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Abstract: High-throughput sequencing (HTS) technologies have become indispensable tools assist-
ing plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample
without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of the
huge amount of generated sequences, it is of utmost importance that researchers can rely on efficient
and reliable bioinformatic tools and can understand the principles, advantages, and disadvantages
of the tools used. Here, we present a critical overview of the steps involved in HTS as employed for
plant virus detection and virome characterization. We start from sample preparation and nucleic
acid extraction as appropriate to the chosen HTS strategy, which is followed by basic data analysis
requirements, an extensive overview of the in-depth data processing options, and taxonomic clas-
sification of viral sequences detected. By presenting the bioinformatic tools and a detailed overview
of the consecutive steps that can be used to implement a well-structured HTS data analysis in an
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easy and accessible way, this paper is targeted at both beginners and expert scientists engaging in
HTS plant virome projects.

Keywords: plant virus; high-throughput sequencing; bioinformatics; detection; discovery

1. Introduction

High-throughput sequencing (HTS) technologies have become an integral part of re-
search and diagnostics toolbox in life sciences, including phytopathology and plant virol-
ogy [1]. HTS enables the untargeted acquisition of extremely large amounts of sequence
data from diverse sample types and thus represents an ideal and unique solution for the
generic detection of highly diverse viruses. In the past decade, sequencing prices have
significantly decreased, and the technology has become accessible to many more research
and diagnostic labs. From the first uses of HTS for detection of plant viruses in 2009 [2-5],
the use of this technology for detection of known and new plant viruses and the charac-
terization of viromes in different plant species has intensified dramatically. Many differ-
ent bioinformatics tools have been developed and different pipelines have been used to
detect and identify plant viruses represented in HTS datasets. The variation in results as-
sociated with the use of different pipelines in different labs has highlighted the signifi-
cance of understanding different approaches [6]. Arguably, one of the main challenges for
less experienced users of HTS is to understand, select, and properly use tools for the anal-
ysis of HTS data intended for detection and identification of plant virus sequences. In this
review, we aim to present the different and often complementary approaches used for
analysis of HTS data for the detection of plant viruses. We provide a short introduction to
the laboratory work required and then describe the possible steps in data processing for
the detection of plant viruses, including quality control and trimming of the sequences, de
novo assembly, sequence similarity searches, and taxonomic classification of the identified
viral sequences. By including a short glossary (Figure 1), checklists, and comparison ta-
bles, we aim to present the topic to the widest possible audience and thus encourage the
use of HTS technologies by researchers with limited experience in the field.



Microorganisms 2021, 9, 841

3 of 31

Glossary of terms

BLAST:

Barcodes:

Bit-score (in BLAST):

Command line:

Contigs:

Coverage:

De novo assembly:

Demultiplexing:

E-value (in BLAST):

High-throughput sequencing (HTS):

ICTV:

Index hopping (or cross-talk, bleeding):
K-mers:

Mapping:

Metagenomics:

Phred quality score:

Pipeline (bioinformatics):

Reads:

Sequence identity:

Sequencing library:

Scaffolding:

Single Nucleotide Polymorphism (SNP):

Trimming:

VANA:

Virome:

Adapters:

specific DNA molecules added to the ends of the nucleic acid fragments during the sequencing
library preparation.

Basic Local Alignment Search Tool: an algorithm to find sequences similar to a query sequence
in a database.

specific, identifiable sequences within adapters that allow samples to be mixed together in the
same sequencing run/lane and then separated again during analysis.

a normalized score that reflects the size of the database, which you would need to search to find
a match with at least this score by chance. The value is independent of the database used. Higher
values indicate higher significance.

text-only computer interface, enabling input of commands only by typing.

longer nucleotide sequences assembled from overlapping shorter sequencing reads (see de novo
assembly).

might refer to at least two different descriptors. When expressed in percentage (%) it refers to the
length of the reference genome which is “covered” by read/contig data after mapping (also called
length coverage or horizontal coverage). This information gives an idea about the completeness
of the sequenced genome. When expressed in per (X), it indicates how many times on average
every single position of the reference genome is covered by reads after mapping, which gives
information about the sequencing depth (also called read depth or vertical coverage).

combining shorter overlapping sequencing reads to obtain longer sequences (contigs) without
using a reference genome.

a process of discriminating sequencing reads from different samples sequenced in the same
run/lane (based on the sample-specific barcode sequences).

expected number of random hits for the given query sequence in the database used. A lower E-
value means a higher significance.

a type of sequencing, where multiple molecules are sequenced in parallel (also massively parallel
sequencing) resulting in millions of sequencing reads. Sometimes also referred to as next
generation sequencing (NGS), although the latter term does not cover newer HTS sequencing
technologies, such as nanopore sequencing or PacBio sequencing.

International Committee on Taxonomy of Viruses.

erroneous assignment of sequencing reads to a sequencing library.

all possible sub-sequences of a sequence with length K.

alignment of sequence reads against a reference genome.

study of the genetic material of all the organisms present in a given sample.

a measure of an error probability associated with a corresponding nucleotide in the read.

a connected compilation of data analysis algorithms and/or software, which enable integrated
analysis of specific data sets.

individual sequences generated during a HTS run. In case of short-read (e.g., llumina)
sequencing, typically millions of short sequences are generated (ranging from 50-300 bp), while
Oxford Nanopore Technologies or PacBio sequencing results in fewer yet much longer sequences
(up to several kb or even few Mb, depends on the input).

the percentage of nucleotides (or amino acids) identical between two nucleotide (or protein)
sequences.

a collection of DNA molecules with added adapter (and possibly barcode) sequences, which can
be sequenced using an appropriate HTS platform.

linking together contigs in a scaffold sequence by introducing known sequences (e.g., from
long read data or mate pair libraries) and/or gaps of approximately known length.

single nucleotide substitutions within a sequence.

a bioinformatic process of removing the nucleotides from the ends of the sequencing reads,
usually based on their specific sequence (e.g. primers or adapters) or based on low sequence
quality values.

Virion-associated nucleic acid extraction: procedure to extract viral RNA (or DNA) from plant
fractions enriched in viral particles.

all of the viruses and virus-like organisms associated with a particular organism, sample or
ecosystem.

Figure 1. Glossary of terms commonly used in bioinformatics analysis of high-throughput sequencing (HTS) data for plant

virus detection.
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2. What Should I Anticipate and How Should I Prepare?

Modern sequencing platforms can generate massive amounts of data, and not all la-
boratories wishing to use HTS in their projects have the necessary infrastructure and bio-
informatics expertise, which, for example, is one of the main challenges identified for the
adoption of these technologies in diagnostic laboratories [7]. The cost of the bioinformatics
analysis in a HTS project was estimated to be around 15% of the total cost of a program
(an example for whole genome analysis in cancer research), and it includes the salary of
the bioinformatician and cost of data storage [8].

Some commercial sequence analysis software is able to handle HTS data (see Section
4.3.8), with dedicated modules for common operations (e.g., mapping and assembly).
These software solutions are usually easy to use, regardless of the user’s bioinformatics
skill, but they are also quite expensive and might be limited for some analyses (specific
applications). Furthermore, some “all in 1” viral-detection focused pipelines are available
(see Section 4.3.8), which require only limited bioinformatics knowledge or only the help
of a skilled computer scientist at the installation stage.

However, for in-depth analysis of plant virus sequence data that goes beyond detec-
tion and species classification, the use of dedicated bioinformatics software, without an
easy-to-use graphical user interface, is often needed to optimize time and efforts. These
programs have in a large part been developed and optimized for the Linux platform; they
can be used in the command line only and so require specific computing skills. Consider-
ing the number of steps with the average HTS analysis pipeline and the number of sam-
ples studied, automation quickly becomes a priority. This can be achieved by writing
scripts as well as grouping and ordering all the steps of the analysis, which also require
expertise in programing languages (e.g., shell, Python, R). Finally, for the interpretation
of the analysis results, skills beyond pure bioinformatics are needed. A close collaboration
between a bioinformatician and a plant virologist (or a plant virologist trained in bioin-
formatics) is needed to achieve a meaningful interpretation of the results.

Beyond the skills of users, IT resources must also be addressed. The amount of data
generated by each project must be anticipated in order to have raw data storage space
available beforehand and to ensure that data is safely stored at least for several years after
the end of projects. Depending on the sequencing platform, the total size of the raw data
can become very large. For example, the Illumina NextSeq platform can generate from 120
to =300 Gbases (Gb) per run, leading to file sizes varying between 39 and 170 Gb depend-
ing on the read length. A stable and fast internet connection is often needed to facilitate
the efficient transfer of large data files. The computing resources also need to be antici-
pated. For time-efficient analysis, it is often necessary to have a more powerful machine
than an average workstation to run the various parts of pipelines, regardless of the soft-
ware used. An alternative to the acquisition of a powerful computer is making use of
online bioinformatics platforms and cloud computing solutions. These platforms gener-
ally have a structure adapted to the use of software making high demands on system re-
sources (e.g., computing clusters). Many research centers or universities host a Galaxy
instance, which represents a very good alternative to the Linux platforms, in a more “user
friendly” interface.

3. Starting the Project: How Do I Prepare Samples and Sequence Nucleic Acids?

Sampling, nucleic acids extraction, viral enrichment, and sequencing library prepa-
ration are essential steps before HTS itself. Since these steps can influence the sequencing
results, we briefly summarize here the most important considerations for some of these
processes. An extensive description of how to control all of these steps is in preparation
in forthcoming international guidelines for the use of HTS tests for the diagnostic of plant
pests [9]. After obtaining the nucleic acids suitable for further analysis using HTS, the
approximate amount of sequence data required per each sample should be estimated ac-
cording to the goals of the study. If an external sequencing provider will perform HTS,
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this number, together with some general characteristics of the samples, should be com-
municated with the provider.

3.1. Input Material and Nucleic Acids Preparation

The extraction step separates the nucleic acids (including viral nucleic acids) from
other cellular components. There are many methods that can be used to obtain high-qual-
ity nucleic acids intended for HTS [10-13]. The efficiency of an extraction method is eval-
uated by the quantity of nucleic acids obtained, their integrity, and the absence of contam-
inants that inhibit the enzymatic activities involved in the preparation of sequencing li-
braries. Irrespective of the chosen nucleic acid extraction procedure and library prepara-
tion methodology, it is recommended to collect several samples per plant or that tissue
from distributed locations on a plant is combined into a single sample to overcome the
uneven distribution of viruses, especially in the case of low titer viruses. Different types
of nucleic acids can be used as inputs for HTS, which can be combined with different viral
enrichment methods. No method is universal [11,14]; each favors certain viral families or
certain experimental objectives [15]. For example, total RNA or small RNA sequencing
might be most straightforward and universal to use for single samples. On the other hand,
for sequencing of pools of many samples, or to optimize the detection of viruses with a
low titer, methods that allow the enrichment of viral nucleic acids such as Virion-Associ-
ated Nucleic Acids extraction (VANA) or the purification of double-stranded RNA might
be preferred. The choice for one of the approaches should be based on the research ques-
tion and study design. The purpose of the following sections is to help make the most
appropriate choices for sample preparation.

3.1.1. Total RNA/DNA

Extraction of total RNA and/or, to a lesser extent, DNA is a widely used approach for
HTS analysis of plant tissues infected with viruses. Simple and robust, the method can be
carried out according to several standard extraction protocols in solid phase or in liquid
phase or using commerecial kits (mostly based on silica-membrane or magnetic bead puri-
fication). The extraction and sequencing of total DNA can be sometimes used specifically
for the detection of DNA viruses, while sequencing of total RNA is a very generic ap-
proach and can be used for detection of all types of DNA and RNA viruses and viroids
[15]. The high abundance of nucleic acids from the host plant co-extracted with viral nu-
cleic acids can greatly limit the sequencing sensitivity. The relative proportion of viral
sequences in the total extracted RNA can be increased by the depletion of the plant ribo-
somal RNA [16,17] and the proportion of sequences of circular DNA viruses in extracted
DNA can be enriched by rolling circle amplification [18-20].

3.1.2. Small RNA (sRNA)

The plant immune system responds to the presence of viruses by activating a defense
response that leads to the cleavage of double-stranded forms of viral RNA into small
RNAs (sRNA) of 21 and 22 nucleotides (nt) as well as, more marginally, of 24 nt [21]. The
analysis of sSRNAs facilitates the reconstruction of the complete genomes of infecting RNA
and DNA viruses or viroids, as well as those of integrated endogenous viral elements
(EVEs) if they are transcribed [2,15,22,23]. Since SRNAs are more stable than longer RNA
molecules, the method is promising for use in old or even ancient plant samples [24], and
since only very short reads are needed to sequence sRNAs, the method is relatively cost
efficient. On the other hand, de novo assembly from short sequences might not work very
well for targets present at a very low titer [15] and might lead to chimeric sequences in
case of multiple infections with different virus strains [25]. For the same reason, pooled
samples used in metagenomic studies including a large number of plants are not recom-
mended to be analyzed with sRNA sequencing. Due to their short lengths, analyses of
recombination events on a read level are also not feasible with sSRNA [22].
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3.1.3. Virion-Associated Nucleic Acids (VANA)

The extraction of Virion-Associated Nucleic Acids (VANA) enriches the samples in
nucleic acids of viral origin by semi-purifying the viral particles by ultracentrifugation.
Viral particles are separated from most of the organelles and plant debris by one or two
differential ultracentrifugation cycles depending on the viral family and the plant mate-
rial. After purification of the particles and a nuclease treatment to degrade non-protected
nucleic acids, the viral nucleic acids are extracted according to a standard extraction pro-
tocol also used for the extraction of total RNA/DNA. Initially developed for the biochem-
ical characterization of viral particles in the 1970s, VANA was used in pioneering studies
of prospecting for viral diversity in wild asymptomatic plants before the advent of HTS
[26,27]. Then, the approach was extended to the preparation of nucleic acids intended for
HTS [28,29]. It achieves balanced enrichment in high-quality viral RNA and DNA and
allows the use of up to several hundred grams of starting material. However, it is based
on the stability of the viral particles mainly determined by the pH and the concentration
of salts in the extraction buffer. Unsuitable for high throughput, and relying on numerous
laboratory operations, the approach only identifies the encapsidated viral nucleic acids as
well as the viruses of the Endornaviridae family, which are devoid of capsids but encapsu-
lated in membranous vesicles [28,30]. Moreover, certain viral families are difficult to pu-
rify, and VANA is also not the method of choice for the extraction of viruses from plants
with high content of phenolic and polysaccharide compounds [31].

3.1.4. Double-Stranded RNA

The majority of plant viruses have RNA genomes, accounting for 75% of the total
number of viruses reported [32]. While plants do not produce large quantities of double-
stranded (ds)RNAs, RNA viruses generate high molecular weight dsRNA structures dur-
ing replication, so their enrichment is a popular strategy used for virus diagnostics
[10,13,33,34]. The extraction of dsSRNA purifies nucleic acids from double-stranded RNA
viruses but also from most single-stranded RNA viruses, viroids as well as from some
DNA viruses [35-38]. This approach allows the detection of a very wide range of RNA
virus species [30,39]. Sequencing of dsRNA is likely not the most effective method for the
detection of negative sense single-stranded RNA viruses [37]. It is also a laborious ap-
proach, even if a number of modified protocols have been developed to overcome this
limitation [13,34,40-42].

3.2. Library Preparation and Sequencing

Following nucleic acid extraction, different methods have been developed for library
preparation using commercially available kits and automated systems. As inputs, the ex-
tracted and possibly virus-enriched nucleic acids described in the previous sections can
be used. The type of the library preparation and exact protocol is dependent on the input
nucleic acids (e.g., total RNA or DNA, sRNA, dsRNA). Specific libraries are prepared for
different HTS platforms. The library preparation step usually consists of fragmenting the
nucleic acids and the ligation of short oligonucleotides (adaptors) at one or both extremi-
ties of the fragments in order to allow the sequencing. There are two main groups of HTS
platforms: (i) short read HTS (also termed next-generation sequencing —NGS), producing
reads up to several hundred nucleotides, and (ii) long read HTS (also termed single mol-
ecule sequencing—SMS), producing reads up to hundreds of kilobases (kb). Currently,
the most commonly used sequencing platform is Illumina (short read HTS), and, for long
read HTS, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies. Nanopore se-
quencing is rapidly developing and is expected to be more widely used in the future [43].
Most of the available protocols recommend assessing the quality and quantity of the nu-
cleic acids before library preparation. The integrity and purity of the nucleic acids can be
assessed using spectrophotometric and fluorescence-based assays. For some enrichment
approaches (e.g., VANA, dsRNA extraction), the concentrations of the obtained nucleic
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acids can be below the input required for library preparation so that a random amplifica-
tion step may be required prior to library construction [13].

Several samples can be pooled and sequenced in the same sequencing run (multi-
plexing). In this case, the oligonucleotides ligated to the nucleic acids during library prep-
aration also include unique barcode sequences that are specific for each sample. After se-
quencing, the reads are allocated to the appropriate sample according to the barcode used.
Most commonly, the raw sequencing read data output is converted to a fastq file format.
The fastq files represent an input for the bioinformatics analysis described in the following
paragraphs.

Important consideration, when preparing samples for sequencing, is also, how many
samples to pool in the same sequencing run/lane, i.e,, how many reads (or nucleotides)
are needed for the sensitive detection of different possible viruses in the plant sample. The
answer is not straightforward, and it might depend on the sequencing approach, type of
the matrix (host plant species, different parts of the plant), present virus(es), and other
variables [15,17,38], such as, e.g., season, but also the sensitivity of the bioinformatics pipe-
line used (e.g., reads vs. contigs analysis) [6]. Some starting general recommendations re-
garding this problem are given in this primer; however, these need to be adjusted after
performing a pilot study on a specific system, considering employed sample preparation,
sequencing, and analysis approach.

3.3. Contamination

Contamination is common in all sensitive molecular diagnostic methods and has
been reported in HTS diagnostics [44,45]. Contamination has been shown to enter se-
quencing systems in diverse ways, from sample cross-contamination [46] to external con-
tamination of consumables [47]. Whilst some of the most commonly used HTS platforms
from Illumina were subjected to significant hardware and procedural changes as a result
of within-instrument DNA carry over, contamination can still be a significant issue in sen-
sitive molecular diagnostics applications. The fundamentals of contamination control for
diagnostics remain consistent. Key to achieving this is the separation of procedures into
different locations, operating a one-way system (from clean reagents to DNA samples)
within those locations and using negative controls at various stages to identify contami-
nation. Sample-to-sample and reagent contamination are common in any molecular tech-
nique. Physically separating steps involving samples, purified DNA, and clean reagents
is the best approach to preserve the integrity of future experiments. Known healthy con-
trol samples (not blanks), included from NA-extraction through to sequencing should be
included in each run to identify incidences of contamination but are frequently excluded
due to cost constraints.

4. How do I Analyze the Data?

Figure 2 outlines typical steps that can be followed once the fastq file has been ob-
tained. The first is a quality control (QC) check. This is followed by pre-processing steps,
including trimming low-quality bases, removing adapter sequences, and discarding very
short and low-quality reads, followed by further QC filtering (Section 4.1). Then, reads
passing QC are ready for analysis either directly or after assembly into contigs (Section
4.2). Reads or contigs can optionally be mapped to a host reference genome, and, in this
way, host sequences can be removed (Section 4.3.3). Then, reads or contigs are used to
query a database of known viral sequences or motifs (Sections 4.3.2-4.3.5). Results need
to be carefully inspected for correct taxonomic classification (Section 4.3.7). The described
steps can be performed using the tools indicated in the flow chart (Figure 2) or other avail-
able tools. Finally, the same analyses can also be performed using user-friendly free soft-
ware with graphical user interfaces (GUI) available online or using commercial software
as described in Section 4.3.8.
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data (fastq) [FastQC,

Preprocessing of reads (< 4.1):
» trimming

adapters removal

« quality filtering

[Trimmomatic, BBtools, Porechop*]

To start off, familiarize
yourself with the
terminology (= Fig1) and
the requirements (= 2) for
performing successful
analysis of HTS data. Help

P A

Removal of host sequences:
mapping to the genome
(#4.3.3) [BWA, bowtie2, Minimap2*]
I

yourself with the checklist
(= Fig 4). —]
De novo assembly (+4.2)
If analyzing reads [SPAdes, Velvet, Canu*]
directly: unmapped
reads or all the
reads classified as| —l
viral can be used
How do I find viral sequences “roseman] 4l
in my data?
(=4.3) [BLASTN] (+4.3.2) Mapping to reference (+4.3.3)

(nt or subset of nt database)
L input: contigs

(e.g., viral RefSeq) BwA, bowtie2]
S input: reads, contigs

[BLASTX] (+4.3.2)

(nr or subset of nr database)
 input: contigs

Protein domain searches [HVMER]
(+"4.3.4) (pFam database)

> input: contigs

[DIAMOND] (=4.3.2)

(nr or subset of nr database)
S input: reads, contigs

K-mer based classification
(=" 4.3.5) [ClarkS, Kraken2]

 input: reads, contigs

a3 Jo |elonas Buipnpour sauladid uni-oj-Apeal (g€ ¥ -=) Spoylow Hels yoIinp

[youagyiopn solwouss) DD ‘Bullid Snolvuas) ‘|00 J|A ‘PUIA ‘1o81easnlip B8]
uoionisu0 auljadid Buijgqeus ‘elemyos [BIDISLLWOD 8sh-0)-Ases Jo sdals sisAjeue

Taxonomic classification What to do when the_dz_:lta
of the virus . ] . analysis is
(=4.3.7) Complete/partial genomes? Confirmatory testing concluded?
ICTV demarcation criteria Biological assays (=4.4)

Literature search
Phylogenetic analysis
< Fig 5

Sharing data
Further bicinformatic analyses

Figure 2. Flowchart representing different approaches for the analysis of HTS data for the detection of plant viruses. Boxes
represent different steps in data analysis and interpretation. Arrows connect different possible sequences of the analysis
steps. As an example, a non-exhaustive list of possible analysis tools is added in the square brackets at each of the analysis
steps. Tools designated with * are intended for use with long-read or, specifically, nanopore sequencing data. Pointing
hands lead to the text sections (or figures) with more detailed description of the corresponding steps.

4.1. Demultiplexing, Quality Control, and Trimming

Each sequencing platform produces a series of quality metrics associated with the
data produced from each sequencing run. A discussion of the metrics with the sequencing
data provider is important before accepting any sequencing data.

If the run was successful, the first step is the demultiplexing of barcoded samples,
which is usually carried out using the sequencing platform software or performed by the
sequencing data provider. In the event that data has not been demultiplexed, third-party
tools such as Cutadapt [48] can be used to demultiplex the Illumina data by looking for
specific barcode sequences present in the samples. Alternatively, demultiplexing tools de-
veloped by the sequencing platform provider are frequently accessible as stand-alone
tools, such as [llumina’s bcl2fastq software [49], or Oxford Nanopore Technologies’ guppy
scripts [50].

Barcode misassignments, also termed index hopping/cross-talk/bleeding, can occur
due to the technical reasons during each sequencing run and result into erroneous assign-
ment of a small fraction of reads from one sample to another one [51]. This represents a
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problem when using HTS for detection purposes, since it might often be difficult to dis-
tinguish index hopping from, e.g., very low titer virus infection in the sample. The amount
of index hopping differs between different sequencing platforms, but it was, e.g., shown
to be higher for newer Illumina sequencing devices using nonpatterned flow cells [52]. To
mitigate this problem, it is advised to know the identity of all the samples sequenced in
the same sequencing run or/and to use dedicated controls of the procedure. For example,
including a control sample containing a known virus (which is not expected to be present
in other samples in the run) could help estimate the amount of the crosstalk from the con-
trol sample to other samples, and vice versa. In addition, using unique double indexes in
sequencing library preparation can largely reduce the amount of the index hopping [53].

Adapter sequences introduced during the library preparation process need to be re-
moved. Tools such as Cutadapt [48], Trimmomatic [54], and Porechop [55] or NanoFilt
[56] can be used to carry out this process, with the latter two working specifically for data
generated using nanopore sequencers. At this step, contaminant filtering for synthetic
molecules and/or spike-in is also recommended.

Sequencing data are usually provided in the fastq format, which consists of four lines
per sequence [57], including a sequence identifier, raw nucleotide sequence, a separator
line (containing + sign), and sequence quality values.

Nucleotides with a low-quality score should be removed to ensure that only high-
accuracy bases remain. With Illumina data, values such as Q20 (1% error) and Q30 (0.1%
error) are often used when trimming data, but this value depends on the application and
the sequencing platform used. If accuracy is of the utmost importance (e.g., for detection
of SNPs), selecting a higher quality score will be beneficial. If accuracy is less important
(e.g., for detection of virus), then relaxing constraints on quality when trimming will allow
more data to be available for downstream applications.

Quality control reports can be generated by tools such as FastQC [58], MultiQC [59],
or, specifically for nanopore sequencing data, Poretools [60] or NanoStat [56]. This allows
for the visual inspection of metrics such as per base sequence quality, sequence length
distribution, and GC (guanine-cytosine) content. These reports can be generated both be-
fore and after trimming, to assess the impact of trimming on different quality parameters.
A number of tools exist to trim sequencing reads based on quality scores, sequence length,
or other metrics. These include but are not limited to Sickle [61], Trimmomatic [54], Cu-
tadapt [48], BBDuk (https://sourceforge.net/projects/bbmap/, accessed on 13 April 2021)
and NanoFilt for nanopore sequencing data [56]. Illumina data, particularly longer MiSeq
reads, suffer from lower quality toward the 3’ end of the read. Many trimming strategies
start at the 3" end of such reads and determine the position at which the quality (or the
average quality in a region) is high enough to keep.

The order in which these processes are carried out can vary, and some tools can be
used to carry out multiple steps at the same time. The final output should be a series of
demultiplexed samples with reads that have an acceptable sequence quality and no longer
contain sequences added during the sequencing process (e.g., adapters, barcodes).

4.2. De novo Assembly

HTS technologies provide us with shorter (e.g., Illumina) or longer (e.g., Oxford Na-
nopore Technologies, PacBio) sequence reads, which usually need to be assembled in silico
to reconstruct complete or near-complete genomes. Compared to bacteria or eukaryotes,
most viral genomes are very small. Nevertheless, high mutation rates and the great diver-
sity of some viral populations [62] can represent a challenge for in silico genome recon-
struction. Assembling a genome is similar to solving a “Jigsaw puzzle”. Similar to a puz-
zle, there could be pieces fitting together (overlapping reads), missing pieces (regions with
low coverage, sequencing bias), and damaged parts (sequencing errors). The process for
which individual reads are combined to form longer contiguous sequences is named de
novo sequence assembly, and the nucleotide fragments obtained through this process are
called contigs [63].
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The intrinsic features of short vs. long read output, from the computational point of
view, has led to the development of two major groups of assembly algorithms: (i) de Bruijn
graph (DBG) and (ii) the overlap-layout-consensus (OLC) methods. In the first case, DBGs
are constructed using k-mers, which are substring of the reads of length k; whereas for
OLC, the overlap graphs are constructed directly from reads, eliminating the redundant
ones. The use of k-mers is more widely applied for the assembly of short reads, whilst the
OLC approach is most appropriate for long read data [63,64].

For short HTS reads, many de Bruijn graph assemblers are available, such as
SOAPdenovo2 [65], ALLPATHS-LG [66], ABySS [67], Velvet [68], IDBA-UI [69], and
(rna)SPAdes [70-72]. One of the first and most widely used and cited assemblers [73] in
viral metagenomics [6] is the open-source software Velvet, which is followed by the more
user-friendly and commercially-available CLC Genomics Workbench (https://digi-
talinsights.qiagen.com, accessed on 13 April 2021) and Geneious Prime (https://www.ge-
neious.com, accessed on 13 April 2021). The latter has the advantage of providing a graph-
ical interface for command-line assembly programs such as Velvet and Spades.

Different factors can positively influence the quality of the de novo assembly, e.g., a
preliminary filtering step to eliminate the genomic host plant reads [23] or the selection of
appropriate k-mer values based on the read length [6]. Moreover, approaches in which de
novo assemblies using different k-mer values are generated and then reassembled can gen-
erally improve the completeness of de novo genome assemblies, but this can be a laborious
and computationally lengthy process. Usually, higher sequencing depth and a higher frac-
tion of viral reads in the dataset will positively affect the completeness of assembled viral
genomes; however, extremely high coverage might have a negative effect on the com-
pleteness of the assembly when using some assemblers; thus, in such cases, the assembly
of subsampled data might give better results [15]. Since reads of some viruses can be pre-
sent in a very low number, it is important not to set too low cut-offs for contig length [6],
e.g., a number around or slightly above the 2x length of an average read length is recom-
mended. Finally, the use of an additional scaffolding step when using paired-end data can
sometimes further increase the length of a contig. Nevertheless, despite improvements in
de novo assembly algorithms, 3" and 5" ends of viral genomes usually cannot be obtained
in full through de novo assembly.

Although long-read HTS platforms can produce reads close to full-length viral ge-
nomes, a major issue that could affect the de novo assembly step is the higher error rate (5-
15%) of these technologies [74]. Long-read assemblers can algorithmically correct base er-
rors before/when building contigs. PBcR [75], Canu [76], Falcon [77], and Pomoxis [78] are
some of the OLC-based de novo assemblers available. Long read nanopore sequencing has
recently been successfully applied to virus discovery, detection, and reconstruction of vi-
rus genomes; in these studies, Canu is the most cited assembler [79-82].

Contigs generated by de novo assembly can be used in subsequent similarity searches,
and finally, viral contigs can be used for phylogenetic or recombination analysis. If this is
so, it is important to check the quality of the contig by mapping the trimmed reads (ex-
plained in Section 4.3) to the viral contig followed by visual inspection of the mapping
and to check the completeness of expected open reading frames contained in such contigs.
For contigs generated by de novo assembly of nanopore sequencing reads, additional qual-
ity checking steps might be needed such as assembly polishing [81] or correction of the
consensus sequences using quality data of mapping reads [82].

When the presence of specific viruses is already known, viral genomes can be recon-
structed by mapping the reads (explained in Section 4.3) to the closest reference sequences
obtained from sequence databases (after initial similarity searches, Section 4.3). Then, this
is followed by the extraction of new consensus sequence from the mapping, which is an
approach known as reference guided assembly. Sometimes, parts of the viral genomes are
obtained by de novo assembly and other parts are obtained through reference guided as-
sembly; such an approach is also known as combined assembly.
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4.3. How do I Find and Classify Viral Sequences in My Data?

Identification of viral reads/contigs in massive HTS datasets is most frequently per-
formed by comparing sequences against known and annotated sequences in databases.
This can be done on the level of reads or contigs de novo assembled from the reads. Since
longer sequences in almost all cases improve the ability to identify similarities regardless
of the method or databases used, an assembly of quality checked raw reads is generally
recommended prior to similarity searches. At the same time, a prior assembly will also
generally reduce the computing time needed for the similarity search steps, as up to mil-
lions of reads can be assembled in a single contig. The annotation of HTS reads, or contigs,
on the basis of similarity with known viral sequences can be performed using three main
strategies: homology searches with tools such as Basic Local Alignment Search Tool -
BLAST [83], read/contig mapping against reference viral genomes using tools such as
BWA [84], and the search for encoded, conserved protein motifs using tools based on Hid-
den Markov Models (HMMs) such as HMMER [85]. Each of these approaches and, in turn,
each of the specific programs used to perform them, has advantages and drawbacks. In
many cases, they should be seen as complementary rather than mutually exclusive possi-
bilities. Several additional alternatives have also been proposed. For example, the use of
e-probes (short unique pathogen-specific reference sequences) [86] or the analysis of the
frequency of specific k-mer sequences (see Section 4.3.5). A summary of tools commonly

used for similarity searches is presented in Table 1.

Table 1. Summary of the most commonly used similarity search strategies with advantages and limitations for each of the

strategies.
Tool Name Advantages Limits and Considerations Important Thresholds

BLASTx or BLASTn  High sensitivity Slow, intensive use of computing power if a large database ~ Minimum percentage of identity;

is used, BLASTx needed for the detection of divergent novel length of identified region of simi-
viruses, BLASTn needed for the detection of viroids and larity; minimal e-value, bit-score.
noncoding regions of viral genomes or satellites; perfor-

mance improved by prior assembly of contigs.

MegaBLAST Faster than BLASTn, Less sensitive than BLASTn, only useful for detection of nu- Minimum percentage of identity;
handles longer se- cleotide sequences very similar to the ones in the used data- length of identified region of simi-
quences base; performance improved by prior assembly of contigs.  larity; minimal e-value, bit-score.

BLASTp High sensitivity Slow, need to translate nucleotide sequences to proteins Minimum percentage of identity;

first; performance improved by prior assembly of contigs;  length of identified region of simi-
not applicable for viroids or noncoding regions of viral ge-  larity; minimal e-value, bit-score.
nomes or satellites.

DIAMOND Faster than BLASTx  Less sensitive, annotation less accurate than BLAST; perfor- Minimum percentage of identity;

mance improved by prior assembly of contigs; only availa-
ble for searches against protein databases; not applicable for
viroids or noncoding regions of viral genomes or satellites.

length of identified region of simi-
larity; minimal e-value, bit-score;
use sensitive mode.

Burrows-Wheeler
transform-based map-

Does not require prior
assembly of contigs,

Only allows detection of known agents. Difficult to adjust
mapping stringency to (1) allow detection of divergent iso-

Mapping stringency (e.g., mismatch
penalties, gap open/extension pen-

ping algorithms (e.g., high sensitivity for lates while (2) avoiding cross-mapping between related alties, percent of read length match-
BWA or Bowtie2) short sequences agents; prior assembly of contigs reduces cross-mapping be- ing reference, minimum percentage
tween related agents. of identity)
HMMER or HMM- High efficiency for Annotation more complex for protein families shared be- Minimal e-value.
Scan detection of distant tween cellular organisms and viruses; not applicable for vi-
homologs roids or noncoding regions of viral genomes or satellites.
K-mer based classifi-  Fast Requires large computer memory; accuracy may be limited ~ C/Q ratio for Kraken (advise the

cation algorithms
(Kraken or Taxono-
mer)

for the shorter genomes of plant viruses; the confidence
scoring of the results is not straight forward.

manual).
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4.3.1. Databases

The database(s) against which sequences are compared is/are of utmost importance
for the efficiency and completeness of the annotation process. The more complete the col-
lection of viral sequences, the greater the likelihood of detecting and identifying the pres-
ence of a virus. For BLAST and BLAST-like approaches, the most used databases are the
non-redundant nucleotide database (nr/nt, named also just nt) hosted by the NCBI, the
non-redundant GenBank protein database (nr) or the viral RefSeq database. The GenBank
non-redundant nucleotide and protein databases are the most comprehensive and most
frequently updated public databases, limiting the time from discovery of a novel virus to
its availability for comparisons (provided the local version of these databases is also reg-
ularly updated). However, the size of these databases has the drawback of increasing the
computing time/power needed to perform a comparison. The reduced viral RefSeq data-
base has the benefit of a better annotation/curation at the expense of the number of in-
cluded sequences and of less frequent updates. For read mapping approaches, smaller
dedicated databases are generally used, such as a subset of all viral sequences from the
NCBI nt database, viral RefSeq, or a smaller, locally developed and curated database (for
example, one or several isolates of every virus known to infect the crop of interest). For
conserved protein motifs searches, the most common databases are PFAM [87] and CDD
[88]. The identification of viral sequences is critically dependent upon the quality of the
database(s) used. For example, some plant-derived proteins might also be misidentified
as viral if only a virus sequence database is used for similarity searches, because some
viral proteins are related to plant encoded proteins. Typical examples are heat shock pro-
teins (i.e., Hsp70h) found in closteroviruses [89] or reverse transcriptase proteins of Cau-
limoviridae that have homologs among retrotransposons. Wrongly annotated sequences in
the public databases can also lead to erroneous annotations.

Although this is generally not implemented at the moment, comparing the identified
viral sequences with databases of retrotransposons [90] or to databases created from the
systematic screening of plant genomes for integrated viral sequences [91-93] may provide
an efficient strategy to differentiate transcripts derived from integrated viral elements
from autonomously replicating viruses.

4.3.2. BLAST and BLAST-Like Approaches

BLAST programs are the most widely used and among the most accurate in detecting
sequence similarity [94]. The BLAST suite [95] comprises different algorithms, each with
its own use:

1.  BLASTn can be used to compare a nucleotide sequence with a nucleotide database.
It is less computationally intensive than BLASTX, but because of the higher diver-
gence rate of nucleotide sequences, it is less efficient for the annotation of novel vi-
ruses not represented in the database used.

2. BLASTp can be used to compare a protein sequence with a database of protein se-
quences.

3.  BLASTXx can be used to compare a nucleotide sequence translated in all six reading
frames with a database of protein sequences. While computationally intensive, it is
the most efficient BLAST program for the annotation of novel viruses.

4. tBLASTn can be used to compare a protein sequence with all six possible reading
frames of a nucleotide database and is often used to identify proteins in new, unan-
notated genomes.

5. tBLASTx can be used to compare all six reading frames of a nucleotide sequence with
all six reading frames of a nucleotide database. It is the costliest in computation time.

6. MegaBLAST can be used to compare nucleotide sequences expected to be already
present or closely related to those in a nucleotide database. It can be much faster than
BLASTn and is able to handle much longer sequences but deals less efficiently with
very divergent sequences.



Microorganisms 2021, 9, 841

13 of 31

Short sequences may lead to false positives in BLAST searches, and for this reason,
other approaches should be preferred for very short reads or contigs. All BLAST programs
return a table of results, which contain several parameters, among which some are partic-
ularly important to check: the identity threshold (threshold for the percentage of identical
nucleotides between the query sequence and a hit in a database), e-value (expected num-
ber of random hits in the used database for a given query sequence), and query coverage
(percentage of the query sequence covered by the database hit). It is very important to
consider that some of these values depend on the size of the database used and that the
use of too stringent parameters (e.g., identity threshold >85% and e-value smaller than 10-
10) may lead to a failure to detect some divergent viruses [6]. BLAST is very widely used,
but it remains, in the case of millions/billions of reads analyses, a time-consuming algo-
rithm. Restricting the database used to specific taxa (e.g., viruses) can speed up BLAST
searches, but care should be taken, as this frequently leads to the identification of viral
reads that on closer examination, using complete databases, are in fact host sequences
(e.g., plant sequences). An extremely fast but considerably less sensitive alternative to
BLAST is BLAT (BLAST-Like Alignment Tool) [96]. Another faster alternative to BLASTx
is DIAMOND [97], which runs at 500-20,000x the speed of BLAST while maintaining a
high level of sensitivity, especially if using the sensitive mode. However, the DIAMOND
annotations have been observed to be less optimal in virus species identification than
BLAST ones (ML and TC personal observations).

4.3.3. Mapping Reads (or Contigs) to Reference Database

Mapping tools are commonly used as a filtering step to remove host genome se-
quences or as a complement to similarity searches on short nucleotide sequences. Reads
originating from the host genome can be partially removed by mapping the complete da-
taset to reference genomic sequences of corresponding host (if available) and then using
only unmapped reads for further analyses. A reference genome sequence of the host must
be chosen carefully, since it can affect the analysis. Choosing divergent variety/genotype
of the host might reduce the efficiency of the host reads removal. Furthermore, reference
host genomes might contain contaminating or genome-integrated viral sequences; thus,
some viral reads can be lost in this step.

Mapping tools can be also used to perform the alignment of reads or contigs against
a reference viral database (e.g., NCBI Viral RefSeq database or a custom developed data-
base containing one or more complete or partial viral genomes). In comparison to BLAST
programs, most of the mapping tools such as Bowtie2 [98] or BWA [84] build an index for
the reference genome or the reads, increasing the speed of the analysis if used against a
limited, virus-specific database. The mapping strategy is potentially more sensitive to de-
tect viruses with low number of reads in analyzed datasets [6], in particular when using
21-24 nt sSRNA sequences. Consequently, it is also sensitive to cross-sample contamination
due to index-hopping, which may require the development of strategies to set a positivity
threshold. On the other hand, mapping strategies are inefficient at detecting novel viruses
or viroids that are absent from the database used. Mapping stringency parameters (see
Table 1) critically affect the outcome of the analyses and should be optimized keeping in
mind the objective of the experiment. Too stringent parameters may result in the failure
to detect divergent viral isolates. Too relaxed parameters may also give rise to erroneous
results through the mapping of related host genes on a viral genome or through cross-
mapping the reads of a virus on the genome of a related virus. These problems can be
minimized by first mapping all HTS reads against the reference viral database. Then, any
reads that map to a virus are remapped against the host genome sequence. If the mapping
score is higher for the host genome, the read is discarded. Tools such as Pathoscope [99]
can help with cross-mapping between virus species by weighting reads that map to more
than one viral sequence. An efficient strategy, besides counting the number of mapped
reads on a particular reference genome, considers the portion of this genome covered by
the mapped reads and depth of coverage, the percent similarity between mapped reads,
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and the reference or other similar indicators to eliminate potential false positive results.
Including suitable reference samples as controls during sample preparation and sequenc-
ing can help to eliminate such errors [9]. Similar to reads, contigs generated by de novo
assembly, can also be mapped to the reference databases. The longer the contig, the fewer
erroneous mapping results are expected. However, the same recommendations for careful
inspection of mapping results apply.

4.3.4. Protein Domain Searches

Searching for known viral domains by matching translated amino acid sequences of
reads/contigs with Hidden Markov Models (HMMs) of known protein domains using
programs such as HMMER [100] or HMMScan is a popular alternative to BLASTx. With
this method, sequences are first translated in all possible reading frames, and the trans-
lated protein sequences are compared to a database of conserved protein motifs such as
Protein Families database —PFAM [87], viral profile HMMs—vFAM [101], and Conserved
Domains Database—CDD [88]. These approaches are faster than BLAST-based homology
searches and more effective than mapping or BLAST searches for the detection of very
distant homologs [102] and therefore possibly for the detection of novel, very divergent
viruses. Similar to BLAST, a significance e-value is calculated, allowing the evaluation of
the significance of a match. This e-value can be used to filter results, striking a balance
between low values and the reporting of false-positives, and high values and the failure
to detect a divergent virus.

4.3.5. K-mer Approaches and Machine Learning-Based Approaches

Nucleotide k-mer-based approaches can be used to annotate sequences based on the
presence and frequency of specific k-mers. Comparing these frequencies is computation-
ally less demanding and faster than sequence alignment but requires a lot of computer
memory. Even if most of the k-mer-based classification tools, such as Kraken [103,104],
Kaiju [105], or Taxonomer [106], are not dedicated toward the detection of plant viruses,
they can be used for such purpose. Kodoja [107] uses a combination of such tools for the
taxonomic classification of plant viruses in metagenomic data. Most of the tools are not
very user friendly, and the use of k-mer tools for plant virus detection is fairly new; thus,
some questions remain to be answered, e.g., the usability of k-mer tools on small RNA
datasets [107].

Methods based on machine learning are being developed for the detection of viral
sequences in metagenomics datasets. Several tools have already been published, e.g., Vira-
Miner [108], DeepVirFinder [109], or Virnet [110] for human virus detection purpose.
Given a metagenome with known composition, machine learning approaches attempt to
find some meaningful patterns that allow differentiating the host from the virus. When
the unknown metagenome dataset is provided, the software should be able to discrimi-
nate virus sequences from host sequences using the learnt pattern. Machine learning tools
are new in this field; thus, we still lack their in-depth comparison with the more known
approaches discussed above.

4.3.6. Which Analysis Approach Should I Choose?

The variety in similarity-based search approaches is striking. Choosing the most rel-
evant one will depend on criteria such as the aims of the study (diagnostic, metagenomics)
and the time/computational power available. Whichever program/approach is selected, it
is important to consider its limitations and to properly set the key parameters to avoid
false-positive or false-negative results. Fast programs can be used as a filtering step and
then validated by slower approaches, or alternatively, two approaches can be used to val-
idate each other, or multiple approaches can be used in parallel, for example an optimized
approach for the detection of known viruses and a separate approach for novel virus dis-
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covery. If computational time or power is not a serious limitation, combining several ap-
proaches may enhance the ability to obtain an accurate annotation [111]. Here, we provide
a checklist, identifying the most important considerations, which should be taken into
account when analyzing HTS data (Figure 3).

Moreover, when analyzing the data obtained from long-read technologies, one
should pay special attention to using approaches that enable the efficient processing of
such data. Mapping algorithms have been developed for the processing of long read data
with higher error rates, such as Minimap2 [112]. For BLASTx-like similarity searches, al-
gorithms that can handle frame-shift mutations (caused by the relatively higher error
rates), such as DIAMOND [97], are preferred. Assembly and polishing of long read data
can improve further processing [113] and improve the chances for the correct identifica-
tion of viral sequences in the data.

Most important considerations to keep in mind during the data processing

I.  Quality control and sequence preprocessing

a.  What is the average quality of the sequences? [For Illumina, the Phred values histogram have the peak
around 37-40]

b.  Isthe size distribution of sequences in accordance to library preparation approach? [For example, peak at
21-24 bp for sSRNAs]

c. Do you have a sufficient number of reads for the detection limit you want to achieve? [In general, we
recommend 3 - 5 million reads (150-250 nucleotides long) per sample for total RNA-seq or 1-4 million reads
for sSRNAs. A million reads would suffice for both in most cases. However, in some cases, e.g., for detection
of viruses in fruit trees, much more reads will be needed.]

d.  Are there not too many read duplicates? [In case of lots of reads duplicates, for example> 20%, there might
have been too many PCR cycles during the library preparation, leading to a low diversity library which
lowers the limit of detection.]

e.  Are the adaptor, primer, barcode sequences, spiked sequences etc. removed?
f.  Ifthe end of the readsis of lower quality, did you consider quality trimming?
II. Demnovo assembly

a.  Are the parameters set according to the input sequence data? [For example, k-mer length for de Brujin
graph assemblers.]

b.  Are the cut-off values set to accommodate detection of widest possible range of viruses? [Coverage, contig
length cut-offs: set contig length cut-off at low lengths, e.g., twice the length of the reads to detect also
possible low-titer viruses assembled only in short contigs.]

III. Similarity searches

a.  Does the method or combination of methods you use allow for detections of known and unknown viruses
and viroids? [Perform similarity searches both on level of nucleotide and translated protein sequences]

b.  Isthe database used up to date?

c.  How reliable are the viral hits? Are the E-values etc. interpreted correspondingly to the used database? [Use
more stringent filtering parameters or expect much more false-positive hits with smaller, e.g., virus only
databases; check the relevant results manually and by another analysis approach.]

d.  What portion of the length of the viral genome is covered by the reads / contigs, and how many
reads/contigs are assigned to the virus? [If only a very small fraction of genome is covered or very small
number of reads is assigned, it might be a false positive.]

e.  What fraction of the reads is assigned to be of viral origin, and does this more or less agree with your
expectations based on the literature and your experience? [The expected number of viral reads depends
partially on factors you can control such as quality of RNA extraction, addition of tRNA removal step, but
it can also be out of your control since this also depends on the host plant and the viral load]

f. Can any of the hits be a process or index-crosstalk contaminations?

g Can any of the viral sequences correspond to inactive viral sequences integrated in the host genome or host
sequences with reported similarity to host genes?

h.  What are the % identities between the reads/contigs and the detected virus? Are detected viruses new or
known viral species (go to Figure 4)?

Figure 3. Checklist of the most important considerations to keep in mind during HTS data processing for detection of

plant viruses.
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4.3.7. Taxonomic Classification

To assign viruses to taxonomic ranks, demarcation criteria specifically set for differ-
ent viral genera need to be followed. Often, identities <75% at the nucleotide or protein
level are indicative of a new viral species; however, the threshold might be also lower or
higher, such as at <91% for begomoviruses. Identities <60% might be indicative of a new
viral genus; however, the threshold might be also lower or higher, such as <45% within
Betaflexiviridae family. As noted, these criteria differ substantially between virus families
and genera, but up-to-date information is published by the International Committee on
Taxonomy of Viruses (ICTV) in the latest taxonomy reports [114,115] that can be found
online (https://talk.ictvonline.org/taxonomy/, accessed on 13 April 2021). Once a sequence
is identified to a family or genus level, a pairwise sequence comparison (PASC) webtool
[116] to support virus classification, hosted by NCBI
(https://www.ncbinlm.nih.gov/sutils/pasc/, accessed on 13 April 2021), can quickly pro-
vide an indication on how a new sequence fits in that genus or family. In cases where
virus sequence identity is near the limit of the identity cut-off values for different species,
additional information and/or justification may be required for their definite classifica-
tion. These could include biological information such as host species, vector species, or
symptom types, and if enough isolates have been sequenced, population genomics ap-
proaches can also be employed [117].

Strains of viruses do not fall under official taxonomy. Rather, they are definitions
utilized by communities of practice around virus species and would thus require a review
of the literature concerning the specific virus species to be able to classify the sequence to
a particular strain or phylotype. This is a process that generally includes phylogenetic
analysis of the identified sequence with published virus (reference) sequences.

The approach described above can be rather straightforward if complete genomes of
viruses with a single genome segment have been assembled. However, things can become
more ambiguous in situations where a new virus has multiple genome segments or have
been incompletely assembled, resulting in several contigs corresponding to different parts
of a viral genome. The individual contigs for a novel virus may be equally distantly related
to several known viruses and can then show the highest level of similarity with different
viruses, which could lead to the erroneous interpretation that several new viruses are
found in the same sample. This issue will often manifest itself in the previous step of sim-
ilarity searches, and, to resolve this, the first recommended step is to identify the taxo-
nomic position of all the best hits identified for the different viral contigs. If several best
hits fall within the same genus or family, one could suspect they may correspond to the
same virus. The next step would be to investigate the general viral genome structures in
the identified genus or family from the ICTV reports and ascertain if the different best hits
correspond to the same or different genomic regions for that type of virus. If they are all
different, it is likely that a single new species is present; if the same region is covered by
multiple contigs that differ significantly from each other, then the scenario of multiple
new viruses belonging to a similar taxonomic group is more probable. A checklist in Fig-
ure 4 contains the most important points to keep in mind for the taxonomic classification
of viral sequences obtained by HTS.

Sequences of new viruses belonging to previously undescribed families and/or gen-
era can often only be reliably aligned by using the translated amino acid sequences of
conserved genes such as polymerases and coat proteins. In these cases, phylogenies gen-
erated with viruses from related genera or families are needed to determine the exact tax-
onomic position. Additional criteria, such as number of open reading frames and overall
genomic organization, need to be considered when classifying a virus as a member of a
new genus or family. When there is uncertainty, viruses can be categorized as unclassified
new species until new evidence arises that can support a definite classification.

Irrespective of the situation encountered, to become an officially recognized new spe-
cies, generally, a near complete genome sequence, including the complete coding se-
quence information, is required by the ICTV to assign a “sequence only” virus to a species
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level. If relevant supportive biological data are available, that rule is more relaxed and
will be determined by the relevant virus family study groups.

Taxonomic classification

I. If you obtained one or more single apparently full-length sequences of clearly distinguishable viruses:
a.  What taxonomic group does the virus correspond to, based on database annotations?

b.  What are the taxonomic demarcation criteria for the identified taxonomic group
(https://talk.ictvonline.org/taxonomyy/)?

c.  If falling within a known family or genus, how does the sequence fit, based on taxonomic criteria of that group
(https://www .ncbi.nlm.nih.gov/sutils/pasc/)?

i. If clearly falling within or outside of a taxonomic group based on sequence demarcation and genome
organization criteria, define species or new species. Perform phylogenetic analysis with other isolates
from same and related species for support.

D Define strains based on literature if relevant.

ii. Ifnot clearly falling within or outside of the corresponding group, consult disdplinary literature for
guidance, or define as unclassified related virus and refer to ICTV.

d. If falling outside of known taxonomic groupings based on ICTV criteria, perform phylogenetic analysis of
conserved proteins with most closely related virus groups to determine evolutionary position. Based on these
analyses, suggestions can be made for new taxonomic groupings for consideration by the ICTV.

II. If you obtained apparently partial sequences or sequences corresponding to multiple genome segments of one or more
viruses:

a. Do sequences show highest similarity to same or different viruses?

i. If highest similarity is always the same virus, follow checklist starting from step L.a. using each
individual contig to check for consistency in step I.c. If inconsistent, perform phylogenetic analysis of
individual contigs for evolutionary consistency.

ii. If highest similarity is to different viruses, check if sequences correspond to the same taxonomic
grouping at family or genus level

e Ifyes, check if contigs cover the same or different parts of the viral genome

o If contigs cover different parts of the genome, they probably correspond to asingle
virus, follow checklist starting from step lLa. using each individual contig to check for
consistency in step l.c. If inconsistent, perform phylogenetic analysis of individual
contigs for evolutionary consistency.

o If contigs cover the same part of the genome, separate contigs covering similar regions
and analyze them individually following the checklist from L.a. checking for consistency
in step Lc. If inconsistent, perform phylogenetic analysis of individual contigs for
evolutionary consistency.

Figure 4. Checklist of the most important considerations during taxonomic classification of plant viruses detected by HTS.

4.3.8. “Quick start” Methods

Depending on the computational background of the user, there are different ways to
approach the analysis. Many software solutions are available for detecting the presence
of (plant) viruses in HTS datasets, which have been summarized recently by several re-
views [118,119]. For beginners or newcomers in the field, all these tools can be overwhelm-
ing. The quick-start guide (Figure 5) might be handy to select an appropriate tool or pipe-
line.
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Quick-start guide to start analyzing HTS data for virus detection

Where do I get (test) data?

Using well-characterized datasets is crucial to evaluate the classical performance criteria of an analysis pipeline, such as
diagnostic sensitivity (depending on false negatives), reproducibility and false discovery rate (depending on false positives).

What?

More information

Links

10 Illumina sRNA datasets used in performance
testing study involving 21 labs

https://doi.org/10.1094/
PHYTO-02-18-0067-R

(accessed on 13. 4. 2021)

https://github.com/plantvirology/COST_Action
_PT/releases (accessed on 13. 4. 2021).

7 semi-artificial datasets composed of real [llumina
RNA-seq datasets from virus-infected plants spiked
with artificial virus reads, 3 real datasets and 8
completely artificial datasets. Each dataset addresse:
specific challenges that could prevent virus
detection.

https://doi.org/10.5281/

zenodo.4584718
s  (accessed on 13. 4. 2021)

https://gitlab.com/ilvo/VIROMOCKCchallenge
(accessed on 13. 4. 2021).

How do I choose an analysis pipeline?

The choice of a suitable analysis pipeline depends on the type of data, the application, available resources and bioinformatics
skills. Regardless of these considerations, each pipeline must roughly contain the different analysis steps as explained in the
main text (chapter 4) and in Figure 2. Some suggestions for pipelines for analyzing Illumina RNA-seq data for virus detection
are given below (summarized on hitps://gitlab.com/ilvo/phbn-wp2-training) (accessed on 13. 4. 2021).

Bioinformatics skill

Available resources
level

Recommended type of
pipeline

Suggested software (more info: Table 2)

Low to moderate Low

Web- or cloud-based tool

VirFind*, VirusDetect*, IDTaxa, Kaiju
*dedicated to plant virus detection

Moderate, willing to pay

Low to moderate .
license fee

GUI-based commercial
software

CLC Genomics Workbench, Geneious Prime
Pre-built pipelines available at: https://gitlab.com/ilvo
/phbn-wp2-training (accessed on 13. 4. 2021).

Moderate, limited to

Low to moderate
open source software

GUI-based open source
software

VirTool, Galaxy with Kodoja plug-in installed
Ask your IT department to set up a local instance.

VirusDetect, virAnnot, Kodoja?, Angua?

Moderate to high M‘oderate o high Dedicated command-line *Available as conda package, which eases
(Linux-based OS) software packages . .
installation.
Custom-built pipeline Combination of selected tools for each step
. Moderate to high combining different mentioned in Figure 2, automated using a shell
High . . . T e
(Linux-based OS) command-line software script or pipeline building software (e.g.,

packages

Snakemake, Nextflow).

How do I interpret the data?

The interpretation of the results is highly dependent on the pipeline you use. Make yourself familiar with the different steps of
the chosen pipeline and possible drawbacks of each step by thoroughly reading the manual(s). A helpful guide to identify the
weak points of your pipeline can be the checklist in Figure 3. Also, the taxonomic classification of your sequences should not be
taken for granted, and should be considered carefully as explained in Figure 4. Finally, a confirmation of your virus/viroid
presence by an independent technique is strongly recommended as discussed in chapter 4.4.1.

Figure 5. Quick-start guide assisting selection of analysis approaches for plant virus detection from HTS data.

Among these options, easy-to-use pipelines that do not require extensive computa-
tional expertise might be a good start. These pipelines present a user-friendly interface on-
line or directly on the computer. A first group of pipelines can be considered as “all in
one”: they automatically start on the raw data to deliver the final results as a list of viruses
detected. They may or may not allow the adaptation of parameters. A second group cor-
responds to pipelines for which the different steps of the process have to be done sepa-
rately and independently. This is the case when using commercial software such as CLC
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Genomics Workbench or Geneious Prime, which both also enable the building of custom-
ized “all-in-one” workflows. Table A1 summarizes the pros and cons of the most common
“easy-to-use” analysis solutions. Ease of use may generate a false sense of confidence in
the results and, as with all pipelines, understanding of the steps and the parameters of the
pipelines, as well as critical interpretation of the results is always required.

4.4. What to Do When The Data Analysis Is Concluded?
4.4.1. Identity Confirmation by an Independent Technique

As for many other test methods, HTS may sometimes provide false-positive results.
Therefore, if consequential, it is important that HTS results are confirmed.

The need to confirm the identity of a pest depends on the context of the analysis and
on the type of organism identified (e.g., identification of a quarantine compared to an en-
demic pest). The results must be confirmed in cases considered critical to national or in-
ternational plant protection programs. These are the detection of a pest in an area where
it is not known to occur or in a consignment originating from a country where it is de-
clared to be absent; and also, when a pest is identified by a laboratory for the first time
(EPPO PM 7/76, 2019). The identity of any uncharacterized pest with potential risks to
plant health should also be confirmed by another test. Whilst a virus in its common host
is unlikely to require confirmation (if not regulated), it may be useful if associated with
different symptoms (e.g., an emerging strain).

When confirmation is needed, it is recommended to use a test or a combination of
tests based on different biological principles (e.g., ELISA or targeted PCR instead of rese-
quencing the sample using the same protocol). If available, validated tests should be used
and a new sample extract obtained for analysis. The selection of confirmatory tests de-
pends on the performance characteristics required; the general characteristics of methods
for plant virology have been reviewed [120]. If no other tests are available to confirm the
identity of the pest (i.e., poorly characterized and uncharacterized organisms), primers
should be designed and tested, based on the HTS sequence data and available sequence
information in the sequence databases. Alternatively, generic primers that enable the am-
plification of viruses within a genus or family, including the targeted one(s), followed by
Sanger sequencing of the amplicons could be used to confirm the identity.

4.4.2. Biological Characterization Post HTS Detection

Based on HTS, the list of thus far unknown or poorly characterized viruses for which
only genome data are available is rapidly increasing [121]. This presents a challenge for
the further steps necessary to determine the causative relationship to a disease and guide
phytosanitary diagnostic laboratories on data interpretation and recommendations. Vi-
ruses for which only genome data are available can indeed be taxonomically assigned, but
the real challenge is to attribute biological meaning to their detection. The interpretation
of the biological relevance applies mainly to poorly characterized and uncharacterized or
newly discovered viruses. For example, the viral sequences detected may correspond to a
bona fide virus infecting other organisms associated with the sample, including bacteria,
fungi, or arthropods [122,123] or to viral sequences integrated into the plant genome
[124,125]. As stated previously [125], relevant scientific expertise is essential for sound
biological interpretation of HTS results, in particular when identifying a target with a low
titer, a poorly characterized species, an uncharacterized organism, or sequences inte-
grated in the host genome [6,126]. In this latter case, careful phylogenetic analysis, includ-
ing retrotransposons and viruses reported only from integration events in plant genomes
[91-93] may provide critical information on whether the sequences identified correspond
to an autonomously replicating (episomal) virus or to cellular transcripts from integrated
viral elements. This may need to be validated by specific experiments to confirm or dis-
prove an episomal replication scenario.
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The extent to which additional biological characterization is performed depends
largely on the potential risk the organism(s) would pose to plant health, although the ac-
quisition of such data may take time or may not be possible (e.g., lack of human and/or
financial resources). The scaled and progressive scientific framework proposed by Mas-
sart et al. [125] is a useful tool for guiding the biological characterization and the risk as-
sessment of an uncharacterized or poorly characterized plant virus detected by HTS.

4.4.3. Sharing Data to Leverage Knowledge

After the detection of the virus in the laboratory, the researcher or diagnostician faces
an important dilemma: when and how to share data publicly. As shown by recent exam-
ples [127-129], pre-publication data sharing between laboratories brings valuable infor-
mation to address the risks raised by a virus. Sharing data will give a more global picture
of its geographical repartition, its genetic diversity, its host range and symptomatology,
allowing a contextualized risk analysis and avoiding unnecessary regulatory action.
When shared, the genome information usefulness is leveraged. Data sharing must also
include metadata from the sample (e.g., origin, species, cultivar, time point, organ of sam-
pling). Nevertheless, data sharing is not always easy due to regulatory implications, and
for commercial work, laboratories may be bound by confidentiality agreements [7]. In ad-
dition to sharing sequence data itself, sharing of analysis pipelines, protocols, and experi-
ences between labs can greatly contribute to the harmonization of the field and provide
useful resources for newcomers to the field. The recently established Plant Health Bioin-
formatics Network (PHBN) aims to foster this approach and provide protocols, pipelines
(https://gitlab.com/ilvo/phbn-wp2-training), and reference datasets
(https://gitlab.com/ilvo/VIROMOCKCchallenge, accessed on 13 April 2021) [130] that can
be widely employed. It also aims to organize community efforts to advance certain aspects
of plant health bioinformatics (https://gitlab.com/ilvo/PHBN-WP4-RNAseq_Commu-
nity_Screening, accessed on 13 April 2021).

4.4.4. Recombination Analysis

Recombination is common in some genera of plant viruses, and the presence of re-
combination events can have impacts on downstream analysis such as phylogenetics.
Thus, identification of recombination is a useful first step, prior to further genome analy-
sis. The most popular software solutions, which detect recombination patterns comparing
full or partial viral genomes and run on Windows, are RDP4 [131], SimPlot [132], and
TreeOrder Scan [133]. ViReMa (Viral Recombination Mapper) can be used for the detec-
tion of recombination junctions, as well as insertion/substitution events and multiple re-
combinations within single reads [134], and it has been successfully applied for the anal-
ysis of recombination events in plant virus genomes [22,135,136].

4.4.5. Additional Bioinformatics Analyses

Further analyses, beyond viral detection and taxonomic classification, can be per-
formed on HTS data, depending on the goal of the study. For instance, the large amount
of sequence data generated by HTS allows a good resolution of the within-host genetic
diversity of the viral populations [22]. Assessing the genetic diversity within and among
viral populations can provide a better understanding of virus evolution and help to de-
termine population genetic parameters or epidemiological patterns [137,138]. This can be
done using single nucleotide polymorphism (SNP) calling algorithms, which need to al-
low the detection of low-frequency variants expected in virus populations. Phylogenetic
relationships among the detected and previously known viruses can also be investigated
using fast neighbor-joining algorithms [139], more precise maximum likelihood ap-
proaches [140,141], or Bayesian analysis approaches [142]. Freeware phylogenetic analysis
suites, such as MEGAN [143], or phylogenetic analysis algorithms integrated within com-
mercial software, such as CLC Genomics Workbench and Geneious Prime, can be used.
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Studying the time of emergence of viral species and strains including the distribution of
the genetic diversity across geographical sites can be done using software such as BEAST
[144], TempEst [145] and SPAGeDI [146].

5. Conclusions and Outlook

In this review, we aimed to provide an informative primer on the generation and
analysis of HTS data for the detection of plant viruses. Even though the field of HTS is
transforming rapidly and new platforms and analysis tools are being developed con-
stantly, the basic concepts of data analysis reviewed here will remain relevant in the fu-
ture. In the next few years, we expect a great increase in the use of the long-read HTS
platforms. New algorithms and pipelines for analysis of data will continually be devel-
oped, building on some of the concepts described above. These developments are likely
to focus on two main areas. Firstly, the adoption of deep learning approaches will likely
be more and more integrated into the field of virus detection, on different levels, from
similarity searches to the estimation of detection confidence levels, to enable the more
robust detection of virus sequences that are more distantly related to those we currently
recognize. Secondly, with the further development of nanopore sequencing-based plat-
forms, potentially facilitating on-site HTS analysis of samples, we will need faster and
more memory-efficient analysis approaches to enable rapid data analysis, potentially
away from centralized facilities. Moreover, guidelines are being developed to enable the
validation and verification of HTS-based detection of plant pathogens in research and di-
agnostic settings, which also include bioinformatics steps of the analysis [9]. These guide-
lines will provide detailed information on how to use appropriate controls and which
specific results parameters to use to ensure the validity of the results, which is briefly cov-
ered in Figure 3 and Figure 4 in this text. Finally, we encourage the readers to use this
guide as a starting point for the selection of appropriate analysis approaches and to get
further informed about the specifics of the algorithms (Figure 5). By combining
knowledge on the analysis approaches with a sound plant virology background, we can
maximize the potential of these technologies and provide sound interpretation of the re-
sults.
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Appendix A

Table Al. List of selected easy-to-use analysis solutions for detection of plant viruses with their pros and cons.

Pipeline Brief L. Web Link/Publication Pros Cons
Description
3 Uses complete NCBI GenBank database for viruses
. Easy to use: single command to run one or multiple da- (divided along host type) for reference mapping
tasets simultaneously. and identity searches. NCBI GenBank sequences
. Performs de novo assembly and reference mapping in are poorly curated and may lead to reports of
parallel, including optional host genome subtraction wrong results.
and identified contigs through BLASTn and BLASTx. 3 Creating and formatting new custom or up-to-date
Virus discovery . Automatic results organization and presentation in NCBI GenBank reference library is not very
. using sSRNA http://virusdetect.feilab.net, accessed on 13 April 2021 html table providing key metrics on coverage, straightforward and ready formatted updates are
VirusDetect . . .
and RNAseq [147] sequence depth, virus and genus name, and link to not uploaded very regularly to the VirusDetect
sequences visual map and NCBI GenBank reference sequence. webpage.
o Options to modify key assembly, mapping, and 3 Currently requires Linux environment, which is an
reporting parameters. impediment for many diagnosticians.
. Windows version with visual interface and automatic 3 Default reporting cutoff settings are optimized for
quality control and trimming to be released in 2021. siRNA to minimize false positives due to index-
. Available via user account online. hopping; however, they may lead to the non-
reporting of low concentration viruses.
. Open source modern graphical optimized for cloud
computing.
. User and group control with password protection,
HTS sample sample data management, security, and QA features. . Requires some computational skills for user (or
manager with www.virtool.ca, accessed on 13 April 2021 . Support for multiple workflows and versioned quire orpuan
. . . . . . . help of informatician) to install as a local server on
. virus detection,  https://github.com/virtool/virtool, accessed on databases for viral and non-viral pathogens. . .
Virtool . ps://g : 4 . Linux operating system.
discovery and 13 April 2021 . Can process short and long reads (Illumina). . - 1
. p . - - . . Limited ability to change parameters within a
analysis work- [36] . Result visualization, filtering, and sorting. workflow
flows . HTTP API for automation or integration with other ’
services such as LIMS.
3 Can also be controlled via the command line for more
complex tasks.
. Wide options to modify assembly, mapping,
Command-line annotation, and dustenr}g parameters. 3 Requires a Linux environment, which is an
. J Performs parallel analysis of samples from the same . . . .
tool for virus dataset impediment for many diagnosticians.
virAnnot detection and [148] ; . Need a cluster access for the annotation step.

viral diversity
estimation

Estimation of viral diversity through Operational
Taxonomic Units (OTUs).

Easy results visualization with Krona and phylogenic
trees.

Requires a good knowledge of command-line and
Unix packages installation.
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Brief

Pipeline L. Web Link/Publication Pros Cons
Description
o Online virus http://virfind.org, accessed on 13 April 2021 . Available via user accounAt online. . Analysis by 9nlme version Can‘take several days.
VirFind . J Performs reference mapping, de novo assembly, and 3 Output only in text files: experience needed for
discovery tool [149] . . . .
conserved domain searches in parallel or subsequently. further interpretation.
. Simple: can be executed with one command but has a 3 Requires a Linux environment, which is an
number of parameters/tools that can be tweaked impediment for many diagnosticians.
Command-line https://fred.f K/ io/ 3 . Uses full nt and nr GenBank databases so is sensitive . Dependent on locally stored nt and nr GenBank
Angua tool for virus ps://ired. e.ra.co.u Smcgrelg/anguas, ac: . Manual inspection of results with a local MEGAN in- databases.
detection cessed on 13 April 2021 stallation improves accuracy 3 BLASTX stage can take a long time.
. Supports single and paired-end analysis . Manual inspection of results with a local MEGAN
. Supports BLASTn/MEGAN parallelization installation is required.
kemer based . Auvailable as Galaxy plug-in or as command-line tool
command-line https://github.com/abaizan/kodoja, accessed that can be installed using conda. . Requires a Linux environment for the command-
Kodoja tool for virus on 13 April 2021 . k-mer based rather than assembly and mapping, which line tool, which is an impediment for many
Vi [107] makes it more sensitive and computationally less diagnosticians.
detection . .
intensive.
. Undescribed virus or viral strain will not be
Targeted virus detectable using this Plpelm.e. ‘
. . . e 3 Only grapevine and citrus viruses are available;
detection using . Results easy to interpret, good sensitivity. .
Truffle [150] . . . however, e-probes for other viruses can be
e-probes based . Requires relatively low computational resources. designed
approach . Requires a Linux environment, which is an
impediment for many diagnosticians.
Online * Both standalone and web server available. . Not specifically made for virus detection
. . http://kaiju.binf.ku.dk/, accessed on 13 April 2021 o Quick analysis not requiring any knowledge in P y . ! -
Kaiju metagenomic . . . . Protein based, hence blind for non-coding
analysis tool [105] bioinformatics and data analysis. sequences (viroids, satellites)
4 . Prepared downloadable databases available. q ! )
Workflow . . Web-based platform. 3 Limit in data upload, unless if you establish own
system for https://usegalaxy.org, accessed on 13 April 2021
Galaxy computational (151] . Open source. local galaxy server.
analgres . Vast choice of computational biology tools. 3 Not specifically made for virus detection.
. Not possible to change parameters of the
Online ‘ https://idseqnet/, accessed on 13 April 2021 . Eas.y—to-use V}sual mterfag& of results. . workflow.
ID-Seq metagenomic (152] . Quick analysis not requiring any knowledge in . Complementary software needed for reads
analysis tool bioinformatics and data analysis. alignment.
. Not specifically made for virus detection.
. Graphical interface.
Software for . . . . .
. Multiple plugins available, including some frequently . . L
. molecular K . Licensed, including license fee;
Geneious biology and https://www.geneious.com, accessed on 13. 4.2021 used freeware assembly algorithms. . HTS data analysis requires computational
Prime gy ps: 8 ’ ’ T . Automated, customizable workflows. y ! P
sequence . resources.
. J Constant release of updated versions and customer
analysis

support.
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Brief

Pipeline L. Web Link/Publication Pros Cons
Description
. Nice and efficient visualization tools.
. Free trial version available.
Comprehensive  https://digitalinsights.qiagen.com/products- ¢  Graphical interface.
CLC softV\{are overview/discovery-insights- * Automated, customizable workﬂ.o WS- . Expensive ongoing licensing fee.
. solution of . . . Constant release of updated versions and customer . . .
Genomics molecular portfolio/analysis-and- support . HTS data analysis requires computational
Ml biology visualization/ qiagen-dC-genomiCS- . Nice and efficient visualization tools. resources.

analysis tools

workbench/, accessed on 13 April 2021

Free trial version available.
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