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Abstract: Background: Colistin is one of the last-line antimicrobial agents against life-threatening
infections. The distribution of the colistin resistance gene mcr-1 has been reported worldwide.
However, most studies have focused on the distribution of mcr-1-positive bacteria in humans,
animals, food, and sewage; few have focused on their distribution in natural environments. Method:
We conducted a large spatial survey of mcr-1-positive Escherichia coli at 119 sites in 48 rivers, covering
the entire island of Taiwan. We investigated the relationship between the livestock or poultry density
in the surveyed riverine area and the number of mcr-1-positive E. coli in the river water. We then
sequenced and characterized the isolated mcr-1-positive plasmids. Results: Seven mcr-1 positive
E. coli were isolated from 5.9% of the sampling sites. The mcr-1-positive sites correlated with high
chicken and pig stocking densities but not human population density or other river parameters.
Four of the mcr-1-positive E. coli strains harbored epidemic IncX4 plasmids, and three of them
exhibited identical sequences with a size of 33,309 bp. One of the plasmids contained identical
33,309 bp sequences but carried an additional 5711-bp transposon (Tn3 family). To our knowledge,
this is the first demonstration that mcr-1-carrying IncX4 plasmids can contain an insertion of such
transposons. All mcr-1-positive isolates belonged to phylogenetic group A and harbored few known
virulence genes. Conclusion: This study showed a positive relationship between the number of
mcr-1-positive sites and high livestock and poultry density. The sequencing analyses indicated that
the epidemic plasmid in the mcr-1 isolates circulates not only in humans, animals, and food but
also in the associated environments or natural habitats in Taiwan, suggesting that the surveillance
of antibiotics-resistance genes for livestock or poultry farm quality control should include their
associated environments.
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1. Introduction

The rapid emergence and dissemination of antibiotic-resistant bacteria has become a
serious threat to public health globally. Colistin is one of the last-line antimicrobial agents
for treating life-threatening infections caused by multidrug-resistant bacteria. However,
after the first report by Lui in China in 2015, the plasmid-mediated colistin resistance gene
mcr-1 has been found to be widespread in five continents [1,2]. The marked increase in
mcr-1-carrying bacterial isolates worldwide can be explained by the initial mobilization
of mcr-1 by an ISApl1 transposon in the mid-2000s and its rapid mobilization onto other
plasmids [3]. Escherichia coli is the most prevalent species among the mcr-1-positive isolates,
and constitutes approximately 90% of the total mcr-1-carrying isolates [2]. Additionally,
mcr-1 carrying isolates can be found in raw meat, livestock animals, infections, and healthy
people [1,4]. A higher number or percentage of mcr-1 carriage in E. coli isolates has been
found in raw meat and food animals than in human isolates [1]. Researchers suggest that
mcr-1 resistance may have emerged in the animal sector due to the widespread use of
colistin in food animals, including pig and poultry farms, in several areas [5]. Additionally,
a study conducted in China found that 6% of human fecal samples carried the mcr-1
gene [6]. Colistin is prohibited as a growth promoter in Taiwan, but it can be used for
disease treatment in veterinary treatment [7]. In Taiwan, mcr-1-positive E. coli has been
found in 0.4% of asymptomatic adults [8] and 0.6% of clinical isolates [9]. Similar to studies
in other countries, the rate of mcr-1 positive isolates from meat and swine/poultry diseases
in Taiwan exceeds that in isolates from humans (retail meats: 8.7% in 2015; diseased swine:
33.3% in 2016) [7,10].

In addition to in food animals and humans, mcr-1 has been found in aquatic sys-
tems, particularly sewage or wastewater [11,12]. A recent literature review indicated that
18 publications have reported on plasmid-mediated colistin resistance in 2107 isolates from
freshwater and seawater [13], though few have focused on mcr-1-positive isolates in natural
habitats or associated environments [13]. In addition to China [5,14,15], mcr-1 has also been
observed in freshwater environments in Malaysia [16], Italy [17], and Switzerland [18].
However, these studies have mainly focused on one or a few freshwater sites.

To gain a full picture of the distribution of mcr-1-positive E. coli in Taiwan’s freshwater
system, an intensive survey in 52 rivers across the entire island of Taiwan was conducted in
this study. Taiwan is a mountainous island, consisting of 268 mountains above 3000 m, with
most of the rivers flowing in a steep descent from the center of the island to the surrounding
sea [19]. In addition to comprehensively surveying mcr-1-positive E. coli, this survey
allowed us to examine our hypothesis that the number of mcr-1 isolates in the river could
be correlated with the livestock or poultry density in the riverine environment. Moreover,
the plasmid sequences and their gene content in the positive E. coli provided more insight
into the ecology of colistin-resistant genes in Taiwan and the Western Pacific region.

2. Materials and Methods
2.1. Water Sampling

Water samples were collected from different rivers from December 2015 to February
2016 (Figure 1). The Taiwan Environmental Protection Administration (TEPA) routinely
examines river water in Taiwan to monitor the river pollution index and coliform bacteria
population [20,21]. The river pollution index includes the concentrations of four parameters
in water: dissolved oxygen (DO), biochemical oxygen demand (BOD5), suspended solids
(SS), and ammonia nitrogen (NH3-N). Information regarding the livestock and poultry
stocking numbers was obtained from the Council of Agriculture, Taiwan ((https://agrstat.
coa.gov.tw/sdweb/public/book/Book.aspx) (accessed on 30 March 2021) and (https://
www.naif.org.tw/main.aspx) (accessed on 30 March 2021). A total of 48 rivers and 119 sites
were sampled in this study. We sampled each river site three times during the study period.
Up to two isolates of E. coli were cultured from each sampling site. Therefore, a total of
537 E. coli isolates were obtained.

https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
https://www.naif.org.tw/main.aspx
https://www.naif.org.tw/main.aspx
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Figure 1. River collection sites in this study; riverine areas with mcr-1-positive sites are indicated by
a red line.

One-hundred milliliters of river water was sampled each time and analyzed following
the standard procedures of the Environmental Analysis Laboratory of the TEPA [22]. Addi-
tionally, all of the sampling procedures followed the rules established by the Environmental
Analysis Laboratory of the TEPA. TEPA method: River, Lake, Reservoir water quality sam-
pling general rule, National Institute of Environmental Analysis (NIEA)W104.51C was
used as the standard basis for sampling. The water samples were analyzed immediately
after collection, and the time between sample collection to laboratory work completion
was <24 h.

To conduct cluster sampling for each river and county, we randomly selected E. coli
from samples collected at the 119 river stations in Taiwan. One water sample was collected
and filtered to further isolate E. coli at each sampled station, following previously described
methods [22]. We used E. coli CHROMagar (ECC) plates (CHROMagar, Paris, France) to
screen E. coli, which was incubated at 37 ◦C for 24 h, and up to two E. coli colonies were
selected per sample. mcr-1 PCR was conducted in E. coli isolates using the primers CLR5-F
(5′-CGGTCAGTCCGTTTGTTC-3′) and CLR5-R (5′-CTTGGTCGGTCTGTA GGG-3′), fol-
lowing previously described methods [1]. We used eight housekeeping gene sequences
(adk, fumC, gyrB, icd, mdh, purA, and recA) according to the protocol on the MLST database
website (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli) (accessed on 30 March 2021), and the

http://mlst.warwick.ac.uk/mlst/dbs/Ecoli
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broth dilution method, to check the antimicrobial susceptibility of sulfamethoxazole and
trimethoprim (STX-TMZ), ciprofloxacin, tetracycline, meropenem, azithromycin, nalidixic
acid, cefotaxime, chloramphenicol, tigecycline, ceftazidime, colistin, ampicillin, and gen-
tamicin (Clinical and Laboratory Standards Institute (CLSI), 2020). Colistin was defined
as intermediate (MICs (minimum inhibitory concentrations) of ≤2 mg/L) or resistant
(MICs ≥ 4 mg/L) according to the MIC interpretive criteria from the CLSI.

2.2. Conjugation Assays

Conjugation assays were conducted to determine whether the mcr-1 genes in the
river isolates were harbored on conjugative plasmids. The E. coli strains MG1655 lacZ::Gm
and MG1655 recA::Tet, which harbor gentamycin and tetracycline resistance, respectively,
were used as recipients in the assays. The five colistin-resistant river isolates (EC1278,
EC1279, EC1280, EC1281, and EC1283) served as donors. Based on the antibiotic resistance,
MG1655 lacZ::Gm was used as the recipient in the conjugation experiment with EC1278,
EC1279, EC1281, and EC1283, while MG1655 recA::Tet was used as the recipient of EC1280.
The bacterial strains were grown overnight in Lysogeny broth (LB) medium containing
appropriate antibiotics (2 mg/mL of colistin, 2 mg/mL of gentamycin, or 2 mg/mL
of tetracycline) [23]. To remove antibiotics from the overnight cultures, the bacteria in
200 µL samples of the cultures were washed with 200 µL of fresh LB medium once by
centrifugation at 1000× g for 3 min and then re-suspended in 20 µL of fresh LB medium.
The resulting donor (20 µL) and recipient (20 µL) suspensions were mixed, and 10 µL of
the mixture was dropped on an LB agar plate without any antibiotic. After incubation
at 37 ◦C for 24 h, the bacteria on the plate were re-suspended in PBS and spread on
LB plates containing colistin, gentamycin, or tetracycline, to select for colistin-resistant
transconjugants. Colistin had the growth inhibition of the recipients, while gentamycin or
tetracycline had the growth inhibition of the donors.

2.3. Purification, Sequencing, and Assembly of Plasmids

To determine plasmid patterns in bacteria, plasmids were isolated following the
alkaline method of Kado and Liu [24] and subjected to agarose gel electrophoresis.

To sequence the colistin-resistant plasmids, the plasmids were purified from the
responding transconjugants following the alkaline lysis method described previously [25].
The complete nucleotide sequences of the plasmids were determined by MiSeq sequencing
(Illumina Inc., San Diego, CA, USA.). The plasmids were annotated using the DDBJ (DNA
Data Bank of Japan) Fast Annotation and Submission Tool (DFAST) pipeline [26]. Insertion
sequences (IS) were annotated using ISFinder (https://isfinder.biotoul.fr/) (accessed on
30 March 2021), as described previously [27]. For comparative analysis, plasmid sequences
were aligned against the non-redundant database using the MegaBLAST algorithm (NCBI
BLAST), with the default settings for the parameters.

2.4. PCR-Based Phylogenetic Typing and Genotyping

The phylogenetic types of the river colistin-resistant E. coli strains were determined
using a triplex PCR-based method to detect the presence of the chuA and yiaA genes,
and the DNA fragment TSPE4.C2, as described previously [28]. The presence of known
virulence genes in E. coli was determined by PCR using previously described primers and
conditions [29–32]. The RS218 and CFT073 pathogenic E. coli strains served as positive
controls in the PCR analyses of ompT, ibeA, cnf1, sfaS, ireA, chuA, ihA, usp, sat, iroN, and
hlyA. The clinical E. coli isolates A865, which had been previously identified as harboring
afa/draBC [32–34], and EC586, which harbors hlyF, iutA, and iss (unpublished data), served
as positive controls for the corresponding genes. Additionally, the MG1655 E. coli strain
served as a negative control for all the genes, excluding ompT. An ompT-deletion strain of
RS218 served as the negative control for ompT. The primer sequences used for the PCR
analyses are listed in Supplementary Materials Table S1.

https://isfinder.biotoul.fr/
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2.5. Accession Numbers

The sequences of EC1279, EC1280, EC1281, and EC1283 were deposited in GenBank un-
der the accession numbers MW010025, MW010026, MW010024, and MW010027, respectively.

2.6. Statistical Analysis

All statistical analyses were conducted using SPSS version 20.0 for Windows (SPSS Inc.,
Armonk, NY, USA). Categorical variables were analyzed using the Chi-square or Fisher’s
exact tests, and the continuous variables were analyzed by conducting an independent
samples t-test. A p-value of <0.05 was considered statistically significant.

3. Results
3.1. Positive mcr-1 E. coli Sites

In the river environment, mcr-1-positive E. coli were found at 5.9% (7/119) of the water
sampling sites in the rivers of Taiwan. The seven mcr-1-positive sites were distributed in
central (n = 3, Wu, Shihwu, and Beigang Rivers), southern (n = 3, Ba-Chang, Gaoping, and
Donggang Rivers), and eastern Taiwan (n = 1, Beinan River; Figure 1). No mcr-1-positive
sites were identified in northern Taiwan in our survey. Excluding two sites (Wu and Beigang
Rivers), most (71%; 5/7) mcr-1 positive isolates were collected from the downstream area
of the river.

An example of an mcr-1-positive site in the downstream area (Gaoping River) is
provided in Supplementary Figure S1. For the seven isolates, the antimicrobial drug
susceptibility is shown in Table 1. Two of the seven isolates were susceptible to colistin
in the broth dilution method. The MLST study identified different STs, including ST155,
ST6732, ST877, ST7149, and ST3661 (n = 3).

Table 1. The antimicrobial drug susceptibility and STs in seven mcr-1-positive isolates.

NO STX TMZ CIP TET MER AZI NAL CTX CHL TIG CAZe COL AMP GM ST

EC1278 >1024 ≤0.25 ≤0.015 >64 ≤0.03 ≤2 ≤4 ≤0.25 =32 ≤0.25 ≤0.5 =8 >64 ≤0.5 3661
EC1279 >1024 >32 =0.25 >64 ≤0.03 =4 >128 ≤0.25 =128 =1 ≤0.5 =8 >64 ≤0.5 3661
EC1280 =16 =0.5 ≤0.015 =64 ≤0.03 =8 ≤4 ≤0.25 ≤8 =0.5 ≤0.5 =8 =2 ≤0.5 3661
EC1281 >1024 >32 =0.25 >64 ≤0.03 ≤2 =128 ≤0.25 =128 ≤0.25 ≤0.5 =8 >64 =1 877
EC1282 >1024 >32 =0.12 =64 ≤0.03 =8 =8 ≤0.25 =128 =0.5 ≤0.5 ≤1 >64 =1 155
EC1283 =16 =0.5 ≤0.015 =4 ≤0.03 =4 ≤4 ≤0.25 >128 ≤0.25 ≤0.5 =4 >64 =8 6732
EC1284 =16 =0.5 =0.03 ≤2 ≤0.03 =4 ≤4 ≤0.25 ≤8 ≤0.25 ≤0.5 ≤1 =4 ≤0.5 7149

STX-TMZ; CIP: ciprofloxacin; TET: tetracycline; MER: meropenem; AZI: azithromycin; NAL: nalidixic acid; CTX: cefotaxime; CHL:
chloroamphenicol; TIG: tigecycline; CAZ: ceftazidime; COL: colistin; AMP: ampicillin; GM: gentamicin.

The site characteristics regarding the distribution of mcr-1-positive and negative E. coli
are shown in Table 2. The air and water temperature, river pollution index, PH, and other
parameters, such as the number of coliforms in the mcr-1-positive and negative groups, are
shown in Table 2. The pollution index was slightly higher at the mcr-1-positive sites, but
this difference was not statistically significant in the t-test. The human population density,
air/water temperature, pH, and coliform number were similar between the mcr-1-positive
and negative groups. Using a continuous variable, the livestock stocking density was higher
at the mcr-1-positive sites but did not reach statistical significance in the independent t-test.

The relationship between the mcr-1 positive sites and chicken and pig stocking densi-
ties is shown in Figure 2A (left) and Figure 2B (right).

According to the Chi-square test using categorical variables for analysis (Table 3),
mcr-1-positive sites were more likely to occur in the category with chicken stocking densi-
ties of 1000–5000 and >5000 birds/km2 (42.9% vs. 27.7%; 42.9% vs. 12.5%; p = 0.028) than
mcr-1-negative sites. Regarding pig density, mcr-1-positive sites were more likely to occur
in the category with a stocking density of >1000 herds/km2 (28.6% vs. 3.6%; p = 0.012) than
mcr-1-negative sites (Table 3). The distributions of mcr-1 positive and negative sites did not
differ between the four pollution indices (unpolluted, negligible, moderately, and severely
polluted) and human density (more or less than 1000 people/km2) categories (Table 3).
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Table 2. Independent t-test of the mcr-1-positive and mcr-1-negative E. coli sites.

Parameter mcr-1-Positive E. coli Site mcr-1-Negative E. coli Site p-Value

N = 7 N = 112
Pollution index (mean ± SD) 4.08 ± 2.31 2.84 ± 1.71 0.073
Air temperature (mean ± SD) 20.59 ± 6.59 21.3 ± 4.78 0.712

Water temperature (mean ± SD) 21.02 ± 5.68 20.38 ± 3.65 0.661
PH (mean ± SD) 7.97 ± 0.36 7.81 ± 0.53 0.421

Coliform number (mean ± SD) 252,657 ± 375,707 169,949 ± 636,844 0.735
Chickens stocking density (birds/km2; mean ± SD) 5354 ± 4472 2956 ± 7007 0.223

Pigs stocking density (herds/km2; mean ± SD) 746 ± 1174 185 ± 421 0.254
Cows stocking density (herds/km2; mean ± SD) 45 ± 112 4.6 ± 17.4 0.372

Human population density (people/km2; mean ± SD) 1096 ± 1011 1680 ± 3533 0.665
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Table 3. Chi-square test of the mcr-1-positive and mcr-1-negative E. coli sites.

Categorical Parameter mcr-1-Positive E. coli Site
(n = 7)

mcr-1-neGative E. coli Site
(n = 112) p-Value

Chicken stocking density (No./km2) 0.028 *

<1000 1 (14.3) 67 (59.8)

1000–5000 3 (42.9) 31 (27.7)

>5000 3 (42.9) 14 (12.5)

0 50
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Table 3. Cont.

Categorical Parameter mcr-1-Positive E. coli Site
(n = 7)

mcr-1-neGative E. coli Site
(n = 112) p-Value

Pig stocking density (No./km2) 0.012 *

<100 4 (57.1) 73 (65.2)

100–1000 1 (14.3) 35 (31.2)

>1000 2 (28.6) 4 (3.6)

Cow stocking density (No./km2) 0.613

0–5 5 (71.4) 95 (84.8)

6–10 1 (14.3) 7 (6.2)

≥11 1 (14.3) 10 (8.9)

River pollution severity 0.542

Unpolluted 1 (14.3) 42 (37.5)

Negligibly polluted 2 (28.6) 23 (20.5)

Moderately polluted 3 (42.9) 41 (36.6)

Severely polluted 1 (14.3) 6 (5.4)

Human population density 1.000

<=1000 people/km2 5 (71.4) 70 (62.5)

>1000 people/km2 2 (28.6) 42 (37.5)

* p-Value < 0.05.

3.2. Capturing mcr-1-Carrying Conjugative Plasmids

mcr-1 genes are often carried by conjugative plasmids. Therefore, plasmid patterns of
the river colistin-resistant strains were investigated. As shown in Figure 3A, all five strains
harbored multiple plasmids, and their plasmid patterns differed. The distinct plasmid
patterns may reflect the distinct regions of the isolated strains.
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Figure 3. Plasmids in the colistin-resistant strains. (A) Plasmids in the riverine colistin-resistant E. coli isolates. (B) Plasmids
in the transconjugants that obtained colistin-resistant plasmids from the riverine strains. Size markers 1 and 2 were plasmids
isolated from Salmonella strains OU7058 and OUT7526, respectively [35].
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To further investigate whether the mcr-1 genes in the river colistin-resistant strains
were encoded in conjugative plasmids, conjugation experiments were conducted with
the colistin-resistant strains as donors and E. coli MG1655-derived strains as recipients,
selecting for colistin-resistant transconjugants. The colistin-resistant transconjugants were
obtained from experiments with four river-born strains, including EC1279, EC1280, EC1281,
and EC1283, which were denoted as Trans-1279, Trans-1280, Trans-1281, and Trans-1283,
respectively, and the plasmid profiles of the transconjugants were investigated. As shown
in Figure 3B, Trans-1279, Trans-1280, and Trans-1283 harbored plasmids with similar sizes,
while Trans-1281 harbored a plasmid that was apparently larger than those in the other
transconjugants. These results suggest that the mcr-1 genes in four of the river-borne
colistin-resistant E. coli strains were encoded in conjugative plasmids.

3.3. Genetic Characterization of mcr-1-Carrying Plasmids

The colistin resistance-encoding plasmids were purified from the transconjugants
and sequenced for further characterization. The plasmids derived from EC1279, EC1280,
EC1281, and EC1283 were designated pEC1279, pEC1280, pEC1281, and pEC1283, re-
spectively. pEC1279, pEC1280, and pEC1283 were 100% identical in sequence and size
(33,309 bp). pEC1281 was 39,025 bp in size, which contained a 33,309 bp region identical to
those of the above plasmids with the insertion of an additional 5716-bp fragment (Figure 4).
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contained a Tn3 family transposon. IRL—left-inverted repeated sequence; IRR—right-inverted repeated.

These plasmids are the IncX4 plasmids. Based on BLAST analysis, pEC1279, pEC1280,
and pEC1283 aligned well with a group of IncX4 plasmids (>99.9% identity), which were
characterized by harboring an mcr-1 gene with a downstream pap2 gene and insertion
sequence IS26 located upstream of the mcr-1-pap2 element (Figure 4). The plasmids in
this group were mainly carried by Enterobacteriaceae isolated from humans, animals, meat,
and wastewater, and are distributed worldwide (Table 4). We designated these plasmids
as being pEC1279-like. Notably, on the island of Taiwan, pEC1279-like plasmids were
identified from bacteria isolated from humans and swine, such as pNG14043 (Salmonella
from a human), pKP15450-MCR-1 (Klebsiella pneumoniae from a human), and pNCYU-24-74-
6_MCR1 (E. coli from a swine; Table 4). This study demonstrates that such mcr-1-carrying
plasmids have spread to the natural environment of the island, in addition to humans,
animals, and foods.
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Table 4. Examples of pEC1279-like plasmids.

Plasmid Source Strain Regions Size (bp) Accession # Reference

pKP15450-MCR-1 Human K. pneumoniae Taiwan 33,309 MH715959.1
pNG14043 Human Salmonella Taiwan 33,308 KY120364.1 [36]

p2017.19.01CC Human E. coli Vietnam 33,309 LC511660.1 [37]
p31349 Human E. coli Switzerland 33,303 KY689634.1 [38]

pmcr1_IncX4 Human K. pneumoniae China 33,287 KU761327.1 [39]
pMCR-1_Msc Human E. coli Russia 33,310 MK172815.1 [40]

pWI2-mcr Human E. coli France 33,304 LT838201.1 [41]
pICBEC12-3mcr Avian E. coli Brazil 33,304 CP021419.1

pMcp0271 Chicken meat E. coli Switzerland 33,303 KY565556 [38]
pHNSHP10 Swine E. coli China 33,309 MF774182.1 [42]

pNCYU-24-74-6_MCR1 Swine E. coli Taiwan 33,300 CP042644.1 [7]
pCSZ4 Pork E. coli China 33,309 KX711706.1 [43]

pMCR_WCHEC1618 Wastewater E. coli China 33,309 KY463454.1 [44]
pB2 Wastewater E. coli Japan 33,309 LC479085.1 [45]

# NCBI GenBank database accession numbers.

The additional 5.7-kb fragment in pEC1281 was located between the mcr-1-pap2 el-
ement and IS26, which contained a transposon structure that encoded a transposase,
resolvase, and potential ABC transporter with a 35-bp inverted repeat (IR) sequence at both
ends (Figure 4). This transposon belongs to the Tn3 family [46], and has been identified in
various plasmids, such as pCHL5009T-102k-mcr3 [46], pH226B [47], pNDM5-GZ04_A [48],
and pV233-b [49]. However, to the best of our knowledge, this is the first demonstration of
the insertion of a pEC1279-like mcr-1-carrying plasmid by this type of transposon.

3.4. Genetic Features of Colistin-Resistant River Isolates

To further investigate the genetic background of colistin-resistant river isolates, the
phylogenetic types of EC1278, EC1297, EC1280, EC1281, and EC1283 were investigated.
E. coli strains are primarily classified into four phylogenetic groups, designated A, B1,
B2, and D [27,50]. Extraintestinal pathogenic E. coli (ExPEC) are mainly derived from
phylogenetic groups B2 and D, while commensal E. coli are mainly derived from Groups A
and B1 [51]. All of the strains identified here belonged to phylogenetic group A, suggesting
that these river isolates may not have been pathogenic E. coli.

We further analyzed the virulence capability of the strains by determining the presence
of 15 known E. coli virulence genes in the bacteria. The pathogenic roles of these virulence
genes include adherence (afa/draBC, iha, and sfaS), invasion (ibeA), toxins (cnf1, hlyA, sat, and
hlyF), iron uptake (chuA, ireA, iroN, and iutA), bacterial resistance to complement-mediated
attack (iss), and miscellaneous pathogenic functions (ompT and usp). Excluding ompT, the
known virulence genes were not detected in the five river isolates. ompT was identified
in EC1278 and EC1283, but not in the other isolates. These findings indicate that these
river isolates had low virulence, suggesting that these river colistin-resistant E. coli strains
were non-pathogenic.

4. Discussion

This study demonstrated that the sites containing mcr-1 positive E. coli in rivers were
positively correlated with the density of livestock and poultry in the riverine area of
Taiwan. No correlations were detected between pH, temperature, pollution index, and
human density. Although colistin-resistant genes were only distributed in a few rivers,
Taiwan’s natural environment has been contaminated with mcr-1-positive bacteria. Natural
habitats or human activity-associated environments that have not yet been considered
may serve as hidden yet critical spaces for bacterial gene transfer and transmission of
resistant genes. We suggest natural environment surveys should be conducted to monitor
the dissemination of colistin-resistant genes.
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Contamination of mcr-1 positive E. coli in rivers was likely due to anthropogenic
activities, as the distribution of these bacteria was associated with high pig and poultry
population densities (Figure 2). Colistin has been approved for animal use by the Council of
Agriculture in Taiwan. It is likely that its use poses a selection advantage for mcr-1-positive
E. coli that live in the intestines of livestock. Following population expansion, such bacteria
may be released from the animals and reach and contaminate nearby rivers. Conventional
livestock waste treatment processes cannot completely remove antibiotic-resistance genes,
and result in contamination of water environments [52,53]. Some studies have reported the
transmission of antimicrobial-resistant bacteria from pig manure to the environment [54],
and these antibiotic-resistant bacteria may spread through water [55].

Our study showed that the mcr-1-positive sites were correlated with livestock density
in river environments, and correlations between other antimicrobial resistance genes and
livestock have been reported in the literature. Poultry production carries a high risk for
antibiotic resistance emergence and consumes more antibiotics than the cultivation of other
animals [56]. The size and scale of poultry farming are associated with the antimicrobial
colonization rates [56]. Independent of antimicrobial drug usage, there is evidence of
a relationship between chicken density and antimicrobial-resistant pathogens [57]. The
results of the analysis of ESBL genes from chicken feces and upstream and downstream
river water suggest that animal farm effluent could contribute to the spread of resistance
genes [58]. A study conducted on swine feces and downstream water in China suggested
that the effluent of animal farms contributes to the presence of ESBL-producing E. coli in
river aquatic environments [59]. A recent study in Zhejiang, China also showed that these
mcr-1 plasmids in the river are closely associated with E. coli strains with pig and human
origins [60].

IncX4 plasmids are one of the three major types of mcr-1-carrying plasmids, including
IncX4, IncI2, and IncHI2, and account for over 90% of the reported mcr-1 distributed
worldwide [61]. It has been reported that IncX4 plasmids confer competitive fitness to
host bacteria, are more transmissible at 30–42 ◦C [62], and can be stably maintained in
host bacteria [41]. These features may be responsible for the significant role of IncX4
plasmids in mcr-1 dissemination. The cessation of colistin use as a feed additive for animals
in China has significantly decreased the prevalence of mcr-1 in farmed pigs nationally,
including IncX4 plasmid-carrying mcr-1, which may contribute to a concomitant decline
of the distribution of mcr-1 in human carriers [63]. These findings indicate that antibiotic
selection pressure is a major driving force of mcr-1 dissemination; thus, the withdrawal of
colistin from animal feeds would be an effective strategy for controlling the dissemination
of mcr-1 in humans, animals, and the natural environment.

In our mcr-1 positive E. coli, no known virulence factor was detected, excluding the
ompT gene, and all were classified as phylogenetic group A, suggesting the low virulence
potential of these bacteria. Although they have low potential to cause infections, these
riverine strains could serve as an environmental reservoir of colistin resistance for future
spread to pathogenic strains through conjugative horizontal transfer [64].

The insertion of the Tn3 family transposon in pEC1281 was first identified in the
pEC1279-like IncX4 plasmids, suggesting that transposon insertion is a local gene transfer
event that may have occurred recently; thus, the resulting plasmid has not yet been broadly
spread. Whether the genes encoded in the transposon contribute to plasmid transmission
and stability, and whether their presence confers advantages to bacterial survival in natural
environments, are yet to be elucidated. Transposons and insertion sequences contribute to
the mobilization of antibiotic resistance genes [65]. The new transposon insertion in the
mcr-1-carrying plasmid may further potentiate the dissemination of colistin resistance.

The limitations of this study were that we only detected mcr-1 in E. coli isolates in the
river and we did not determine the mcr-1 status of other pathogens. No selective primary
isolation of colistin resistant E. coli was performed, and the real occurrence of mcr-1 carrying
E. coli could be much more prevalent. Other limitations included that the sampling sizes
of rivers may differ and we did not have water level data for each sampling site. The
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water level of rivers varies significantly between the wet and dry seasons. We do not know
if the water level is a factor for the spread of mcr-1 positive E. coli. We did not conduct
longitudinal surveillance of mcr-1-positive E. coli in the river. Some studies suggest that the
surveillance of population-level antibiotic resistance prevalence could be informative as an
early warning of human pathogens [66]. Real-time water quality monitoring systems and
removed/relocated livestock may aid in reducing pollutants from agricultural areas [67].

5. Conclusions

The ecological analysis and plasmid sequences suggest the spread of mcr-1 plasmids
between livestock and the riverine environment. The mcr-1-positive E. coli isolates belonged
to phylogroup A, with low virulence potential. The presence of colistin-resistant strains
in rivers may lead to the spread of mcr-1 among commensal E. coli strains in the aquatic
environment and pose a further public health risk. There is an indispensable need for the
survey of natural habitats or associated environments to better understand the dissimilation
of colistin-resistance genes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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