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The exploration of extreme environments has led to the discovery of numerous envi-
ronments that were, until recently, considered uninhabitable [1]. This, for several reasons,
some, fundamental and related with the search for the limits of life [2], and others, more
pragmatic and focused on the biotechnological potential of extremophiles, has sparked
a marked growth of interest in the ecology of extreme environments [3]. The 2019–2020
version of Extremofiles 2.0, a Special Issue of Microorganisms devoted to extremophiles,
has gathered eleven papers dealing with different aspects of microorganisms that thrive
in extreme environments: five on halophiles [4–8], three on acidophiles [9–11], one on
thermophiles [12], one on psycrophiles [13] and one on metal resistant microorganisms [14].

An important issue in this area of research is the biodiversity identified in different
extreme environments. Maltman et al. compiled the current research on bacterial tellurite
resistance, focusing on bacteria with a high level of resistance to this metalloid inhabiting
extreme environments [14].

Liu et al. analyzed the complex eukaryotic community in the world’s deepest marine
blue hole in the South China Sea, where significant differences were observed at different
depths, and the most abundant microalgae assemblages detected were Dinophyceae at
10–20 m water column [4].

Leoni et al. analyzed the microbial communities in nine ponds with increasing salt
concentrations from Margherita di Savoia Saltern (Italy), the largest athalasohaline saltern
in Europe. They observed Salinibacter as the most abundant genus, followed by the archaeal
Halocuadratum and Natronomonas [7].

Gris et al. characterized the microbial community in the Euganean thermal muds
(Italy), detecting a stable cyanobacterial population dominated by one species of Phormid-
ium, for which the complete genome sequence is reported [12].

Ayala-Muñoz et al. analyzed the diversity of an acidic, meromictic pit lake in the
Iberian Pyrite Belt, Cueva de la Mora, in which Eukaryotes, predominantly Coccomyxa,
dominated the upper layer, while Archaea, predominantly Thermoplasmatales, domi-
nated the deep layer, and a combination of bacteria and eukaryotes were abundant in the
chemocline [11].

Finally, Plugge et al. characterized the efficiency of a gas-lift bioreactor in which
H2/CO mixtures instead of pure H2 were used. The addition of CO marginally affected
the microbial community; over time acetate production increased and acetogenesis became
the dominant process [8].

More specific questions were addressed by the rest of the authors. Vega et al. reported
on the halotolerant bacterium Staphylococcus equorum EN21’s promotion of plant growth by
attenuating the virulence of phytopathogens through quorum quenching [5].

Sampedro et al. reported the role of chemotaxis in the colonization of the halophilic
bacteria, Halomonas anticariensis FP35T, on Salicornia hispanica plants, the role of oleano-
lic acid as a chemoattractant and the enhanced positive effects of strain FP35T on the
development of the plant [6].
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Avila-Jimenez analyzed the structure of taxonomic and functional gene distribution
across Artic and Antartic locations and observed that, although taxonomic diversity dif-
fered significantly between locations, functional genes were distributed evenly throughout
bacterial networks as well as across different geographic locations, which could have impli-
cations for ecological resilience in the case of rapid or sudden environmental changes [13].

Sánchez-España et al. found a natural attenuation of acidity and toxic metal concentra-
tions toward the bottom of two meromictic, oligotrophic acidic mine pit lakes, Filón Centro
and La Zarza, both in the Iberian Pyrite Belt. Analysis of the correspondent microbial
diversity showed this to be the consequence of the precipitation of metal sulfides due to
the production of biogenic sulfide.
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