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Abstract: Toxoplasmosis, caused by the intracellular protozoon Toxoplasma gondii, is a significant
parasitic zoonosis with a world-wide distribution. As a main transmission route, human infection
can be acquired by the ingestion of T. gondii oocysts from the environment (e.g., soil, water, fruits
and vegetables). Regarding the detection of T. gondii oocysts in environmental samples, the develop-
ment of a time-saving, cost-effective and highly sensitive technique is crucial for the surveillance,
prevention and control of toxoplasmosis. In this study, we developed a new method by combining
recombinase-aided amplification (RAA) with CRISPR-Cas12a, designated as the RAA-Cas12a-Tg
system. Here, we compared this system targeting the 529 bp repeat element (529 bp-RE) with the
routine PCR targeting both 529 bp-RE and ITS-1 gene, respectively, to assess its ability to detect
T. gondii oocysts in soil samples. Our results indicated that the 529 bp RE-based RAA-Cas12a-Tg
system was able to detect T. gondii successfully in nearly an hour at body temperature and was more
sensitive than the routine PCR assay. The sensitivity of this system reached as low as 1 fM with high
specificity. Thus, RAA-Cas12a-Tg system provided a rapid, sensitive and easily operable method for
point-of-care detection of T. gondii oocysts in soil, which will facilitate the control of T. gondii infection
in humans and animals.

Keywords: Toxoplasma gondii; detection; RAA-Cas12a-Tg system; soil

1. Introduction

Toxoplasmosis is an important zoonotic disease caused by the protozoon Toxoplasma gondii,
which is an opportunistic pathogen with the capacity of infecting nearly all warm-blooded
animal species and one third of the world’s human populations [1,2]. For example, approx-
imately 10% of Chinese people were infected with T. gondii [2]. Without effective treatment
and vaccines, infection with T. gondii can cause serious clinical symptoms and even fatal
consequences in immunocompromised patients (e.g., HIV/ADIS and transplant patients) and
congenitally infected infants [3,4]. Toxoplasmosis also can result in the abortion and stillbirth of
livestock, causing considerable economic losses to animal husbandry [1,5]. As a foodborne and
waterborne pathogen, T. gondii is capable of inadvertently appearing in vegetables, fruits, water
and soil [6–13]. Human and animal infections occur through eating raw or undercooked meat
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or via the ingestion of water or food contaminated with sporulated oocysts [14]. Therefore, the
rapid, highly specific and accurate detection of T. gondii from natural environment is crucial
for the surveillance, prevention and control of toxoplasmosis.

Conventional diagnostic methods such as light microscope examination are time-
consuming and unreliable, and require a large volume of biological and environmental
samples [15]. Serological diagnosis also has some limitations, for example, it is difficult
to diagnose toxoplasmosis in immunocompromised patients [16]. However, molecular
methods are independent of the host’s immune response, and allow direct detection of the
parasite [17]. Currently, molecular methods supporting the T. gondii detection are mainly
emerging from PCR-based technologies, such as routine PCR, real-time PCR (RT-PCR), and
loop-mediated isothermal amplification (LAMP) [15]. For these molecular technologies,
T. gondii-specific repetitive DNA sequences, such as B1 gene, ITS-1 and 18S rDNA, and
529-bp repeat element (RE), have shown good sensitivities for the detection of T. gondii [15].
In contrast, PCR and LAMP assays targeting the 529-bp RE sequence have suggested that
they are more sensitive than the B1 gene-based assays [9,18,19], while the multicopy ITS-1
and 18S rDNA have shown a similar sensitivity of the B1 gene [20,21]. In addition to
sensitivity evaluation of target molecules, LAMP is more sensitive than the routine PCR,
but slightly lower than the RT-PCR [22,23]. Although RT-PCR-based methods now hold
well performance especially for detecting low concentration of target DNA, the commercial
RT-PCR assay is expensive, instrument-dependent and time-consuming. Therefore, the
development of an easy, sensitive and cost-effective molecular method is warranted.

As it has the ability named trans-cleavage to accurately recognize and cleave specific
nucleic acid target, CRISPR-Cas systems have shown great potential as practical diagnostic
tools [24,25]. The Cas nucleases contain RNA-guided RNases (Cas13a and Cas13b) and
RNA-guided DNases (Cas12a, Cas12b and Cas14), which are able to exhibit non-specific
trans-cleavage activity after binding to their specific targets and has been fully evaluated for
the detection of nucleic acids [26–28]. For Cas orthologues, Cas12a and Cas13 are the main
nucleases for the development of CRISPR-Cas-based nucleic acid detection method with
higher sensitivity and specificity for the capability of recognizing a nucleic acid target, and
they also have been developed to combine with isothermal amplification technologies, such
as Recombinase-aided Amplification (RAA), to enhance the diagnostic accuracy [29–31].
Depending on the type of nucleic acid substrate (DNA or RNA), CRISPR-Cas12a/Cas13-
based systems have been alternatively applied to the detection of different pathogens,
including viruses [26,29,32–34], bacteria [31,35–37], parasitic protozoa Plasmodium spp. [38]
and Cryptosporidium spp. [39]. However, to date, there has been no report of the use of
CRISPR-Cas system for the detection of T. gondii yet.

In this work, by designing specific CRISPR-derived RNA (crRNA) probe targeting
the 529 bp-RE sequence of T. gondii and combining RAA and Cas12a protein, termed
RAA-Cas12a-Tg system, we presented an advanced approach for easy, rapid and accurate
detection of T. gondii DNA by observing the fluorescence intensity with the naked eye
under an ultraviolet light or via the detection of the fluorescence wavelength using a
microplate reader (Figure 1). Additionally, by examination of 30 soil DNA samples from
our previous study [9], we also compared the T. gondii-positive results detected by the
conventional PCR-based method and RAA-Cas12a-Tg system. Our verification indicated
that RAA-Cas12a-Tg system has merits in the aspect of conveniency and sensitivity, and its
applications may facilitate the control of toxoplasmosis in humans and animals.
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Figure 1. Schematic diagram of the application of the RAA-Cas12a-Tg detection system to environmental samples such as
soil, water, fruit and vegetable.

2. Materials and Methods
2.1. Materials

All primers used for RAA assay and PCR amplifications were synthesized by TS-
INGKE Biotech (Xi’an, China). ssDNA-FQ was synthesized by Sangon Biotech (Shanghai,
China) and crRNA was synthesized by GenePharma (Shanghai, China). The basic RAA kits
were purchased from ZC Bio-Sci&Tech (Hangzhou, China). A total of 30 soil DNA samples
were provided by Dr. Wei Cong of Marine College, Shandong University, China [9]. Seven
parasite DNA samples (T. gondii, Cryptosporidium parvum, Neospora caninum, Enterocytozoon
bieneusi, Blastocystis sp., Eimeria tenella, and Toxocara canis) were prepared by our lab and
stored at −20 ◦C until for RAA- and PCR-based assays.

2.2. Establishment of 529 bp RE-Based RAA Assay

Four pairs of RAA primers were designed using Primer Premier 5 software [40]. The
primer sequences and lengths are summarized in Table 1. The nucleotide sequence of
T. gondii 529 bp-RE (RH strain) was downloaded from NCBI GenBank (https://www.
ncbi.nlm.nih.gov/genbank/, accessed on 20 November 2020) with accession number
AF146527.1 [18]. The obtained DNA of each sample was used for RAA reaction using
RAA kit assay. Using 2 µL of DNA template, a total 50 µL reaction system was performed
in a 200 µL aseptic single tube that contained lyophilized powder, with 41.5 µL of buffer
A, 2 µL each of forward and reverse primers and 2.5 µL of buffer B. The reaction tube
was inverted 6~8 times and then centrifuged for 15 s. The reaction tube was placed on
a Thermostatic Water Bath, and then incubated at 39 ◦C for 20 min. The amplification
products were purified using Universal DNA Purification Kit (Tiangen, Beijing, China).

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/


Microorganisms 2021, 9, 1644 4 of 12

Table 1. Primer sequences for RAA, plasmid, crRNA and ssDNA-FQ.

Assay Primer Name Sequence (5′→3′) Product Size (bp)

RAA 529bp-RAA-F1 GAAGGGACAGAAGTCGAAGGGGA
171529bp-RAA-R1 GAAAAGCAGCCAAGCCGGAAACA

529bp-RAA-F2 TGGAGCCACAGAAGGGACAGAAGT
184529bp-RAA-R2 CAGGAAAAGCAGCCAAGCCGGAAA

529bp-RAA-F3 CAGAAGGGACAGAAGTCGAAGGGGA
175529bp-RAA-R3 AGGAAAAGCAGCCAAGCCGGAAACA

529bp-RAA-F4 GAGCCACAGAAGGGACAGAAGTCG
186529bp-RAA-R4 CCTCCAGGAAAAGCAGCCAAGCCG

Plasmid 529bp-PF GGAGGAAGACGAAAGTTG
515529bp-PR ACAGTGCATCTGGATTCC

crRNA crRNA1 UAAUUUCUACUAAGUGUAGAUACTCGGGCCCAGCTGCGTCT
crRNA2 UAAUUUCUACUAAGUGUAGAUACAGGCAAGCTCGCCTGTGC
crRNA3 UAAUUUCUACUAAGUGUAGAUCACCCUCCAGGAAAAGCAGCCA
crRNA4 UAAUUUCUACUAAGUGUAGAUCTCGTGGTGATGGCGGAGAG

ssDNA-FQ TgCas12a 6FAM-CCGGAAAAAAAAAAAACCGG-BHQ1

2.3. Construction of Positive Recombinant Plasmids pMD18-T-529 bp

As shown in Table 1, we first designed a pair of plasmid primer based on the 529 bp-RE
sequence using Primer Premier 5 software in order to establish the RAA-Cas12a-Tg system
and to evaluate the sensitivity of this method. The 25 µL PCR reaction system contained
12.5 µL Pre-Mix Taq Enzyme, 1.5 µL each of forward and reverse primers, 2 µL DNA tem-
plate, and 7.5 µL ddH2O. The PCR was performed under the following cycling conditions:
initial denaturation at 94 ◦C for 5 min, followed by 34 cycles of 94 ◦C for 30 s, 57 ◦C for 30 s
and 72 ◦C for 1 min, with an additional 5 min final extension at 72 ◦C. PCR products were
examined by 1% agarose gel electrophoresis and then were recovered using E.Z.N.ATM

Plasmid Mini Kit (OMEGA Bio-Tek, Norcross, GA, USA). Then, the gel recovered products
were cloned into the pMDTM 18-T vector (Takara, Shanghai, China). Finally, the concen-
tration of positive recombinant plasmids was qualified using with the NanoPhotometer
(IMPLEN, Munich, Germany), and the recombinant plasmid concentration was diluted
from 102 to 10−7 nM, and then stored at −20 ◦C for the subsequent fluorescent detection of
the Cas12a assay.

2.4. crRNA/ssDNA-FQ Preparation and Fluorescence Detection of Cas12a

The CRISPR-derived RNA (crRNA) and ssDNA-FQ sequences, as shown in Table 1,
were designed based on Cas12a-mediated fluorescence detection reported by Zhang et al. [41].
crRNA, ssDNA-FQ reporter, EnGen Lba Cas12a protein (NEB, Ipswich, MA, USA), 10x
NEBuffer 2.0 (NEB, Ipswich, MA, USA) and positive recombinant plasmids pMDTM 18-T-
529-bp (Takara, Shanghai, China) were used for Cas12a-mediated fluorescence detection.
The processes of fluorescence detection was performed under the following procedures:
(i) 800 nM Cas12a and 1 µM crRNA each of 20 µL were simultaneously added to a 200 µL
aseptic PCR tube, and then incubated at 37 ◦C for 20 min; (ii) recombinant plasmids and
1 µM ssDNA-FQ reporter each of 20 µL were simultaneously added to the PCR tube of
first-step, and then incubated at 37 ◦C for 30 min; (iii) after the aforementioned reaction,
the final products were transferred into a black 96-well plate to detect the fluorescence
with an excitation wavelength of 490 nm, and the fluorescence was detected at wavelength
of 510 nm to 600 nm using the Varioskan™ LUX microplate reader (Thermo Scientific,
Waltham, MA, USA). During all the procedures, the concentration of crRNA, ssDNA-FQ
reporter, Cas12a Protein and recombinant plasmids were diluted using 1x NEBuffer 2.0
(NEB, Ipswich, MA, USA) according to the actual requirements.

2.5. Analysis of Specificity and Sensitivity of RAA-Cas12a System

Each of 2 µL DNA templates from T. gondii and the six “control” parasites were
used for RAA reaction, respectively, and then we tested the specificity of RAA-Cas2a-Tg
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system by comparing T. gondii targeting the 529 bp-RE with other parasite DNA templates
targeting the 529 bp-RE by Cas12a-mediated fluorescence detection. In terms of sensitivity
detection experiments, 10-fold serial dilutions ranging from 102 to 10−7 nM of the positive
recombinant plasmids were utilized, and by mean of Student’s t-test we also compared the
detection sensitivity differences between different diluted plasmid DNA concentrations.

2.6. Application of 529 bp RE-Based RAA-Cas12a System Detection to Soil Samples

The performance of 529 bp RE-based RAA-Cas12a-Tg system was evaluated using
30 environmental soil DNA samples. Briefly, 2 µL of soil DNA samples were used for RAA
reaction, and the procedure was completed in 20 min; 20 µL of RAA amplification product
was added to the Cas12a-mediated fluorescence system and the fluorescence detection was
completed in 50 min. We compared the detected results between RAA-Cas12a-Tg system
and conventional PCR-based detection, and positive PCR products were sent to TSINGKE
Biotech (Xi’an, China) for DNA sequencing.

3. Results
3.1. Optimization of the RAA System

Four pairs of 529 bp RE-based RAA primers (F1/R1, F2/R2, F3/R3 and F4/R4) were
designed and, as shown in Table 1, these primers were identified by RAA amplification,
respectively. By comparison, the agarose gel electrophoresis (AGE) results showed that
the P(F4 + R4) primer combination had a relatively specific band and high intensity at 186
bp, and the negative group N(F4 + R4) did not present any band (Figure 2A). Thus, the
P(F4 + R4) primer combination was considered as the optimal primer pair for RAA system
optimization. With regard to the RAA reaction temperature, five gradients including 25,
30, 39, 42, and 45 ◦C were chosen for RAA reaction, and all of them were able to amplify
a clear band with 186 bp size in the AGE results (Figure 2B). In addition, we chose 39 ◦C
as the optimal temperature to determine the RAA reaction time and found that the DNA
targeting 529 bp-RE could result in a clear band at 186 bp at five different time points
(i.e., 5, 10, 20, 30 and 40 min) (Figure 2C). Thus, RAA reaction at 20 min was used for
further experiment.

3.2. Optimization of Cas12a-Mediated Fluorescence Detection Assay

Four crRNA sequences (crRNA1, crRNA2, crRNA3 and crRNA4) were designed
and prepared (Table 1), and we used the Cas12a-mediated fluorescence system to detect
the crRNA-guided Cas12a cleavage activity and to select a suitable crRNA for further
experiment. Within the emission wavelength of 510 to 600 nm, as shown in Figure 3A,
all four crRNAs and the crRNA-Mix (mixed in equal proportions for these crRNA) had a
fluorescence intensity and reached the highest fluorescence value (plateau phase) at 520 nm.
From this result, we found that crRNA3 illustrated a better curve performance within the
whole emission wavelength, and therefore this crRNA was considered as the best one
for the Cas12a-mediated fluorescence detection assay. Additionally, we optimized the
concentration of Cas12a protein in our Cas12a-mediated fluorescence detection assay, as
the Cas12a concentration plays a crucial role in the detection of fluorescence. Four different
concentration gradient values of Cas12a protein, including 200, 500, 800 and 1000 nM,
were tested in this study. As shown in Figure 3B, the results showed that all concentration
values had fluorescence signal and, relatively, the concentration at 800 nM had much
higher fluorescence intensity than that of other three concentration values (i.e., 200, 500 and
1000 nM) within the emission wavelength of 510 to 600 nm. Thus, the concentration at
800 nM was chosen as the optimal reaction value for Case12a protein.
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Figure 2. Optimization of the RAA assay. (A) Screening of the RAA primers. Agarose gel elec-
trophoresis of RAA amplification products using different primer combinations. (B) Optimization of
reaction temperature of the RAA assay. (C) Optimization of reaction time of the RAA assay.
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Figure 3. Optimization of the fluorescence detection of Cas12a. (A) Screening of the crRNA sequence. crRNA1, crRNA2,
crRNA3 and crRNA4 represent different crRNAs; crRNA-MIX represents the product of the above four crRNAs mixed in
the same proportion; NC stands for negative control. (B) Optimization of the concentration of LbCas12a.

3.3. Evaluation of Sensitivity and Specificity of the RAA-Cas12a-Tg System

To evaluate the sensitivity of the RAA-Cas12a system, the positive recombinant
pMD18-T-529 bp plasmids diluted by 10-fold serial (ranging from 102 to 10−7 nM) were
used for fluorescence intensity test at excitation wavelength of 510 nm to 600 nm. The
statistical analysis revealed that the plasmids ranging from 102 to 10−6 nM had signifi-
cantly higher fluorescence intensity than that of the negative control group (**** p < 0.0001
and *** p < 0.001); however, there was no significant difference between the group with
10−7 nM and NC group (ns p > 0.05) (Figure 4A). Visual detection of signal amplification
demonstrated that the positive sample containing T. gondii DNA had an obvious signal by
the naked eye under a UV transilluminator and bear a maximum test-band fluorescence
intensity at the plateau phase (520 nm) by observation using a microplate reader, while
the negative sample without T. gondii DNA did not exhibit any signal amplification using
these two methods (Figure 4B).

We also evaluated the specificity by experimentally detecting and comparing the fluo-
rescence intensity for T. gondii and other selected control parasites (C. parvum, N. caninum,
E. bieneusi, Blastocystis sp., E. tenella and T. canis). As shown in Figure 4C, the results showed
that fluorescence signal for T. gondii detection was significantly higher than that of other
parasites and the NC group, and the largest fluorescence intensity fold between T. gondii
and other parasites (average value) at plateau phase was able to reach 40-fold. Addition-
ally, analysis of relative fluorescence intensity showed that RAA-Cas12a-Tg system for
T. gondii detection was more significant than that of the genetically closely and distant
parasites (**** p < 0.0001) (Figure 4D). These results suggested that the RAA-Cas12a system
for T. gondii detection had sufficient specificity.

3.4. Application of the 529 bp RE-Based RAA-Cas12a-Tg System for T. gondii Detection in
Soil Samples

We examined 30 soil DNA samples using the RAA-Cas12a-Tg system, and samples
with relative fluorescence intensity were further evaluated by DNA sequencing. The results
showed that 12 out of the 30 soil DNA samples were T. gondii positive detected by the RAA-
Cas12a-Tg system (Figure 5A) and samples with relative fluorescence intensity > 9 were
considered positive according to the result of sequencing (Figure 5B), while 10 samples were
positive for T. gondii by conventional PCR method targeting both the 529-RE sequence and
the ITS-1 rDNA [9], which was 100% consistent with 10 out of the 12 positive samples by
our RAA-Cas12a-Tg system. Meanwhile, all positive samples were sequenced by TSINGKE
Biotech (Xi’an, China), and the results showed that all the sequences represented the 529 bp
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repeat element of T. gondii. Thus, the RAA-Cas12a-Tg system were more sensitive than the
conventional PCR method.

Figure 4. Analysis of specificity and sensitivity of the RAA-Cas12a-Tg system. (A) Sensitivity of the RAA-Cas12a system
for T. gondii detection. Relative fluorescence intensity was estimated by the formula of (Ft-F0)/(Fn-F0) × 100%, where Ft,
F0, and Fn represent the fluorescence peak values of the positive recombinant pMD18-T-529 bp plasmids after dilution by
10-fold serial ranging from 102 to 10−7 nM, blank, and negative control, respectively. Error bars represent the mean standard
deviation (SD), where n = 2 replicates. **** p ≤ 0.0001; *** p ≤ 0.001; ns p > 0.05. (B) Visual detection of signal amplification
by the naked eye under a UV transilluminator and by an observation of microplate reader of the positive sample containing
T. gondii DNA and the negative sample without T. gondii DNA. (C) Specificity of the RAA-Cas12a system for T. gondii
detection. The nucleic acids of other six parasites including C. parvum, N. caninum, E. bieneusi, Blastocystis sp., E. tenella and
T. canis were used to evaluate the specificity of the RAA-Cas12a-Tg system. Average represents the largest fluorescence
intensity of other six parasites at plateau phase; NC stands for negative control. (D) Specificity of the RAA-Cas12a system
for T. gondii detection. The relative fluorescence intensity of T. gondii detection using the RAA-Cas12a-Tg system was more
significant than that of the closely related C. parvum and other five parasites. Error bars represent the mean SD, where n = 2
replicates. **** p ≤ 0.0001.
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Figure 5. Application of the RAA-Cas12a-Tg system to T. gondii detection in the environment samples. (A) Summary of
T. gondii detection in soil samples (n = 30) using the RAA-Cas12a-Tg system. + means positive and – means negative.
(B) 30 soil samples with relative fluorescence intensity > 9 were considered as positive.

4. Discussion

Rapid and accurate detection of potential T. gondii DNA in the environment plays an
important role in identifying, assessing and managing health and safety risks caused by the
parasite, especially for emerging public health problems linked to food-, water- and soil-
borne outbreaks [9,12,42–45]. In the present study, we established a technique, designated
as RAA-Cas12a-Tg system, for the detection of T. gondii DNA in soil. This system does
not require an incubator higher than 39 ◦C, and its reaction can even be completed at the
temperature of ~37 ◦C. The whole reaction comprises test reagents that can be easily stored
in a low-temperature vessel, and without the need of sophisticated technical requirements
(Figure 1). The whole reaction process used in the study takes nearly 1 h, and the results for
highly copied nucleic acid can be easily obtained by ultraviolet irradiation with the naked
eye (Figure 4B), or a handheld microplate reader device [46]. Therefore, the RAA-Cas12a-
Tg system is particularly suitable for an on-site T. gondii detection (e.g., sewage plant, park
or farm) in a short time and without the requirement of an available diagnostic laboratory.

The option of an appropriate nucleic acid-amplified technology to combine with the
CRISPR-Ca12a system plays a critical role in the clinical diagnosis. The common PCR-
based technologies such as routine PCR and RT-PCR amplifications require a thermal cycle
(usually 95-60-72 ◦C) for more than 2 h, while LAMP amplification requires a constant tem-
perature of ~65 ◦C for more than 1 h, and the primer design of LAMP assay is cumbersome.
Thus, PCR, RT-PCR and LAMP technologies combining a CRISPR-Ca12a system are bulky
and not suitable for rapid diagnosis. Furthermore, the Cas12a assay needs to be carried out
at a temperature below 45 ◦C, otherwise the Cas12a nuclease would appear irreversible
damage thereby affecting the cleavage rate of the CRISPR system [30,47]. Hence, if a single-
tube one-step reaction is performed, PCR, RT-PCR and LAMP technologies are also not
suitable for combination with a CRISPR-Ca12a system. In the present study, the RAA sys-
tem is a good option as the initial signal amplification, because RAA assay is much cheaper,
just takes 20 min or lesser time, and the required temperature (37~45 ◦C) is consistent with
the optional temperature of CRISPR-Ca12a system. Additionally, we also optimized the
RAA system by testing primers, reaction temperatures and times (Figure 2A–C), which
ensures the RAA reaction specificity and provides alternative diagnostic conditions in
practical applications.

The RAA-Cas12a-Tg system herein developed in this study is an ultrasensitive and
robust platform for detection of pathogens. Some recent studies have verified that the signal
amplification effect of Cas12a protein and the amplification procedure could make the
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fluorescence readout increase exponentially [48,49], and the sensitivity of our method is at
femtomolar level (Figure 4A). Additionally, our method has the high specificity that mainly
depends on the specific recognition of LbCas12a-crRNA targeting the single nucleotide
mutations [50]. Compared with the conventional methods, our method is more sensitive
and appropriate for point-of-care detection of environment samples without the need of
sophisticated equipment. Therefore, this system can be used in laboratories with poor
conditions or in the field.

While this new system has some advantages mentioned above, it still has some
limitations. During the two separate processes, the potential cross contamination can be
caused, thus the future research should mainly focus on the development of single-tube
one-step detection which requires less time and more accuracy. Besides, the concentration
of Cas12a used in this study were high, which increased the cost slightly. However, 200 nM
Cas12a protein still could work but the result was not as good as that of 800 nM Cas12a.
Nevertheless, this novel method is a new attempt to detect T. gondii in the environment,
and it also can be applied to the detection of other pathogens.

5. Conclusions

RAA-Cas12a assay is a promising detection technology that is rapid, reliable, ultra-
sensitive and requiring no expensive instruments. Most importantly, this method can be
performed at a low temperature environment, which makes it a practical on-site detection
method to detect T. gondii in the field using a portable thermostatic heater and handheld
fluorescence detector.
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