
Supplemental Table S2. The functions of components in nutrient signaling pathways in pathogenic and beneficial fungi. 

Gene Fungi Description References 
Sucrose non-fermenting 1 (SNF1) protein kinase signaling pathway 

Hxk1 
F. verticillioides HXK1 regulated carbon catabolism, sporulation, and pathogenesis. [1] 

F. graminearum The deletion led to inhibited vegetative growth and conidiation, whereas the overexpression led to increased deoxynivalenol production. [2] 

Botrytis cinerea The deletion mutants of HXK1 were defective in growth and virulence. [3] 

Snf1 

M. oryzae The knock-out mutants displayed a defect in growth, conidial germination, appressorium formation, pathogenicity and sporulation. [4] 

F. oxysporum The disruption led to defects in the suppression of cell wall-degrading enzymes, utilization of certain carbon sources, and virulence. [5] 

V. dahliae The disruption of VdSNF1 led to defects in growth, virulence, and colonization. [6] 

Pestalotiopsis 
microspora The deletion mutants contributed to defects in vegetative growth, pigmentation, conidia, cell wall integrity. [7] 

Alternaria 
alternata 

The deletion mutants were defective in in aerial mycelium growth, conidia, and germination with smaller lesions on detached citrus leaves, and 
stronger tolerance to some stressors. [8] 

Gal83 
M. oryzae The mutants of ΔMosnf4, ΔMosak1, ΔMosnf1, ΔMosip2, and ΔMosak1ΔMotos3, displayed distinct defects in lipid mobilization, sporulation, conidial 

germination, and appressorium formation. [9] Sak1 
Snf4 
Reg1 B. cinerea The gene knock-out mutant of bcreg1 kept the ability to penetration but were defective in pathogenicity and conidia formation. [10] 

Ssn6 U. maydis The homologue of Ssn6, Sql1 alleles in a certain form induced the fungal filamentous growth which can be reversed by exogenous cAMP. [11] 

Tup1 
U. maydis The deletion of the Umtup1 led to defects in the mating, filamentation and virulence. [12] 

M. oryzae The disruption of MoTUP1 suppressed vegetative growth and conidiogenesis, and led to the formation of appressorium-like structures that cannot 
penetrate into the host cells. [13] 

cAMP-dependent protein kinase A (cAMP-PKA) signaling pathway 

Cdc25 
C. higginsianum The deletion of ChCDC25 led to defects in vegetative growth, conidiation, conidium germination, appressorium formation, stress chemicals tolerance, 

and virulence on Arabidopsis leaves. [14] 

U. maydis The deletion mutants of CDC25-like gene sql2 were defective in pathogenic development, whereas the overexpression mutants of sql2 were shown 
an enhanced filamentous growth that cannot be repressed by exogenous cAMP. [15] 

Ras1 
M. oryzae The overactive MoRas2 resulted in improper activation of these two cascades, leading to abnormal appressorium formation without surface attachment. [16] 

C. orbiculare 
The disrupted mutants of coras2 were defective in conidial germination and pathogenesis to the cucumber cotyledons. 

[17] 
Ira1 CoIra1 and CoRas2 colocalized in a vesicle-like structure in the appressorium, and the mutants of coira1 had a defective in infection morphogenesis 

on cucumber plants. 
Gpa3 M. grisea The disruption of Gα subunit genes magB restrained vegetative growth, conidiation, appressorium formation, infection, mating, and pathogenicity. [18] 
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Gene Fungi Description References 

Gpa3 

U. maydis 

The disruption of gpa3 led to the loss of ability to respond to pheromone and defect in mating, whereas the active allele of gpa3 resulted in 
mating without pheromone. [19] 

The exogenous cAMP was comparable to pheromone to stimulate pheromone gene expression, and rescue the sterility and mutant morphology 
of gpa3 deletion strains. [20] 

S. scitamineum Gpa3, adenylyl cyclase UAC1 and PKA catalytic subunit ADR1 are essential for proper mating, filamentation, and virulence. These genes 
can regulate the expression of genes encoding ROS (reactive oxygen species) catabolic enzymes in S. scitamineum. [21] 

Umbilicaria 
muhlenbergii 

The deletion of Gα subunits UmGPA3 displayed little effects on pseudohyphal growth, the ΔUmgpa3 mutant had defects in yeast-to-
pseudohypha transition. The dominant active mutations of UmGPA3 led to improper pseudohyphal growth and disruption of the symbiotic 
interaction with Trebouxia jamesii. 

[22] 

M. oryzae Rgs7 couples with Gα subunit MagA to sense external signals and activate cAMP signaling required for appressorium function. [23] 

Cyr1 
S. sclerotiorum deletion of adenylate cyclase sac1 gene led to low cAMP levels, more microconidia, attenuated virulence and slow growth rate. [24] 

C. higginsianum The mutants lacking of adenylate cyclase ChAC and PKA catalytic subunits ChPKA1 displayed distinct decrease in hyphal growth, 
conidiation, appressorial formation, pathogenicity, and stress tolerance to cell wall inhibitors. [25] 

Bcy1 

M. circinelloides The four PKA regulatory subunits encoding gene pkaR1, pkaR2, pkaR3, and pkaR4 with different expression levels were shown with different 
roles in growth, germination, cell volume, sporulation, and differentiation in each isoform mutants. [26,27] 

C. lagenarium 

The breakdown of glycogen and lipid was very rapid in PKA regulatory subunit mac1 sum1-99 mutant, whereas the dissolution was delayed 
significantly in catalytic subunit cpkA mutant. [28] 

The mutants of RPK1, showed high PKA activity that suppressed vegetative growth, conidiation, and appressorium function. [29] 
The knockout mutants of the adenylate cyclase CAC1 and PKA catalytic subunit CPK1 germinated poorly, and form appressoria which are 
nonfunctional that leads to the infection defect on cucumber. [30] 

Tpk1 

M. grisea PKA catalytic subunit cpkA was required for appressorial penetration and pathogenesis. [31,32] 
N. crassa The catalytic subunit pkac-1 mutants showed defects in aerial hyphae formation and conidiation. [33] 
V. dahliae The mutants lacking for PKA catalytic subunit genes displayed less ethylene biosynthesis and defects in conidia production. [34] 

F. oxysporum 
The mutants lacking for PKA catalytic subunit gene FoCPKA lost virulence and showed a decrease in vegetative growth, spore production, 
root penetration and vascular colonization on A. thaliana roots, and the distance between septas of focpkA mutants was longer than that of 
wild-type strain. 

[35] 

M. oryzae The PKA catalytic subunits genes Cpk2 and CpkA shared largely redundant functions in regulation of hyphal growth, conidiation and 
appressorium formation, but also played different roles during pathogenesis and morphogenesis. [36] 
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Pde2 M. oryzae 

The loss of PDEH enhanced conidiation and increased intracellular cAMP levels during vegetative growth, leading to precocious 
appressorial development, loss of surface dependency and decrease of colonization. [37] 

The disruption of PDEH can partially rescue the abnormal phenotype of G alpha subunit encoding gene ΔmagB mutant and PKA 
catalytic subunit encoding gene Δpka1 mutant. [38]. 

MoPdeH can function upstream of the MAP kinase pathway to regulate the cell wall integrity (CWI), and also can mediate the crosstalk 
between cAMP pathway and osmotic sensing high osmolarity glycerol (HOG) pathway. [39] 

Yak1 
M. oryzae The disruption of MoYAK1 led to defects in germination, aerial hyphal formation, conidiation, glycogen and lipid metabolism, turgor 

generation, penetration and cell wall integrity. [40] 

B. cinerea The deletion of Yak1 resulted in lower pathogenicity, conidiation, sclerotium formation, and more sensitive to H2O2. [41] 
Target of rapamycin (TOR) kinase signaling pathway 

Gtr1 Candida albicans TOR can response to phosphate, and the overexpression of Gtr1 suppresses TORC1 signaling defects. [42] 
Tip41 

F. graminearum 
The FgFkbp12, FgPp2A, FgSit4, FgPpg1, FgTap42, FgTip41, FgAreA in TOR pathway formed a regulatory framework to regulating 
vegetative differentiation and virulence. FgTip41 regulated hyphal growth and virulence. [43]. 

Tor2 

The deletion of FgTor may be lethal, as the mutants cannot be generated. [43,44] 

M. oryzae 

MoTor regulated the expression of MoSNT2, which stimulated the expression of autophagy genes MoATG6/15/16/22 to regulate the 
conidiation, stress tolerance, cell wall integrity, and pathogenicity. [45] 

Asd4 regulated intracellular glutamine concentration to modulate the TOR inhibition of appressorium formation, and TOR signaling was 
activated in the Δasd4 deletion mutants that fail to form appressoria. [46] 

Glucose can mediate TOR via the carbon-responsive Ampkβ subunit-like protein, ABL1. The ΔMoabl1 mutants produced few appressoria, 
and fail in autophagy, and this can be restored by inactivated TOR. [47] 

Sch9 F. graminearum FgSch9 interacted with FgMaf1, FgTor and FgHog1 to regulate fungal vegetative development, multiple stress responses and secondary 
metabolism. [48]. 

Tap42 
F. graminearum 

 
Antofine treatment led to the disruption of the FgRRD2-FgTap42 which was required for pathogenicity. 
 

[49] 
Rrd2 

Pph22/ 
Ppg1/ 
Sit4 

F. graminearum 

The deletion mutants of FgHLTF1, whose expression was down-regulated by FgPPG1 deletion or rapamycin treatment, showed defects 
in the vegetative growth, sexual reproduction, and virulence. [50] 

FgPpg1/Sit4 were need for inducing lipid droplets biogenesis which regulated the fungal vegetative growth, sexual development, and 
virulence via Nem1/Spo7-Pah1 cascade. [51] 

M. oryzae MoPpe1, orthologue of Sit4/Ppe1 in yeast, interacted with MoSap1 under controlled by MoTap42 and MoTip41 to regulate the fungal 
autophagy, vegetative growth, appressorium function, infection, and rapamycin sensitivity. [52,53] 
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Gene Fungi Description References 
Phosphate (PHO) signaling pathway 

Pho84 G. margarita The knockdown of phosphate transceptor gene GigmPT (Pho84 in yeast) by the host-induced gene silencing (HIGS) strategy led to a defect 
in arbuscule development. [54] 

Arg82 Cryptococcus 
neoformans 

The mutants of Arg1, the orthologue of Arg82 in yeast, displayed defects in the capsule production, cell wall organization, thermotolerance, 
cell separation, and mating filaments formation. [55,56] 

Pho81 

N. crassa In the mutant of nuc-2 (Pho81 in yeast), some genes involved in the initiation of mRNA translation were up-regulated. [57] 

V. dahliae The phosphate-starved VdNUC-2 knockout mutants showed defects in radial growth, conidia production, and become more sensitive to 
hydrogen peroxide stress that cannot be restored by phosphate supply. [58] 

C. neoformans The inositol pyrophosphate IP7 promoted virulence, and destruction of IP7-Pho81 or repression of Pho81 causes a defect in the virulence. [59] 

Pho80 
A. fumigatus The PHO80 mutant displayed a polar growth defect and the increases of vacuolar accumulation, acid phosphatase activity and phosphate 

concentration. [60] 

S. indica The expression level of SiPho80 was upregulated to maintain phosphate homeostasis under high phosphate levels, and SiPho80 can restore 
the fungal tolerance to salt and heavy metal (e.g. copper, zinc, cobalt) in yeast Δpho80 mutant. [61] 

Pho85 U. maydis The mutants of Cdk5/Pho85 displayed defects in the morphogenesis and polar growth required for virulence. [62,63] 
Pho4 N. crassa The subcellular location of NUC-1 (Pho4 in yeast) is important for regulating gene expression  [64] 

Ino80 Trichoderma 
virens 

IPA-1, a protein belongs to the SNF2 family, played an important role in plant disease resistance, and the deletion of IPA-1 led to the diminished 
antibiotic activity of plant against Rhizoctonia solani. [65] 

Common targets and relevant components 

14-3-3 
F. mosseae Fm201, Ri14-3-3 and RiBMH2 restored the lethal yeast bmh1 bmh2 double mutant. The gene silencing of both Ri14-3-3 and RiBMH2 impaired 

the arbuscule formation.  [66] 
R. irregularis 

Rim15 Cochliobolus 
heterostrophus Deletion of RIM15 affected the fungal pigmentation and vegetative growth. [67] 

Atg8 

M. grisea The ΔMgATG8 mutants were defective in the autophagy, and failed in conidial cell death which is necessary for infection and pathogenicity. [68] 

F. graminearum 
The ΔFgatg8 deletion mutants were defective in autophagy required for sporulation and sexual reproduction, and displayed the aerial hyphal 
collapse with more lipid droplets. [69] 

The degradation of Gcn5 induced by rapamycin can suppress the cellular relocalization and acetylation of Atg8, leading to autophagy. [70] 

Rho1 U. maydis The Rho1 controled cell separation and polarity, and it interacted with the high-affinity ammonium transporter Ump2 to control filamentation 
which was required for fungal development and pathogenesis. [71,72] 
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