
microorganisms

Article

Production of Monacolin K in Monascus pilosus: Comparison
between Industrial Strains and Analysis of Its Gene Clusters

Weihua Dai 1,2, Yanchun Shao 1,2 and Fusheng Chen 1,2,*

����������
�������

Citation: Dai, W.; Shao, Y.; Chen, F.

Production of Monacolin K in Monascus

pilosus: Comparison between Industrial

Strains and Analysis of Its Gene

Clusters. Microorganisms 2021, 9, 747.

https://doi.org/10.3390/microorganisms

9040747

Academic Editor: Hiroya Yurimoto

Received: 4 March 2021

Accepted: 30 March 2021

Published: 2 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods,
Huazhong Agricultural University, Wuhan 430070, China; dwh@webmail.hzau.edu.cn (W.D.);
yanchunshao@mail.hzau.edu.cn (Y.S.)

2 College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
* Correspondence: chenfs@mail.hzau.edu.cn

Abstract: Monascus pilosus strains are widely applied to yield a cholesterol synthesis inhibitor
monacolin K (MK), also called lovastatin (LOV). However, the mechanism of MK production by
M. pilosus strains is still unclear. In this study, we firstly confirmed four Monascus strains, MS-1,
YDJ-1, YDJ-2, and K104061, isolated from commercial MK products as M. pilosus and compared their
abilities to produce MK in solid-state and liquid-state cultures. Then, we sequenced and analyzed
their genomes and MK biosynthetic gene clusters (BGCs). The results revealed that the MK yields
of MS-1, YDJ-1, YDJ-2, and K104061 in solid-state cultures at 14 days were 6.13, 2.03, 1.72, and
0.76 mg/g, respectively; the intracellular and extracellular MK contents of MS-1, YDJ-1, YDJ-2, and
K104061 in liquid-state cultures at 14 days reached 0.9 and 1.8 mg/g, 0.38 and 0.43 mg/g, 0.30 and
0.42 mg/g, and 0.31 and 0.76 mg/g, respectively. The genome sizes of the four M. pilosus strains
were about 26 Mb, containing about 7000–8000 coding genes and one MK gene cluster. The MK
BGCs of MS-1, YDJ-2, and K104061 contained 11 genes, and the MK BGC of YDJ-1 contained 9 genes.
According to the literature search, there are few comparisons of gene clusters and related genes
responsible for the synthesis of LOV and MK. We also compared the LOV BGC in A. terreus with the
MK BGCs in different species of Monascus spp., and the results revealed that although LOV and MK
were the same substance, the genes responsible for the synthesis of MK were much less than those
for LOV synthesis, and the gene functions were quite different. The current results laid a foundation
to explore the mechanism of MK produced by Monascus spp. and compare the synthesis of LOV
and MK.

Keywords: Monascus pilosus; genome; monacolin K; biosynthetic gene cluster

1. Introduction

Monascus spp. are important filamentous fungi for foods and medicines, whose
fermented rice product, Hongqu, also known as red yeast rice, has been used for nearly
two thousand years in China and other Asian countries [1–3]. Monascus spp. can produce
abundant secondary metabolites (SMs), such as Monascus pigments (MPs), monacolin
K (MK), and γ-aminobutyric acid (GABA), and a few strains of Monascus spp. can also
produce citrinin (CIT), a kidney mycotoxin [4–9], which leads to the safety issue of Monascus
products. At present, the species commonly used in the production of Hongqu mainly
belong to M. pilosus, M. ruber, and M. purpureus [10–13]. Research has revealed that
the strains of M. pilosus can produce a large number of MK without CIT; thus, they are
considered ideal producers for functional Hongqu [14,15]. Research has also shown that
the different strains of M. pilosus can produce MK at various concentrations [16]. However,
the mechanism of MK produced by M. pilosus is still unclear.

Fungal SMs mainly include polyketides (PKs), nonribosomal peptides (NRPs), and
terpenes (TEs) [17,18], whose biosynthetic genes usually appear in the clusters [19]. PKs and
NRPs are synthesized by polyketide synthase (PKS) and nonribosomal peptide synthetase
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(NRPS), respectively [20–23]. PKS can be divided into three types: Type I PKS, also called
modular PKS, is mainly found in bacteria and fungi; Type II PKS, also known as aromatic
PKS, mainly synthesizing aromatic compounds, exists only in bacteria; Type III PKS, also
known as chalcone type PKS, mainly exists in plants, also in bacteria and few fungi [24,25].
PKs biosynthesized by Type I PKS may be the most abundant fungal SMs [19]. NRPS is
a large-scale multimodule biocatalyst that utilizes complex reactions to produce peptide-
based natural products, which are discovered in bacteria and fungi with huge chemical
diversities and broad biological activities [26,27]. In addition, there also exist fungal
PKS-NRPS hybrids that can produce a series of SMs with diverse structures with various
biological functions [28]. By analyzing the key genes of PKS and NRPS in fungal genomes,
it is possible to predict what SMs are mainly produced by fungi [19].

So far, eight genomes of Monascus strains (six in NCBI and two in the Joint Genome
Institute (JGI)) have been released, of which five belong to M. purpureus and three belong
to M. ruber. Up to now, no genome information of M. pilosus has been released, and few
industrially applied strains of Monascus spp. are available on the genome [29–32].

In this study, first, based on the morphological classification methods, four strains
of Monascus spp., MS-1, YDJ-1, YDJ-2, and K104061, isolated from different commercial
Hongqu products [33,34], were identified as M. pilosus. Then, the yields of MK and CIT
in solid-state and liquid-state cultures of the four strains were detected and compared.
Furthermore, their genomes were sequenced, and their MK BGCs were predicted and
analyzed based on their genomic information.

2. Materials and Methods
2.1. Strains and Culture Conditions

Four strains of Monascus spp., MS-1, YDJ-1, YDJ-2, and K104061, isolated from Hongqu
products were cultured on potato dextrose agar (PDA) media, respectively, and incubated
at 28 ◦C for 7 days.

2.2. Preparation of the Spore Suspensions for Monascus spp. Strains

Sterile water was added to the PDA media slants of Monascus spp. strains, and
spores were scraped off with an inoculation loop. Then, the spore fluids were poured into
sterilized empty triangular flasks containing glass beads to disperse and were filtered with
2 to 3 layers of sterilized lens cleaning paper. After counting with a hemocytometer, the
concentration of the spore suspension was adjusted to 106/mL.

2.3. Classification and Identification of Monascus spp. Strains
2.3.1. Colonial Morphologies of Monascus spp. Strains

A 0.5 µL volume of the spore suspensions of the four strains was, respectively, placed
on the center of Petri dishes (Φ = 9 cm), including 4 media commonly used for Monascus
spp.: malt extract agar (MA), Czapek yeast extract agar (CYA), potato dextrose agar (PDA),
and 25% glycerol nitrate agar (G25N) [33,35]. Then, the Petri dishes were incubated at 28 °C
for 7 days to observe the colonial morphologies of colony size and obverse and reverse
colors of the colony and aerial hyphae. The colonial size was expressed as the average
values of the colonial diameters in two vertical directions.

2.3.2. Microscopic Morphologies of Monascus spp. Strains

A 200 µL volume of the spore suspensions of the four strains was spread on MA, CYA,
PDA, and G25N media plates, respectively. The sterilized coverslips were inserted into the
media at an angle of 45◦. The plates were kept at 28 ◦C for 7 days, then the coverslips were
placed under a microscope to observe the microscopic morphologies of mycelia, conidia,
and cleistothecia.
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2.3.3. Molecular Identification of Monascus spp. Strains

Molecular identification of the strains was performed by alignment of their internal
transcribed spacer (ITS) sequences. The four ITS sequences of Monascus strains were
obtained by genome sequencing and blasted on the NCBI database, then sequences with
higher homology were selected to construct the phylogenetic tree. The phylogenetic tree
was generated in MEGA X using the Neighbor-Joining method [36,37]. Bootstrap values in
the bootstrap test (1000 replicates) were shown above the branches [38]. The tree was drawn
to scale, with branch lengths in the same units as those of the evolutionary distances used
to infer the phylogenetic tree. The evolutionary distances were computed using the Kimura
2-parameter method [39] and were in the units of the number of base substitutions per site.

2.4. Solid-State and Liquid-State Cultures of Monacus spp. Strains
2.4.1. Culture Media

Seed culture medium: glucose, 50 g; peptone, 10 g; NH4H2PO4, 2.0 g; MgSO4·7H2O,
0.5 g; CaCl2, 0.1 g; potato juice to 1000 mL, pH 6.0.

Solid-state medium: rice flour, 30 g; soybean flour, 20 g; water content, 35%; acetic
acid, 0.6% (v/w); MgSO4·7H2O, 0.004 mol/kg; after mixing, sterilizing and cooling.

Liquid-state medium: potato juice was taken as the basic medium, soybean flour,
38.75 g/L; sucrose, 30 g/L; MgSO4·7H2O, 0.00105 mol/L; pH 5.5; sterilizing and cooling [33].

2.4.2. Preparation of Seed Liquid

The spore suspensions prepared in Section 2.2 were inoculated into the seed culture
medium with 10% (v/v) inoculum and cultured on a shaker at 150 rpm and 30 ◦C for
30 h [33].

2.4.3. Solid-State and Liquid-State Cultures

Seed liquid (10% (v/v)) was inoculated in the solid-state media, cultured at 30 ◦C for
60 h, then transferred to 24 ◦C to continue to be cultured for 14 days [34]. The samples
were taken on the 4th, 8th, 12th, and 14th days then dried at 45 ◦C and crushed.

Seed liquid (10% (v/v)) was inoculated in the liquid-state media, cultured at 30 ◦C
and 110 rpm for 3 days, then transferred to 25 ◦C to continue to culture for 14 days. The
samples were taken on the 4th, 8th, 12th, and 14th days [33].

2.5. MK and CIT Analysis
2.5.1. MK and CIT Extraction of Solid-State Samples

MK extraction: 0.1 g of dried solid-state samples were dried to a constant weight at
40 ◦C, suspended in 10 mL of 75% (v/v) ethanol solution, and subjected to ultrasonication
treatment (KQ-250B, Kunshan, China) for 60 min then centrifuged at 8000 rpm for 15 min.
The supernatant was collected and filtered through a 0.22 µm microfiltration membrane.

CIT extraction: 0.3 g of dried solid-state samples were suspended in 3 mL of 80% (v/v)
methanol solution and subjected to ultrasonication treatment for 40 min then centrifuged
at 8000 rpm for 15 min, and the supernatant was gathered. Another 3 mL of 80% methanol
was added to the precipitate. Both supernatants were combined, diluted to 10 mL, and
filtered through a 0.22 µm microfiltration membrane after ultrasonic extraction for 20 min
and centrifugation.

2.5.2. MK and CIT Extraction of Liquid-State Samples

Intracellular MK/CIT extraction: 0.1 g/0.3 g of freeze-dried mycelia were taken, and
the extraction steps are the same as the MK/CIT extraction of the solid-state samples in
Section 2.5.1.

Extracellular MK extraction: after the mycelia were filtered, absolute ethanol was
added at the ratio of 1:3 (fermentation broth/absolute ethanol). After standing still for
30 min, the mixture was centrifuged at 10,000 rpm for 10 min. The supernatant was
collected and filtered through a 0.22 µm microfiltration membrane.
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Extracellular CIT extraction: the mycelia were filtered to obtain the clarified fermentation
broth, which was filtered through a 0.22 µm microfiltration membrane for further analysis.

2.5.3. MK and CIT Detection

MK and CIT contents were detected by high-performance liquid chromatography
(HPLC, Shimadzu LC-20AT, Kyoto, Japan), equipped with a C18 column (inertsil ODS-3
4.6 × 250 mm) by means of a diode array detector. A 20 µL volume of sample extract
solution was injected into HPLC to detect MK and CIT. Both acid and lactone forms of MK
were calculated as the MK yield. The detailed HPLC parameters were as follows.

For MK detection, solvent A: acetonitrile; solvent B: 0.05% phosphoric acid in water;
60% A and 40% B for 30 min; detection wavelength: 238 nm; column temperature: 40 ◦C,
flow rate: 1.0 mL/min.

For CIT detection, solvent A: acetonitrile; solvent B: 0.1% phosphoric acid in water;
70% A and 30% B for 20 min; detection wavelength: 331 nm; column temperature: 30 ◦C,
flow rate: 0.8 mL/min.

2.5.4. Statistical Analyses

Statistical analyses were performed with SPSS (version 16.0) to calculate the means,
standard errors, and standard deviations. The statistical significance was calculated by
one-way analysis of variance (ANOVA), with significance levels set at p = 0.05.

2.6. Genomic DNA Extraction

Four Monascus spp. strains, MS-1, YDJ-1, YDJ-2, and K104061, were, respectively,
cultured on PDA plates at 28 ◦C for 4 days, then mycelia were collected and stored at
−80 ◦C for genomic DNA extraction using the CTAB method [40].

2.7. DNA Sequencing and Assembly

DNA samples prepared in Section 2.6 were randomly broken into fragments of the
length required to construct DNA libraries. NEBNext® Ultra™ DNA Library Prep Kit for
Illumina and SMRT bell TM Template kit 1.0 were used to construct the Illumina library
and 20K SMRT Bell library, respectively. Illumina NovaSeq PE150 and PacBio Sequel
platforms were applied for the whole-genome sequencing, then the raw data were valued
by FastQC [41], and SMRT Link v5.1.0 software [42,43] was utilized to assemble genomes.

2.8. Annotation and Analysis of Monascus spp. Genomes

Based on the sequence information of the four strains in this research and other
genomes of Monascus spp., which have been released in NCBI and JGI, prediction of the
coding genes was performed with Augustus [44]. The SM BGCs were predicted by Anti-
SMASH 5 for fungi [45]. The Pfam database (http://pfam.xfam.org/, accessed on 3 Decem-
ber 2019) and the conserved domain database (CDD, https://www.ncbi.nlm.nih.gov/cdd,
accessed on 3 September 2020) were used to predict and analyze the conserved domains
to re-predict the gene functions in the LOV and MK BGCs. The Geneious software [46]
was used to analyze the sequence similarity of the genes in the LOV and MK BGCs by the
Geneious alignment method, and the parameters were set as default.

2.9. Data Deposition

The four genomes of M. pilosus, MS-1, YDJ-1, YDJ-2, and K104061, could be obtained
from NCBI (BioProject Accession Number: PRJNA718072).

3. Results
3.1. Classification and Identification

All four strains of Monascus spp., MS-1, YDJ-1, YDJ-2, and K104061, used in the current
study were from the production plants of Monascus products [33,34], so their taxonomic
status was reidentified based on the morphological and molecular identification methods.

http://pfam.xfam.org/
https://www.ncbi.nlm.nih.gov/cdd
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3.1.1. Morphological Identification of Monascus spp.

As shown in Figure 1 and Table 1, on the seventh day, on MA media, the reverse
surfaces of colonies were yellow at the margins and deep orange at the centers; on CYA
media, colonies were irregular in shape; on PDA media, the edges of colonies were light
yellow to golden yellow; on G25N media, colonies were floccose, mycelia were white, and
the reverse was uncolored. The microscopic morphologies of the four strains showed that
there were cleistothecia and conidia on MA and PDA media, while only conidia could be
observed on CYA and G25N media. The morphological characteristics of the strains were
similar to those described in the literature of M. pilosus [35,47].
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Figure 1. Colonial and microscopic morphologies of Monascus spp. strains on different media at
28 ◦C for 7 days. (a) Colonial morphologies; (b) microscopic morphologies. Scale bars: 50 nm; the
images in the red frame were magnified images of cleistothecia or conidia.
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Table 1. Morphologic characteristics of Monascus spp. on different media for 7 days.

MA CYA PDA G25N

Colonial
Morphologies

The colonial diameters reached
40–48 mm. Their obverse and

reverse surfaces were white and
light orange to orange-red,

respectively. Their mycelia were
compact and dense.

The colonial diameters
reached 50–65 mm. Their

shapes were irregular.
Their obverse and reverse
surfaces were white and

red to dark red with radial
folds. Their mycelia were

sparse and short.

The colonial diameters
reached 40–55 mm. Their

reverse surfaces were light
orange or orange-red and the

edges were light yellow to
golden yellow. Their middle
parts were raised, and their

mycelia were dense and fluffy.

The colonial diameters
reached 11–25 mm.
Their obverse and

reverse surfaces were
white and colorless.

Microscopic
Morphologies

Cleistothecia arose singly at the
tips of stalk-like hyphae and walls

were hyaline or pale brown.
Conidia were hyaline and borne

laterally on pedicels and
terminally on hyphae, arising
singly or occasionally in short
chains, obpyriform to globose.

No cleistothecium; conidia
were transparent or brown

and obpyriform to
globose.

Cleistothecia were globose and
arose singly from distinct
stalk-like hyphae. Conidia

were spherical or
upside-down pear-shaped

with colorless or brown colors.

No cleistothecium;
conidia were spherical,

transparent, and
colorless.

3.1.2. Molecular Identification of Monascus spp. Strains

The phylogenetic analysis in this study used ITS sequences (the four ITS sequences of
Monascus strains were obtained by genome sequencing, and the other ITS sequences were
from NCBI). The evolutionary history was inferred using the Neighbor-Joining method.
Bootstrap values were above branches, and only those above 60% were indicated. The
strains of Penicillium griseum and Aspergillus fischeri which were farther from the tested
strains were used as the outgroup.

As shown in Figure 2, the four Monascus strains were clustered with M. pilosus, M.
fuliginosus, M. barkeri, M. paxii, M. albidulus, M. ruber, M. purpureus, and M. fumeus and very
close to M. pilosus, indicating that they were M. pilosus.
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Combined with the results of morphological and molecular identification, the Monascus
strains, MS-1, YDJ-1, YDJ-2, and K10406, isolated from factories and used in this study
were identified as M. pilosus.

3.2. MK and CIT Production in Solid-State and Liquid-State Cultures

According to the formula of solid and liquid culture media, stage-variable temperature
culture was used and samples were taken on the 4th, 8th, 12th, and 14th days of the
culture process.

As shown in Figure 3, MS-1 could produce the highest concentration of MK in both
solid-state and liquid-state cultures. In solid-state cultures at 14 days, the MK yields of,
MS-1, YDJ-1, YDJ-2, and K104061 reached 6.13, 2.03, 1.72, and 0.76 mg/g, respectively. In
liquid-state cultures at 14 days, the intracellular and extracellular MK contents of MS-1,
YDJ-1, YDJ-2, and K104061 were 0.9 and 1.8 mg/g, 0.38 and 0.43 mg/g, 0.30 and 0.42 mg/g,
and 0.31 and 0.76 mg/g, respectively. CIT was detected neither in solid-state nor in
liquid-state cultures for all tested Monascus strains (data not shown).
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3.3. Genome Sequencing and Prediction of SM Gene Clusters

The four Monascus strains were sequenced and analyzed. The results (Table 2) showed
that the genome sizes were roughly 26 Mb, the G+C mole percentages were approximately
49%, and the coding genes varied from 7634 to 7771, respectively.

Table 2. General features of genomic information of four M. pilosus strains.

Genome Features MS-1 YDJ-1 YDJ-2 K104061

Genome length (Mb) 26.21 26.15 26.16 26.14
GC content (%) 48.89 48.90 48.89 48.87

Gene amount (#) 7771 7687 7718 7634
Gene total length (Mb) 13.26 13.04 13.13 13.09

Gene average length (bp) 1707 1696 1701 1715
Gene length/Genome (%) 50.60 49.86 50.18 50.08

AntiSMASH 5 was used to predict the SMs gene clusters in the four genomes, and
the results (Table S1) showed that five types of SMs were predicted. Furthermore, the MK
BGCs appeared in their genomes but no CIT BGCs.

3.4. Comparison of MK BGCs
3.4.1. Function Re-Prediction of the Genes in the LOV and MK BGCs Reported Previously

In 1999, Kennedy [48] reported a BGC related to LOV BGC in the genome of Aspergillus
terreus ATCC 20542, which contained total 18 genes including 7 unknown functional ones
at that time (Table 3), and in 2013, Xu et al. renamed one unknown gene, ORF5 as lovG [49].
In 2008, Chen and collaborators [50] reported a BGC related to monocolin K (MK BGC)
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in M. pilosus BCRC38072, which only contained 9 genes (Table 3). In this research, we
re-predicted functions of genes in LOV and MK BGCs by Pfam and CDD analysis, the
results showed that in LOV BGC, all of ORF2, ORF10, and ORF16 were re-predicted as
transporters, ORF14, ORF15, and ORF18 were re-predicted as mitochondrial carrier protein,
dehydratase and glycosyl hydrolase, respectively, while ORF12 was still unknown, and
lovG and mkD were re-predicted as α/β hydrolase (Table 3).

Table 3. Re-prediction of functions of genes in lovastatin (LOV) and MK biosynthetic gene clus-
ters (BGCs).

lov/mk* Function (Previous Study) Function (Re-Predicted in This Study)

lovA/mkC Cytochrome P450 monooxygenase Cytochrome P450 monooxygenase
lovB/mkA LOV nonaketide synthase LOV nonaketide synthase
lovC/mkE Enoyl reductase/Dehydrogenase Enoyl reductase/Dehydrogenase
lovD/mkF Transesterase Transesterase
lovE/mkH Regulatory protein Regulatory protein
lovF/mkB LOV diketide synthase LOV diketide synthase

lovG/mkD Thioesterase/Oxidoreductase α/β hydrolase
ORF1/- Esterase Esterase
ORF2/- Unknown Transporters

ORF8/mkG HMG-CoA reductase HMG-CoA reductase
ORF10/mkI Unknown/Efflux pump Transporters

ORF12/- Unknown Unknown
ORF13/- Regulatory protein Regulatory protein
ORF14/- Unknown Mitochondrial carrier protein
ORF15/- Unknown Dehydratase
ORF16/- Unknown Transporters
ORF17/- Cytochrome P450 monooxygenase Cytochrome P450 monooxygenase
ORF18/- Unknown Glycosyl hydrolase

* Genes whose functions were different from the previous functions in this research are shown in bold. “-”: The
relative genes could not be found in MK BGC.

3.4.2. Comparison of MK BGCs

Based on the LOV and MK BGCs in Table 3, we compared twelve genomes of Monascus
spp. including eight published genomes, M. purpureus YY-1, YJX-8, GB-01, HQ1, NRRL1596,
and M. ruber FWB13, CBS127566, NRRL 1597 [29–32], and four genomes of M. pilosus
sequenced in this study, and found that all genomes of four M. pilosus strains and three
M. ruber strains contained the MK BGCs while there was no MK BGC in those of five M.
purpureus strains. Total 9 or 10 genes named mkA-mkI were highly conserved in the LOV
and MK BGCs (Table 4, Figure 4). However, there were some unique genes in MK BGCs of
Monascus spp. For example, in YDJ-2, Both of mkF and mkG were combined into be one
gene mkF-G, and mkC in M. pilosus BCRC38072 [50] was predicted to be one gene mkC in
YDJ-1 or to be two independent genes mkC1 and mkC2 in other MK BGCs. In addition, there
was an extra gene mkJ in the MK BGCs of MS-1, YDJ-1, YDJ-2, K104061, and NRRL1597,
which neither existed in the LOV BGC of A. terreus ATCC 20542 [48] nor in the MK BGCs of
FWB13, CBS127566, and BCRC38072. Based on KOG annotation result obtained from JGI,
MKJ was one animal-type fatty acid synthase and related protein. It was worth noting that
although lovF/mkB did not exist in the MK BGCs of NRRL1597, it was located elsewhere in
its genome, and this situation also occurred in mkJ in the FWB13 and CBS127566 genomes
(data not shown).
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Table 4. Homologous comparison of the genes in LOV and MK BGCs (%).

lov/mk
Genes

M. pilosus M. ruber

MS-1 YDJ-1 YDJ-2 K104061 FWB13 CBS127566 NRRL1597

lovB/mkA 76.75/99.93 76.75/99.93 76.75/99.93 76.75/99.93 76.75/99.93 76.65/99.80 76.81/100
lovF/mkB 72.23/99.96 72.57/99.96 72.61/100 72.23/99.96 71.48/98.44 71.52/98.44 -

lovA/mkC 67.14/88.73
92.11/100

-/-
84.57/97.91

67.14/88.73
92.11/100

67.14/88.73
92.11/100

67.14/88.73
92.11/100

67.14/88.73
92.11/100

67.61/88.73 mkC1
92.11/100 mkC2

lovG/mkD 67.16/99.62 66.79/100 66.79/100 66.79/100 64.18/100 64.18/96.58 64.18/100
lovC/mkE 78.01/93.02 78.01/93.02 77.75/92.76 78.01/93.02 78.59/94.17 78.59/94.17 78.59/94.17
lovD/mkF 87.41/97.28 88.17/100 87.93/96.25 87.41/97.28 86.90/97.02 86.90/97.02 86.90/97.02

ORF8/mkG 71.98/100 71.72/99.62 71.98/100 71.98/100 71.98/100 71.98/100 71.98/100
lovE/mkH 55.65/100 55.65/100 55.65/100 55.65/100 55.65/100 55.86/99.77 55.44/99.32

ORF10/mkI 79.26/100 79.26/100 79.26/100 79.26/100 78.31/97.24 79.75/96.82 78.31/97.24

The numbers with “%” are the similarity percentages between mkA-mkI from Monascus spp. investigated in this study and the corresponding
genes in the LOV/MK BGCs reported previously [48,50].
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3.4.3. Multiple sequence alignment of LOV and MK BGCs

A multiple sequence alignment of each gene in LOV and MK BGCs (Figure 4) revealed
that genes in MK BGCs were quite different from those in LOV BGC, and the genes in MK
BGCs from the same species of Monascus spp. showed higher homology (Figures S1–S10).
Among MK BGCs of the strains of M. pilosus, the 1012th histidine of MKB in YDJ-2 was
mutated to arginine (Figure 5a), and the 77th glycine of MKD in MS-1 was mutated to
serine (Figure 5b). The arginine at position 259 of MKE was mutated to cysteine in YDJ-2
(Figure 5c).
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Further, we analyzed if these amino acid mutations occurred on the active or binding
sites of MKB in YDJ-2, MKD in MS-1, and MKE in YDJ-2 and affected their functions. We
found that the amino acid mutations in MKB, MKD, and MKE did not occur in the active
or binding sites (Figures S11–S13, Table S2) and did not affect their functions.

4. Discussion

In 1979, Endo identified a substance from the fermentation broth of M. ruber and
named it MK that could inhibit cholesterol synthesis [51]. In 1980, Albert [52] discovered a
similar substance from A. terreus and named it mevinolin. Subsequent research has proven
that mevinolin and MK are the same substance, and now, both of them are often referred
to collectively as lovastatin (LOV) [53]. Although MK and LOV are the same substance,
there were also some differences among the MK BGCs of Monascus spp. and LOV BGC. In
addition, different species of Monascus spp. contained different MK BGCs, and there were
also differences among genes related to MK synthesis in Monascus spp. In this research,
the SM BGC prediction results of Monascus spp. showed that the strains of M. ruber and
M. pilosus contained MK BGCs. There were 10 genes in each MK BGC of M. ruber FWB13,
CBS127566, and NRRL 1597. Among M. pilosus strains, there were 11 genes in each MK
BGC of MS-1, YDJ-1, and K104061 and 9 genes in the MK BGC of YDJ-2 (Table 4, Figure 4),
while 18 genes were reported responsible for the LOV biosynthesis [48], in which there
were 9 genes that may be essential and conserved genes for the biosynthesis of MK. In
the MK BGC of M. ruber NRRL 1597, mkB was absent, but there was an extra gene, mkJ,
which was related to the synthesis of animal-type fatty acid; mkC in M. pilosus BCRC38072
and YDJ-1 were predicted to be two independent genes mkC1 and mkC2 in other strains
of Monascus spp., whose functions were the same as mkC; in YDJ-2, mkF and mkG were
combined into one gene, mkF-G, with the functions of both of mkF and mkG.

The MK BGCs of the four strains of M. pilosus studied in this research contained the
key genes related to the MK synthesis [50]; thus, theoretically, all four strains had the ability
to produce MK. According to the results of solid-state and liquid-state cultures, all strains
of MS-1, YDJ-1, YDJ-2, and K104061 could indeed produce MK at various concentrations,
and MS-1 had the strongest ability to yield MK (Figure 3). The results of multiple sequence
alignment revealed that there were amino acid mutations in MKB of YDJ-2, MKD of MS-1,
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and MKE of YDJ-2 (Figure 5), but these mutations did not occur at the active or binding
sites of these proteins (Figures S11–S13, Table S2). We further analyzed the transcription of
these genes in the four MK BGCs, and the results showed that each gene was expressed to
varying degrees (data not shown), which could not figure out the reason for the difference
to yield MK of the four strains, yet. However, the effect of a mutation also depends on
the position of the amino acid in the 3D structure [54]. Later, the 3D structure of the
mutant proteins can be simulated and compared by related experiments to further explore
the effect of the mutations on the function of these proteins. In addition, transcriptomic
analysis or other methods should be used to explore the differences in MK production of
the four strains.

In conclusion, all Monascus strains, MS-1, YDJ-1, YDJ-2, and K104061, were identified
as M. pilosus and had the ability to produce MK. The MK BGCs identified in the four strains
involved 9–11 genes, in which 9 essential genes responsible for the MK biosynthesis were
highly conserved in M. pilosus. Genes responsible for the synthesis of MK were much less
than those of LOV, whose functions were also not the same. The results of this study may
provide a theoretical basis to explore the mechanism of MK produced by Monascus spp.
and compare the synthesis of LOV and MK.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.339
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M. pilosus strains, Table S2: S2-1 Active sites in MKB of the MK biosynthetic gene cluster in MS-1,
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of the MK biosynthetic gene cluster in MS-1. Figure S1: Multiple sequence alignment of gene mkA,
Figure S2: Multiple sequence alignment of gene mkB, Figure S3: Multiple sequence alignment of gene
mkC1, Figure S4: Multiple sequence alignment of gene mkC2, Figure S5: Multiple sequence alignment
of gene mkD, Figure S6: Multiple sequence alignment of gene mkE, Figure S7: Multiple sequence
alignment of gene mkF, Figure S8: Multiple sequence alignment of gene mkG, Figure S9: Multiple
sequence alignment of gene mkH, Figure S10: Multiple sequence alignment of gene mkI. Figure S11:
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MKD, Figure S13: Prediction of active and binding sites in MKE.
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