (Table 4).
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Figure 1. Differences between age groups. (A): UniFrac distances among infants and other age
groups. The samples were visualized using principal coordinate analysis (PCoA). Differences with
other age groups are statistically significant. (B): The plot of top 15 relative bacterial abundances at
genus level. The statistical significances are shown in Table S1A.

Table 4. Alpha diversity indices in the age groups.

Alpha Diversity

Age Groups (n) <1 year (9)
Median

(min–max)

1–5 years (16)
Median

(min–max)

6–17 years (36)
Median

(min–max)

>18 years (15)
Median

(min–max)

Shannon index 1.703
(0.6059–3.019)

3.411
(2.2730–4.131) c

3.703
(2.1940–4.962) a

3.631
(1.5140–4.589) c

Observed OTUs 39.00
(19.00–86.00)

151.00
(79.00–258.00) b

189.00
(94.00–459.00) a

177.00
(82.00–305.00) a

Faith’s phylogenetic diversity 4.601
(0.9572–12.04)

12.850
(7.2710–20.82) c

16.560
(7.3410–34.15) a

17.540
(8.4570–25.67) a

Chao1 index 39.50
(19.00–95.07)

189.50
(98.60–313.30) b

228.20
(105.50–610.00) a

231.00
(100.40–406.90) b

a p < 0.001, b p < 0.01, c p < 0.05 versus <1 year.

As for bacterial composition, the phyla Proteobacteria and Actinobacteria were more
abundant in <1 year of age, and the Firmicutes and Bacteroidetes phyla were more abun-
dant in other age groups. In detail, the Christensenellaceae, Rikenellaceae, and Succinivib-
rionaceae families were absent in subjects <1 year of age, while a high prevalence of
Actinomycetaceae was observed within this group (Figure S1A). Moreover, Enterobacteri-
aceae abundance (0.30025 (0.0005–1)) was higher when compared to subjects aged >1–5
(0.002875 (0.00025–0.26)), 6–17 (0.00375 (0–0.67675)), and ≥18 years (0.004 (0–0.32125)). An
opposite trend was observed with Prevotellaceae (0 (0–0.5625)), which was less abundant
in subjects <1 of age than in age groups 1–5 (0.3544 (0.00–0.8035), p < 0.05) and 6–17 years
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(0.2610 (0.00–0.9328), p < 0.001). Ruminococcaceae abundance (0.00025 (0–0.002)) was also
lower than in the age groups 1–5 (0.29280 (0.06200–0.8785), p < 0.01), 6–17 years (0.33000
(0.0010–0.9120), p < 0.001), and >18 years (0.33000 (0.0010–0.9120), p < 0.001). Finally,
Eubacterium coprostanoligenes, Eubacterium rectale group, Lachnospiracee NK group, Roseburia,
Ruminococcaceae UCG-010, Ruminococcaceae UCG-013, Christensenellaceae R-7 group, and
Rikenellaceae RC9 were absent in subjects aged <1 year.

The organisms most frequently present at the genus level are shown in Figure 1B;
the related statistical significance in the abundance comparison between infants versus all
other groups is reported in Table S1A.

3.3.2. Denovo Clustering

In an attempt to identify different gut microbiome enterotypes in all 67 subjects >1 year
of age, we calculated the UniFrac distances between all samples, partitioned (clustered)
the data into k clusters around meteroids (Figure S2A), and calculated the respective gap
statistics. Using this approach, we were able to split the subjects into two clusters. The
first one, grouping 39 subjects aged 1–59 years and showed higher richness based on
Chao1 (p < 0.01), OTUs (p < 0.01), and PD (p < 0.001), and dominance of Ruminococcaceae
(Clostridia Class) over Prevotellaceae (Bacteroidia Class). The second cluster, including
28 subjects aged 1–19 years, showed an inverse dominance of Prevotellaceae versus Ru-
minococcaceae (Figure S2B–D). At the genus level, both clusters had similar abundances
of Bacteroides, Escherichia-Shigella, Faecalibacterium, Roseburia, Eubacterium, Lachnospiraceae,
Christensenellaceae R-7 group.

3.3.3. Sex

Overall, a significant difference in Faith’s phylogenetic diversity (PD) between 36 fe-
males (16.56 (0.9572–29.68)) and 40 males (12.22 (1.6780–34.15)) (p < 0.05) was observed. Ru-
minococcaceae abundance was higher in females (0.41125 (0–0.912)) versus males (0.174875
(0–0.8527)) (p < 0.01) and the Ruminococcaceae UCG-002 genus abundance showed the same
trend (p < 0.01). No significant differences in alpha and beta diversity were found between
male and female infants. Among subjects of other age groups, only females aged 6–17 years
old showed a PD index between (19.28 (12.50–29.68)) which was different compared to
males of 1–5 years old (12.39 (7.27–15.23)) (p < 0.05) and 6–17 years old (13.07 (7.34–34.15))
(p < 0.05). Among subjects aged 1–5 years, there was a lower abundance of Prevotella 9 in
females (0.003 (0–0.477)) compared to males (0.704 [0.012–0.741]) (p < 0.01). In the 6–17
years age group, there was a greater abundance of Ruminococcaceae UCG-002 in females
(0.125 (0.009–0.827)) compared to males (0.015 (0–0.440)) (p < 0.05). Within subjects >18
years of age, there was a higher abundance of Megasphaera in females (0.017 (0–0.654))
compared to males (0.00 (0–0)) (p < 0.01). Between the age groups, only Prevotella 9 was
less abundant in females >18 (0.002 (0–0.139)) versus males of 1–5 years of age (0.704
(0.012–0.741) (p < 0.01). The top 15 bacterial composition at the genus level was shown in
Figure 2.

Subsequently, the results relating to the nine infants are not indicated considering
their small number and the unexpected variety of isolated pathogens.

The data of alpha and beta diversity concerning five subjects tested positive for dif-
ferent enteric pathogens (adenovirus, enterovirus, parechovirus, norovirus, Campylobacter,
Shigella, and G. duodenalis) and four negative subjects were indicated in S3 (Table S3A,
Figure S3B,D).

3.3.4. Localities and Seasonality

The gut microbiota of patients sampled from semi-urban (Bonoua) and non-urban
areas (Assouindé, Kimoukro, Yaou) showed no differences in alpha and beta diversity.
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Figure 2. The plot of top 15 relative bacterial abundances at genus level. The subjects were distin-
guished by sex and age.

The relative abundances of the genus Escherichia-Shigella (0.00125 (0–0.00125)) in
samples collected during the low rainy season was lower than in sample collected in
the heavy dry season (0.0045 (0–0.59125)) and the heavy rainy season (0.003 (0–0.272)).
The genus Prevotella 9 showed a significant lower abundance in the heavy rainy season
(0.001375 (0–0.6885)) versus heavy dry season (0.05575 (0–0.7405)) and versus low rainy
season (0.52625 (0.022–0.86675)), and in heavy dry season versus low rainy season. The
genus Megasphaera showed a significant lower abundance in heavy dry season (0 (0–0.121))
versus the heavy rainy season (0 (0–0.6535)). The top 15 bacterial composition at the family
and genus levels were shown in Figure 3.
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3.4. Blastocystis, Commensal Entamoeba spp., and Intestinal Pathogens

Subjects negative for common enteric pathogens (xTAG Luminex panel), EV, PeV,
AdV (real-time PCR), Blastocystis, and Entamoeba spp. (PCR) were assumed as the control
group (Figure S3A,C). The other groups contained positive individuals who tested positive
for one or more of these microorganisms. Only five individuals aged 5 to 10 years (4F/1M,
7.8%) were found to have multiple infections and exclusively reported frequent abdominal
pains (Table S4A). The beta diversity analysis showed a significant lower abundance of the
genus Ruminococcaceae UCG-002 in negative (0.0116 [0–0.082]) versus positive individuals
(0.065 [0–0.8272]) (p < 0.01). The opposite trend for the genus Faecalibacterium does not
reach significance.

No difference was found between positive versus negative subjects for the different
age groups (Figure 4).
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Figure 4. The UniFrac distances between enteric pathogen positive versus enteric pathogen negative
subjects is displayed by age groups, using principal coordinate analysis (PCoA). The infant group
tends to separate out according to Axis 1 (7.6%) and Axis 2 component (7%). The differences of the
infant group from other age groups as shown in Figure 1, are also confirmed for comparisons of
enteric pathogen negative versus enteric pathogen positive subjects.

3.5. Blastocystis

To shed light on a possible implication of single or co-detection Blastocystis on gut
microbiota, the control group (Group 1) was compared with 42 positive Blastocystis patients
further divided as follows: 6 subjects positive for Blastocystis only (Group 2); 12 subjects
positive for Blastocystis and Entamoeba spp. only (Group 3); 5 subjects positive for Blasto-
cystis, viruses, and bacteria (Group 4a); 6 subjects positive for Blastocystis and Entamoeba
spp., viruses and bacteria (Group 4b); 13 positive subjects for Blastocystis and Entamoeba
spp. and G. duodenalis and other pathogens (Group 5b). Alpha diversity indices increased
when Entamoeba spp. co-infections were present ( Table S4B).

As for bacterial composition, significant differences were observed between Group 1
versus Groups 3, 4a, 4b, and 5b but not versus subjects positive for Blastocystis only
(Group 2). In detail, at the genus level, Group 1 showed: (i) a lower median of Alloprevotella
(p < 0.01), Rikenellaceae RC9, Succinivibrio (p < 0.05), and Ruminococcaceae UCG-010 (p < 0.01)
versus Group 3, (ii) a higher median of Faecalibacterium (p < 0.05) versus Group 4a; (iii) a
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lower median of Ruminococcaceae UCG-002 and Ruminococcaceae UCG-010 versus Group 4b;
(iv) a higher median of Bacteroides (p < 0.05) and Lachnoclostridium (p < 0.05) and a lower
median of Ruminococcaceae UCG-010 (p < 0.05) compared with Group 5b. Finally, Group 2
showed an increase of Alloprevotella and Prevotella 2 (p < 0.05) versus Group 3 (Figure 5).
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3.6. Commensal Entamoeba spp.

Entamoeba spp. was isolated in 49% (33/67) subjects, mostly associated with Blastocystis
(94%, 31/33). Firstly, we compared Entamoeba spp. negative versus Entamoeba spp. positive
subjects (Figure 6A and Table S5A and Table S5B). To better elucidate the association
between Entamoeba and Blastocystis, we then categorized Entamoeba spp. negative (n = 34)
as follows: (i) a group carrying Blastocystis (n = 16), (ii) a group without Blastocystis (n = 18),
and both groups were compared with patients harboring Entamoeba spp. with/without
Blastocystis (n = 33), regardless of other infecting microorganisms (data not shown). To
better clarify the frequently detected association between E. hartmanni and Blastocystis we
distinguished the following groups: (i) the control group (n = 8), (ii) a group carrying
E. hartmanni and Blastocystis (n = 11), (iii) a group carrying E. hartmanni and Blastocystis and
pathogens (n = 9).

The presence of E. hartmanni produced a significant increase in alpha diversity indices
(Table S4C). The UniFrac distances, using principal coordinate analysis (PCoA), showed
the shifting of positive groups for E. hartmanni (Figure 6B). At the genus level of the
Christensenellaceae R-7 group, Ruminococcaceae UCG-002 increased in two groups carrying
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E. hartmanni; Blastocystis, Faecalibacterium, and Bifidobacterium showed an opposite trend
(Table S5C).
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Table S5D.

The next step was to discriminate any differential relationship between the control
group (Group 1E) and the subjects infected by pathogens, not including Entamoeba spp.
(Group 2E), or infected by different Entamoeba species (Group 3E = positive for En. coli
and other pathogens; Group 4E = positive for E. dispar and other pathogens; Group 5E
= positive for E. hartmanni and other pathogens). As for alpha diversity, a significant
difference was found in Chao1 Index, Observed OTUs (p < 0.05) and Faith’s phylogenetic
diversity (p < 0.01), comparing Group 1E versus Group 5E; observed OTUs and Faith’s
phylogenetic diversity (p < 0.05) comparing Group 2E versus Group 5E (Table S4D).

Beta diversity analysis showed: (i) a lower abundance for Bacteroides (p < 0.05) and for
Lachnoclostridium (p < 0.01) in Group 3E versus Groups 1E and 2E; (ii) a lower abundance for
[Ruminococcus] torques group in Group 3E versus Group 2E; (iii) an increased abundance
for Ruminococcaceae UCG-002 and Ruminococcaceae UCG-010 (p < 0.05) in Group 5E versus
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Group 2E, and for Ruminococcaceae UCG-010 (p < 0.01) in Group 5E versus Group 1E
(Figure 6C,D).

3.7. G. duodenalis and Other Intestinal Pathogens

To investigate the influence of G. duodenalis and other enteropathogens, the 67 subjects
were divided into seven groups: control group (Group A); 6 subjects positive for Blasto-
cystis only (group C); 11 subjects positive for Blastocystis and E. hartmanni without enteric
pathogens (group D); 6 subjects infected by E. hartmanni, Blastocystis and G. duodenalis,
and enteric pathogenic bacteria and viruses (group E1); 6 subjects positive with En. coli,
Blastocystis and G. duodenalis, and enteric pathogenic bacteria and viruses (group E2); 8 sub-
jects positive with Blastocystis, G. duodenalis, and enteric pathogenic bacteria and viruses
(group E3); 5 subjects positive for Blastocystis and enteric pathogenic bacteria and viruses
(group M).

Observed OTUs, Faith’s PD, and Shannon index were significantly increased in group
D compared to the control group and only for the Shannon index compared to group M
(Table S4E).

The UniFrac PCoA analysis along axis 1 showed some overlap in the composition
of the groups and a non-significant separation between the three groups co-infected with
Entamoeba species (D, E1, E2) and the other groups (A, E3, M) (Figure 7A); negative
subjects (group A) were separated from subjects co-infected with Entamoeba spp. (D, E1,
E2) as displayed in Figure 6A. Cladograms generated by LEfSe showed differences in
taxa between A, C, E1, E2 groups with LDA score (p < 0.01) (Figure 7B). No significant
differences between all groups were observed by the analysis of the relative abundance at
the family and genus level (Figure 7C,D).
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Figure 7. Beta diversity analysis for the subjects positive for G. duodenalis and other intestinal
pathogens. Groups A: control group; Groups C: positive for Blastocystis only; Groups D: positive
for Blastocystis and E. hartmanni without other pathogens; Groups E1: positive for E. hartmanni,
Blastocystis and G. duodenalis, and pathogenic bacteria and viruses; Groups E2: positive for En. coli,
Blastocystis and G. duodenalis, and pathogenic bacteria and viruses; Groups E3: positive for Blastocystis,
G. duodenalis, and pathogenic bacteria and viruses; Groups M: positive for Blastocystis and mixed
infection of pathogenic bacteria and viruses, without G. duodenalis and Entamoeba spp. (A) PCoA
UniFrac showing low divergences along Axis 1 (9,3%) between positives with Blastocystis and
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E. hartmanni without pathogens (Group D) and Groups E1 and E2 including positives for G. duodenalis
and other intestinal microorganisms. (B) Histogram of the linear discriminant analysis (LDA scores
indicate the higher difference between clades of A, C, E1, and E2 groups. (C) The plot of top 15
relative bacterial abundances at the family level. (D) The plot of top 15 relative bacterial abundances
at the genus level.

4. Discussion

Age, diet, mode of birth and lactation, environment, circadian rhythm, geographic
location, and host genetics, in a complex way, contribute to the individual heterogeneity
of the human gut microbiota [1]. The data currently available are mainly from popula-
tions living in so-called “Western” contexts such as Europe and North America where
Bacteroides dominate the gut microbiota. Limited data are available from sub-Saharan
rural or semi-urban areas where a predominance of Prevotella in bacteria composition is
evidenced. However, the diffusing industrialization and westernization in these regions
could influence these patterns [8,34,35].

The present study describes the composition of the intestinal microbiota in infants,
children, and adults living in the Côte d’Ivoire without neglecting the most common
endemic, pathogenic, and commensal microorganisms. This investigation aimed to de-
lineate a potential link between Blastocystis, commensal Entamoeba spp., common enteric
pathogens, and the gut microbiota [36,37]. Among adults, two clusters, one dominated
by Ruminococcaceae and the other one by Prevotellaceae, could be identified. These
species could be either termed “biomarkers” as proposed by Gorvitovskaia et al. [38],
or “biomes types” as indicated by Huse et al. [39]. These species represent consortia of
bacteria mostly influenced by genetic and immune host factors, and, above all, dietary and
cooking practices [40]. The reduced abundance of Bacteroidaceae, in both clusters, was in
line with previous data from similar eco-geographical areas, from agricultural societies,
and countries with a low level of industrialization [10,41]. In our sampling area, weaning
occurs earlier than in Western societies and the diet mostly includes local and seasonal
vegetables (e.g., okra, cassava and cassava leaf, tubers, and plantain) prevailing on the
intake of animal-based product (e.g., eggs, poultry, fish). Among the fats, peanuts, and
palm oil dominate. Seasonal fruit consumption is not a widespread habit, due to economic
reasons and its rapid deterioration and traditional sugary juices (pineapple, passion fruit,
hibiscus, ginger) are preferred, therefore reducing the intake of vitamins, mineral salts
and healthy fiber. Overall, the present investigation confirmed the different composition
of gut microbiota between infants, children, and the high individual variation among
adults [4,42]. Enterobacteriales (Proteobacteria phylum), Bifidobacteriales (Actinobacteria
phylum), and Lactobacillales (Firmicutes phylum) showed higher relative abundance in
infants, while Firmicutes and Bacteroidetes were the dominant phyla in older individuals,
followed by Proteobacteria [43,44]. In all age groups, Faecalibacterium, Lachnospiraceae,
Eubacterium rectale, Roseburia, members of Clostridium clusters XIVa and IV, have been
detected. These taxa produce crucial metabolites that promote health and maintain gut
microbiome colonization resistance [45]. The lack of complete uniformity with previous
studies could be attributable to regional and geographical differences [10,46–48].

Regarding sex-related microbiota differences, females showed a higher phylogenetic
diversity than males. It is possible to hypothesize that puberty in young women could have
an impact on alpha diversity compared to males. Additionally, ethnic and social habits
related to daily activities could contribute to an exposition of men and women to different
environmental factors [49]. A sex-related divergence of Prevotella 9, Ruminococcaceae UCG-
002, and Megasphaera was noted in different age groups. In the present cohort, Megasphaera
was almost undetectable in both sexes, except in women >18 years of age, which is different
from the study by Takagi et al. [50], who reported high levels in Japanese adult males. The
meaning of these differences will require further detailed investigations.

A specific aim of the study was to provide new data on the microbiota composition in
subjects harboring Blastocystis, Entamoeba spp., and common enteropathogens. The high
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detection of protozoa viruses and bacteria confirmed data reported by previous studies
conducted in the same area [26,51] and other countries in sub-Saharan Africa [9,19,52–54].
No patients were tested positive for E. histolytica, C. hominis, and C. parvum. Unfortunately,
the use of the xTAG GPP molecular test did not allow the isolation of Cryptosporidium
meleagridis whose prevalence is relatively high in the same area [55].

The high number of asymptomatic individuals suggests an adaptation to constant and
cumulative exposure to enteropathogens due to the common risk factors associated with
low-income countries [22,23,56–58].

In children and adults carrying protozoa, bacteria, or viruses, greater diversity and
richness in the gut microbiota than in negative subjects was evident, in line with other
works [19,20]. Furthermore, the critical taxa involved in the intestinal homeostasis such as
Faecalibacterium, Bifidobacterium, Lachnospiraceae, Ruminococcaceae UCG-002, (Eubacterium)
coprostanoligenes, (Eubacterium) rectale, and Roseburia group showed variations in richness
in the same comparison.

The variable abundance of bacterial genera such as Faecalibacterium, Bifidobacterium,
Roseburia group allows for the production of key metabolites as short-chain fatty acids
(SCFA), e.g., butyrate and succinate, lactate, or acetate to preserve homeostasis [1,4,59].
This scenario could reflect a bidirectional ability of adaptation between the host’s immune
response and bacterial composition. Faecalibacterium prausnitzii and E. rectale are responsible
for a major fraction of butyrate production and consequently play a crucial role in shaping
the local and peripheral immune system. The emerging evidence of diet-induced changes
in SCFA-producing bacteria, as reported by Morrison et al. [60], could suggest a possible
contribution of Ivorian eating habits in the modulation of adaptive immunity.

Blastocystis was highly prevalent in our cohort and a non-significant variation of alpha
diversity between Blastocystis positive-only group and the control group is evidence of the
modest effect that Blastocystis carriage has [61,62]. The lower abundance of Bacteroides in
subjects infected with Blastocystis seems to confirm the hypothesis of a minor predisposi-
tion to harbor this parasite in “Bacteroides-driven enterotype” subjects, as described for
Danish and Spanish individuals by O’Brien Andersen et al. [63], and Mexican subjects by
Nieves-Ramirez [64]. In all groups carrying Blastocystis, bacterial genera associated with a
healthy status, such as E. rectale and coprostanoligenes groups, Roseburia and Succinivibrio
showed a constant presence, although with a reduced relative abundance versus control
group [46,65–68]. These specific OTUs could explain a beneficial influence on normobio-
sis [61] also in conjunction with a traditional African diet. Considering the genetic diversity
within Blastocystis, with at least 17 different subtypes, the possible implications in the patho-
physiology of human infections related to the different subtypes should be investigated to
better understand the role of this parasite on the human gut microbiota [63,69].

Concerning commensal Entamoeba spp., an increase in alpha diversity in subjects co-
harboring Entamoeba spp. and Blastocystis, especially in case of E. hartmanni co-occurrence,
was evidenced. Clear separation in Unifrac distance was found and the increase of Suc-
cinivibrio, Christensenellaceae R-7 group, Ruminococcaeae UCG-002, Rikenellaceae RC9 intesti-
nal group seem associable with Entamoeba perturbations. Bacterial niches, responsible
for beneficial or detrimental associations in subjects positive for Blastocystis alone or co-
harbored with commensal Entamoeba spp., should be further investigated [70,71]. The
increase in Succinivibrio in people detected positive for E. hartmanni, Blastocystis, and
pathogens seems to confirm the data reported from Cameroon by Morton et al. (19) and
in Malawian children by Ordiz et al. [72]. These data suggest that recurrent endemic
intestinal infections in rural countries [73], together with eating habits [10] could favor,
in some groups of African natives compared to African Americans, the conditions for a
stable presence of Succinivibrio in the gut microbiota. The low number of subjects harboring
G. duodenalis and pathogenic viruses and bacteria precluded the statistical significance
in any comparisons. However, an interesting aspect seems to emerge: some protective
taxa (e.g., E. rectale group, Roseburia, Christensenellaceae) showed an expansion despite the
reduction of Faecalibacterium, as previously reported [46,74–78]. The relative abundances of



Microorganisms 2021, 9, 1763 15 of 19

Bifidobacterium and Faecalibacterium were oppositely related. Subjects containing multiple
enteric pathogens, without G. duodenalis and Entamoeba spp., showed a decrease in so-called
protective taxa (Bifidobacterium and Faecalibacterium) while the prevalence of Megasphaera
increased. This result should be better investigated concerning the potential involvement
of Megasphaera in the adaptability of the human gut ecosystem [72,79,80].

5. Conclusions

In conclusion, the co-occurrence of Blastocystis and commensal Entamoeba spp., despite
the presence of other enteric pathogens including G. duodenalis, seems to preserve a high
diversity, favor different bacterial consortia, and does not compromise the intrinsic ability
of intestinal microbiota to restore and/or maintain homeostasis [74,81–85]. However,
the beneficial or potential regulatory effect of Blastocystis is reduced in subjects positive
for bacterial and viral pathogens without G. duodenalis and commensal Entamoeba spp.,
probably reducing the entity of symptoms.

Finally, the complex scenario observed in this cohort from Côte d’Ivoire helps to
provide an integrated view of human gut microbiota composition. Simultaneous testing
of common intestinal pathogens supplies new data from Africa, still underrepresented in
the global picture of the gut microbiota, and helps to better understand the balances of
intestinal homeostasis.

Future investigations are needed to verify if the influence of rural diet on gut mi-
crobiota can play a role in seasonal predisposition to endemic enteritis. It will be very
important to extend the understanding of eukaryotic microorganisms’ interactions in the
gut microbiota in health status and intestinal infections.
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