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Abstract: This study pertains to measure differences in bacterial communities along the wastewater
pathway, from sewage sources through the environment. Our main focus was on taxa which include
pathogenic genera, and genera harboring antibiotic resistance (henceforth referred to as “target
taxa”). Our objective was to measure the relative abundance of these taxa in clinical wastewaters
compared to non-clinical wastewaters, and to investigate what changes can be detected along the
wastewater pathway. The study entailed a monthly sampling campaign along a wastewater pathway,
and taxa identification through 16S rRNA amplicon sequencing. Results indicated that clinical and
non-clinical wastewaters differed in their overall bacterial composition, but that target taxa were not
enriched in clinical wastewater. This suggests that treatment of clinical wastewater before release
into the wastewater system would only remove a minor part of the potential total pathogen load in
wastewater treatment plants. Additional findings were that the relative abundance of most target
taxa was decreased after wastewater treatment, yet all investigated taxa were detected in 68% of the
treated effluent samples—meaning that these bacteria are continuously released into the receiving
surface water. Temporal variation was only observed for specific taxa in surface water, but not in
wastewater samples.

Keywords: 16S rRNA amplicon sequencing; bacterial community structure; clinical wastewater;
sampling campaign; wastewater pathway

1. Introduction

Antimicrobial resistance (AMR) is recognized as a major threat to public health at a
global scale [1]. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Kleb-
siella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species)
play an important role in nosocomial infections, pathogenesis, and AMR spread [2,3]. In
2018 the World Health Organization (WHO) published a global priority list of antimicrobial-
resistant bacteria (AMRB) for which research and development of new antibiotics is ur-
gently needed [4].

After consumption of antibiotics, the bacterial composition in the gut can be al-
tered [5,6] and even be enriched in AMRB [7]. Some bacteria are found to thrive after
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antibiotic treatment and can cause antibiotic-associated diarrhoea (AAD) [8–10]. Such, and
other, pathogenic bacteria are expected to be more abundant in clinical settings, where
the consumption of antibiotics is higher than in the general community [11]. Previous
research showed that clinical wastewaters contain a higher level of AMR bacteria, antimi-
crobial resistance genes and antimicrobial residues than non-clinical wastewaters [12–15].
Nonetheless, clinical wastewater constitutes a minor proportion of all wastewater and the
magnitude of the impact that clinical wastewater has on AMR bacterial load in downstream
wastewaters is not yet fully understood. Paulus et al. showed that pre-treatment of hospital
wastewater helps to reduce the presence of ARGs in the receiving WWTP [13], yet Buelow
et al. did not observe differences in the relative abundance of ARGs in WWTPs that did
or did not receive hospital wastewater [14]. More insight into the bacterial composition
of wastewater is critical to decide on the benefit of dedicated wastewater treatment at the
level of clinical institutions.

Human gut bacteria are released into the wastewater system via feces and can reach
the environment via this pathway. Wastewater from both clinical and non-clinical settings
converges in the wastewater treatment plant (WWTP). WWTP’s are designed to reduce
the biological oxygen demand, nitrogen, phosphorus, and the total suspended solids,
but not the removal of pharmaceutically active compounds and bacteria. Earlier studies
have shown that most pathogenic bacteria are decreased in their relative abundance in
the WWTP, while others (e.g., Mycobacterium spp. and Clostridium spp.) increase [16,17].
Although wastewater and surface waters are different environments from the human gut,
several pathogenic bacteria are known to be water-borne pathogens (species that are able
to spread via aquatic ecosystems) while others can be classified as water-based pathogens
(species that are able to grow and thrive in water systems) [18–22].

This study aimed to investigate the contribution of clinical wastewater on the bacterial
composition in wastewater and the environment. We used 16S rRNA to broadly screen the
relative abundance and fate of bacterial target taxa that were selected based on pathogenic
potential: (i) pathogens of clinical relevance and AMR features (ESKAPE pathogens and
WHO priority pathogens) [2–4]; (ii) water-based pathogens that can grow and thrive in
water systems [18–22]; (iii) antibiotic-associated diarrhea (AAD) bacteria [8–10] and; (iv)
bacteria that increase after WWTP treatment [16,17].

The results of this study provide insight into the community composition origin in a
wastewater chain, the difference between clinical and non-clinical wastewater, and how
this affects the bacterial community in the WWTP and the receiving surface water. In
doing so, the study sheds light on the likely fate of potentially pathogenic bacteria in this
wastewater chain.

2. Materials and Methods
2.1. Sampling Campaign

The sampling campaign was conducted in 2017 across the wastewater network in
Sneek (33,855 inhabitants), The Netherlands. While a more detailed description of the
sampling campaign can be found in our previous research [12] a brief summary of the study
is as follows: wastewater sample locations encompassed: (a) hospital (300 beds), nursing
home (220 beds) and domestic (80 households) wastewater sources (all sites selected to ex-
clude the influence of industrial waste and/or rainwater); (b) influent and effluent from the
conventional WWTP at Sneek (aerobic treatment, 73,000 p. e.) which receives wastewater
from the hospital, nursing home and city district where the domestic wastewater sample
was obtained. Wastewater samples were collected as twenty-four-hour samples sampled
flow proportionally (WWTP) or time proportionally (domestic, hospital, and nursing home
wastewater). Surface water samples were collected as grab samples, taken at ~20 cm
depth and one-meter distance from the waterside. Surface water samples were taken
from the receiving surface water of the Geeuw canal at two locations, 330 m south-west
(N 53◦02′15.10′′, E 5◦63′72.76′′) and 388 m north-east (N 53◦02′72.15′′, E 5◦64′28.97′′) from
the WWTP discharge point (N 53◦02′38.85′′, E 5◦64′03.20′′), and from a nature reserve “de
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Deelen” which has previously been shown to lack human influence [23]. The locations of
the sampling points in Sneek are indicated in the map of Sneek in Supplementary Figure S1.
Samples collected twice per month for one year, transported cooled and processed within
the same day.

2.2. DNA Extraction and 16S rRNA Gene Amplicon Sequencing

Water samples were filtered in volumes of 25 mL (wastewaters) or 200 mL (surface wa-
ter and effluent) using sterile 0.22 µm polyvinylidene difluoride (PVDF)-membrane filters.
Filters were stored at −80 ◦C until DNA extraction was performed. DNA was extracted
using the DNeasy Power Water kit (Qiagen, Hilden, Germany) and quantified using the
Qubit dsDNA BR (broad range) Assay kit (ThermoFisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions. DNA was stored at−20 ◦C before subsequent
analysis. Amplicon sequencing of the V3–V4 regions of the 16S rRNA gene was performed
on an Illumina MiSeq (Illumina, San Diego, CA, USA). Libraries were prepared by using
the Nextera XT DNA Library Preparation Kit following the 16S Metagenomic Sequencing
Library Preparation protocol, according to the manufacturer’s instructions [24]: the V3-V4
regions of the 16S rRNA gene were amplified by the polymerase chain reaction (PCR)
using Amplicon primers with overhang adaptors (16S Amplicon PCR Forward Primer
= 5′ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG
16S Amplicon PCR Reverse Primer = 5′ GTCTCGTGGGCTCGGAGATGTGTATAAGA-
GACAGGACTACHVGGGTATCTAATCC). A second PCR was used for attaching indices
and Illumina sequencing adapters using the Nextera® XT Index Kit (Illumina, San Diego,
CA, USA). Fragments were cleaned after each PCR using freshly prepared Ampure XP
Beads (Beckman Coulter Genomics, Danvers, MA, USA). In total, 171 samples were success-
fully sequenced, resulting in an average of 50,734 reads per sample (Table 1). The sample
with the lowest number of reads was a downstream sample (18,059 reads), and the sample
with the highest number of reads came from the hospital (138,846 reads). Sequence data are
available in the NCBI sequence read archive (SRA) under project numbers PRJNA668059
and PRJNA668064.

Table 1. 16S rRNA gene amplicon sequencing results. The number of samples obtained per location, as well as the number
of reads (average, minimal and maximal) are shown together with the rarefied and non-rarefied amplicon sequence variants
(ASV) and the resulting average detection limit at log ratio. Libraries were rarefied for statistical comparison to 18,059 reads
per sample.

Location
Number of

Samples
Sequenced

Average
Number of

Reads

Minimal
Number of

Reads

Maximal
Number of

Reads
Non-Rarefied
ASV Count

Rarefied (to
18059) ASV

Count

Average
Detection

Limit 1

(Log Ratio)

Hospital 25 55,638 28,811 138,846 4920 4185 −10.88
Nursing

home 26 52,985 29,657 104,195 3913 3386 −10.83

Community 23 56,871 31,794 101,117 3649 3156 −10.91
Influent 25 63,326 34,958 97,559 6069 4932 −11.01
Effluent 22 50,806 25,594 77,211 8499 7469 −10.79

Upstream 12 44,054 25,061 68,055 4942 4359 −10.65
Downstream 12 44,281 18,059 66,764 4980 4404 −10.66

Control 26 37,912 20,363 85,529 6565 5851 −10.47
Average 21 50,734 26,787 92,410 5442 4718 −10.78

1 The log ratio of the detection limit per sample is calculated by: log(1)—log(total number of reads).

2.3. Data Processing and Visualization

Adaptor sequences were removed from the FASTQ and reads were filtered by length
(200–550 nucleotides) using Qiagen CLC Bio Genomics Workbench 10.1.1. (Qiagen, Ger-
mantown, MD, USA). Sequence reads were de-noised using DADA2 (v. 1.11.0) in R
Statistical Software (v. 3.5.0). Taxonomy was assigned to representative sequences for
amplicon sequence variants (ASV) using the SILVA database (v. 132) [25]. The sample by
ASV frequency matrix was combined with taxonomic assignments using the biom-format
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package. Representative sequences were then imported into QIIME2 (v. 2018.11) [26] for
alignment using MAFFT [27]. The alignment was then filtered for gaps and used to build
a phylogeny using Fasttree2 [28]. These data were then imported in R as a phyloseq ob-
ject [29] and filtered to exclude Chloroplasts and Mitochondria and to retain only Bacteria
for downstream analyses of microbial diversity and community structure.

ASV counts were normalized to the total number of reads per sample for calculating
unweighted and weighted UniFrac distances among samples [30,31]. Principal coordinates
analysis (PCoA) visualizations based on the distance matrices were used to assess the
phylogenetic composition and structure of bacterial communities at different locations
along the wastewater pathway. Global and pairwise PERMANOVA [32,33] were applied
to test for differential clustering of sample locations. Additional tests of homogeneity of
group dispersion were performed with the betadisper function and a permutation test with
999 permutations.

2.3.1. Selection of Target Taxa for Fate Monitoring through Wastewater Pathway

A total of 24 bacterial genera or species were selected as “target taxa” to study their
changes in relative abundance and fate along the studied wastewater pathway (Table 2),
based on pathogenicity, antibiotic resistance potential and known or possible associa-
tion with WWTP. The taxa selection included: (1) the ESKAPE pathogens that are of
particular clinical relevance and prone to antibiotic resistance [2,3], (2) the WHO priority
pathogens for AMR [4], (3) water-based pathogens [18–22], (4) bacteria which are AAD
associated/increased after antibiotic (AB) treatment [8–10], and (5) bacteria previously
found at increased concentrations after WWTP treatment [16,17]. Some genera include
bacteria that match with more than one of the five selection criteria.

Table 2. Target taxa. Taxa that include pathogenic bacteria of clinical interest monitored from wastewater to environment. If
no reference is given in the cell, the bacteria does not fall under this category.

Genus/Species ESKAPE
Pathogen

WHO Priority
Pathogen for

AMR 1

AAD Associ-
ated/Increased

after AB
Treatment

Water-Based
Pathogen WWTP Increase

Escherichia
spp./Shigella spp. 2 [4] (a/c)

Klebsiella spp. [2] [4] (a) [12]
Enterobacter spp. [1,2] [4] (a)

Proteus spp. [4] (a)
Serratia spp. [4] (a)

Providencia spp. [4] (a)
Morganella spp. [4] (a)
Salmonella spp. [4] (b)

Mycobacterium spp. [4] (a) [23,25] [15]
Enterococcus spp. [2] [4] (b)
Bacteroides spp. [13,14]

Acinetobacter baumanii [2] [4] (a)
Pseudomonas

aeruginosa [2] [4] (a) [25]
Staphylococcus aureus [2] [4] (b) [12]

Helicobacter pylori [4] (b) [24]
Campylobacter spp. [4] (b)

Neisseria gonorrhoeae [4] (b)
Streptococcus
pneumoniae [4] (c)
Haemophilus

influenzae [4] (c)
Clostridium spp. [12,14] [15]
Aeromonas spp. [24]
Legionella spp. [25] [16]
Leptospira spp. [26] [16]

Vibrio spp. [26]
1 WHO priority pathogens for AMR are divided into three categories: (a) Critical, (b) High, and (c) Medium. 2 Escherichia spp. and Shigella
spp. could not be distinguished from one to the other.
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To compare the relative abundances of target taxa among locations, we first rarefied all
ASV counts to a sequencing depth corresponding to the sample with the lowest coverage
(18,059 reads per sample). A pseudo-count of 1 was added to all counts to enable log
transformation of read counts where target taxa were absent in a particular sample or
location. The relative abundance of target taxa in a given sample was then calculated as the
natural log-ratio between taxon read count and the total sample read count. The log ratio
of the limit of detection was determined as ln(2)-ln(total no. of reads). Location differences
were tested using the χ2 statistic (Kruskal–Wallis test). Pairwise differences among locations
were assessed using Dunn’s test using PMCMR [34] with p-value corrections using the
Benjamin–Hochberg procedure (1995) [35]. The correlation between absolute counts of
Klebsiella spp. and Aeromonas spp. with their relative abundances were confirmed using
Pearson correlation analysis.

Differential abundance testing across all observed taxa, at the ASV level, was per-
formed with DESeq2 [36] with default settings after applying a variance-stabilizing trans-
formation of the raw counts [37]. We first analyzed differential ASV abundances between
clinical (i.e., hospital and nursing home) and domestic wastewater samples. Then, among
significantly more abundant ASVs in clinical versus domestic wastewater samples (here-
after referred to as clinically enriched taxa), we assessed whether they were more abundant
in influent samples than in domestic wastewaters. Effect sizes and test statistics for pairwise
contrasts between (groups of) locations were considered significant at false discovery rate
(FDR)-corrected q < 0.1.

2.3.2. Indication of Temporal Effects on Phylum Abundance

Temporal changes in bacterial community composition in water are often driven
by temperature [38]. Therefore, the ambient temperature was measured on the day of
sampling to relate to temporal patterns of the bacterial community composition in the
water samples. Acknowledging microbial community compositionality, the QIIME2-plugin
for Songbird [39] was used to run multinomial regression for estimating seasonality in
bacterial phylum abundances for each location. Phylum Bacteroidetes was chosen as the
reference frame standard for this regression analysis, because Bacteroidetes showed stable
abundances in all the locations.

3. Results and Discussion

In this study, we analyzed the bacterial compositions along a whole wastewater pathway.

3.1. Bacterial Composition Differs between Sources and along the Studied Wastewater Pathway

The phylogenetic structure of wastewater microbial communities differed significantly
between sampling locations. Significant differences among the three source locations, as
well as WWTP influent and effluent microbial communities are shown in pairwise PER-
MANOVA analyses (Supplementary Tables S1 and S2). The assumption of homogeneity
of multivariate dispersion was met for all but one comparison for weighted UniFrac, but
never for unweighted UniFrac. The strong ordination patterns and the large fraction
of explained variation (R2 = 39–69%) suggest that significant differences are unlikely to
represent statistical artifacts.

The differences observed between wastewater sources might be caused by the higher
use of antibiotics and other drugs in the clinical settings [12]. Only one other study reported
a direct comparison between hospital wastewater, domestic wastewater and influent [40],
and showed that these three waters were contained in the same cluster, with domestic
wastewater more similar to hospital wastewater than to influent.

In contrast, in our study, domestic wastewater was more similar to influent than to
hospital wastewater (Figure 1). Since in Sneek influent is mainly sourced by domestic
wastewater from different neighborhoods, it was expected that the bacterial community
structure (weighted UniFrac PCoA) of influent was most similar to domestic wastewater.
However, the phylogenetic composition (unweighted UniFrac PCoA) of influent resembled
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nursing home wastewater more than municipal wastewater (Figure 1B), this could be
related to the distance of the sampling points to the WWTP, with the nursing home more
closely located to the WWTP than the municipal wastewater location (Supplementary
Figure S1). Differences between raw wastewater and influent could result from passage
through the sewer pipes from the source to the WWTP, which alters bacterial composition
by shifting dominance from obligate anaerobes to facultative anaerobes [41], and probably
is determined by the length of the sewer network. Larger group dispersions in weighted
versus unweighted UniFrac suggest variation in relative abundances among bacterial
lineage groups among samples at each location. Further investigation is necessary to
determine whether such variations may be caused by the influence of other wastewater
sources and rain events, which fluctuate throughout the year.
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Figure 1. Bacterial ß-diversity along the wastewater pathway. Principal coordinates ordination of different wastewaters
based on weighted UniFrac distances (A) and unweighted UniFrac distances (B). 66% of the diversity in bacterial composition
and 39% of the diversity in bacterial membership could be explained by the locations. The percentage of variation explained
by each axis is shown between parentheses. H = hospital, N = nursing home, M = municipal, I = influent, E = effluent.

While communities from the hospital, nursing home, and domestic wastewater formed
separate clusters, they clustered more closely to WWTP influent than to effluent or surface
water. This held true both for the relative abundances of taxonomic groups (weighted
UniFrac PCoAs, Figure 1A and Supplementary Figure S2A) and their presence/absence
(unweighted UniFrac PCoAs, Figure 1B and Supplementary Figure S2B). This is as expected
as raw wastewater bacterial communities are formed mainly by human gut bacteria [16,42],
while effluent bacterial communities are a mixture of both wastewater and activated sludge
bacteria from the WWTP [16,40], and surface water in the WWTP vicinity contains mostly
environmental bacteria to which effluent bacteria are added [43–45].

3.2. Microbial Community Differences between Clinical and Non-Clinical Wastewaters

In order to investigate differences between the raw wastewater sources in more detail,
the relative abundance of single bacterial taxa was compared between clinical and domestic
wastewater. Significant differences were observed in the relative abundance of 335 bacterial
taxa collected from clinical wastewaters (i.e., hospital and nursing home sources) and
domestic wastewater.

The differences between bacterial compositions of clinical and non-clinical wastewa-
ters were examined in just a few studies [14,40,46], and differential community composition
of hospital and domestic wastewater did not exhibit a general pattern across studies or lo-
cations. Quintela-Baluja et al. [40] reported that hospital wastewater was best characterized
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by Lactobacillales and Enterobacteriales, while domestic wastewater was best character-
ized by Clostridiales and Erysipelotrichales. In contrast, our results indicated that a large
part of the clinically enriched taxa belonged to Clostridiales (25%, n = 51, Supplementary
Table S3). Our data also showed that only eight of the clinically enriched taxa belonged to
Lactobacillales or Enterobacteriales (Supplementary Table S3). A likely explanation for the
differences in observations resides in the difference in geographical locations at which the
studies were conducted, because the human microbiome is country-specific [47]. Other
likely explanations are the type of medication used in the different clinical settings [48],
and also the methodology of obtaining and processing data - which can all affect the
final results. More studies investigating the differences between clinical and non-clinical
wastewater microbiomes are therefore necessary to establish which bacteria are typically
clinically enriched.

Of the 335 taxa that were found to differ significantly in relative abundances between
clinical and non-clinical wastewater, 62% (n = 207) were enriched in both hospital and
nursing home wastewater (and termed “clinically enriched taxa”, Figure 2). Only 15% of
the clinically enriched taxa (n = 30) belonged to the target bacteria of relevance listed in
Table 2; most of them belonged to the genus Bacteroides (n = 16) (Supplementary Table S3).
Five other taxa listed in Table 2—Aeromonas, Enterobacter, Klebsiella, Pseudomonas, and
Streptococcus spp.—were also found between the clinically enriched taxa, but only at very
low relative abundance.
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3.3. Clinical Wastewater Does Not Impact the Overall Bacterial Composition of Influent

In order to investigate whether the clinically enriched taxa still showed increased
abundance in WWTP influent (representing a mix of clinical and domestic wastewater), the
abundance of clinically enriched taxa was compared between raw domestic wastewater and
WWTP influent. Most of the taxa that have a higher relative abundance in clinical wastewa-
ter do not impact the overall bacterial community in influent (Figure 2 and Supplementary
Table S3). Only 10 out of the 207 clinically enriched taxa were significantly more abundant
in influent than in domestic wastewater (Figure 3, Supplementary Table S4). In addition,
influent clustered more closely to domestic wastewater than to the clinical wastewaters
in the weighted UniFrac PCoA ordination (Figure 1A). Seeing as that the overall bacterial
composition of influent is most comparable with that of domestic wastewater, our results
indicate that clinical wastewater has a limited impact on the abundance of target taxa in
WWTP influent for the locations investigated in this study.
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Figure 3. Clinical enriched taxa in influent vs. wastewater collected from households. The 207 taxa found to be enriched in
clinical wastewaters were compared in their relative abundance in influent and in the wastewater collected from households.
In total, 10 taxa were significantly more abundant in influent than in wastewater collected from households.

The low impact of clinical wastewater on the influent can be explained by the low
volume of both hospital and nursing home wastewaters in this study (they constitute less
than 1% of the total influent). In two other studies, the bacterial composition of influent
that received hospital wastewater was more similar to influent that did not receive hospital
wastewater than to the hospital wastewater [14,46], which also indicates that hospital
wastewater is too much diluted by other wastewater sources to be traced back in the
receiving influent. In our previous study, the impact of hospital wastewater on culturable
AMR bacteria in influent was also low [12]. Indeed, considering the dilution factor of the
clinical wastewater in influent (1:100), the abundance of bacteria in clinical wastewater has
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to be 100 times greater than in non-clinical wastewater to affect influent. This was not the
case for any of the clinically enriched taxa in this study (Supplementary Table S3).

Among the ten clinically enriched taxa, one species (Bacteroides stercoris, which can
cause abdominal infections [49]), belongs to the selected target taxa that contain pathogenic
bacteria. Bacteroides spp. was the only target taxa present in a high relative abundance
in both hospital and nursing home wastewater (Supplementary Figure S3). Bacteroides
spp. are found to be present in fecal samples taken from AAD patients [8], and are also
shown to increase after treatment with fluoroquinolones and β-lactams [9]. In addition,
the genus Arcobacter also contains pathogenic species [50], and some species of the genus
Prevotella are associated with rheumatic diseases [51]. Thus, although clinical wastewater
does not impact the overall bacterial composition in influent, it can be a source for some of
the pathogenic species found in influent.

3.4. Decrease of Relative Abundance in Most Wastewater Taxa during WWTP Treatment

We observed a decrease of relative abundance in most target taxa (Table 2) after WWTP
treatment by at least factor 10 (one log ratio) (Supplementary Figure S3). Likewise, genera
including clinically enriched taxa found in influent were reduced by at least one log-ratio
in the WWTP (Supplementary Figure S4). The decrease in the relative abundance could
be due to bacterial removal in the WWTP, or due to the “dilution” of wastewater bacteria
by activated sludge bacteria in the effluent. Indeed, the bacterial composition of effluent
had the highest diversity among all locations (Supplementary Figure S5). Thus, one cannot
infer a reduction in absolute concentrations from changes in relative abundance. Figure 4
shows the results of the absolute counts of Klebsiella spp. and Aeromonas spp. from our
previous study [12] next to their relative abundances. A similar pattern is observed for both
results over the locations, and the correlation is confirmed by Pearson correlation analysis
(R = 0.85 and 0.87; Figure 4). In our previous study we showed that E. coli, Klebsiella spp.
and Aeromonas spp. were significantly reduced (<99%) in the WWTP [12], therefore, it is
most likely that the other genera are also reduced in the WWTP. Although most genera
decreased in their relative abundance in the WWTP, all of them were still present in at least
68% of the effluent samples. The number of pathogens surviving could be important from
a human health risk assessment standpoint.

Legionella, Mycobacterium, Clostridium and Leptospira spp. represent four genera that
include pathogenic species, and that show an increased relative abundance from influent
to effluent (Supplementary Figure S3). Other studies have also reported an increase of
these four bacteria in the WWTP, as shown in [16,17]. Clostridium spp. are common
inhabitants of the human gut, and they play an important role in the maintenance of gut
homeostasis [52]. Since activated sludge can be a reservoir of Clostridium spp. [53], this
might explain the relatively high abundance of Clostridium spp. found in effluent. Among
Mycobacterium spp., M. tuberculosis complex is an important pathogen. Many environmental
nontuberculous mycobacteria can also be pathogenic [54]. Mycobacterium also represents
a foaming bacterium in activated sludge [55], which could be a reason for the observed
increase in the WWTP. Legionella spp. are commonly found in moist soil and water, and
some Legionella species can cause community and hospital-acquired pneumonia [56]. In
the past years, some industrial WWTPs in the Netherlands have shown to be a source for
pneumonia caused by Legionella bacteria [57]. Leptospira spp., causing leptospirosis, which
is associated with rainfall and flooding, can persist for several months in the environment
without a host [58], which might explain why it persists in the WWTP as well. Pathogenic
species belonging to these four genera might be problematic for public health if released
into surface water in sufficient quantities. However, it should be mentioned that these
findings are based on the genus level, and various non-pathogenic species belong to these
four genera as well. Further research, i.e., by using whole genome sequencing techniques
can provide more insight about the exact species included in these genera.
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patterns along the locations. This was confirmed by Pearson correlation analysis (R) shown in the linear regression curves.
Kruskal-Wallis statistics of the CFU counts and relative abundances are shown on the left side of each panel: chi-squared
(χ2), df and p-value). Group differences were assessed by the Dunn’s test with the p-value adjustment method: BH. The
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3.5. The Bacterial Composition Throughout the Year Only Differs in Surface Waters

Changes in bacterial phylum composition potentially caused by temperature changes
were limited to surface water samples (Figure 5). For both the human gut phylum of
Firmicutes and the environmental bacteria Cyanobacteria, the relative abundance did not
significantly change in wastewater and effluent upon fluctuations in temperature, which
is in concordance with a recent similar study [46]. The wastewater sources and influent
showed a stable bacterial community structure. These waters are mainly dominated by
human gut bacteria [16], which in healthy individuals is a stable community [59]. The
stable bacterial community structure of effluent can be explained as effluent is mostly
sourced by influent and activated sludge bacteria [16,40], which consists of a large part of
core bacteria which are present all year round [60].
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Figure 5. Relative abundance at the Phylum level per location per month. The main groups in wastewaters (hospital,
nursing home, municipal wastewater and influent) consist of Proteobacteria, Firmicutes, Bacteroidetes and Actinobacter,
which are significantly changed after the wastewater treatment with Proteobacteria and Parcubacteria as main groups in
the effluent. Surface waters are similar to each other but form a distinct group dominated by Proteobacteria, followed by
Actinobacteria and Bacteroidetes as the main Phyla.

In contrast, temperature affected abundances in surface water. Still, this effect is
limited to Cyanobacteria (up-, downstream, and control surface water, p < 0.001) and
Planctomycetes (up- and downstream surface water, p < 0.001), in agreement with the
role of temperature- and light intensity driven cyanobacterial growth [61]. In another
study, temperature also had no substantial impact on the composition at the Phylum
level in river water [62]. The reason why the influence of temperature was limited to
Cyanobacteria and Planctomycetes can be explained as Cyanobacteria are photoautotrophic
and therefore have a benefit to other bacteria. Higher densities of Planctomycetes are
reported after cyanobacterial blooms, suggesting a possible association of this phylum with
Cyanobacteria [63].

3.6. Culturing More Sensitive Than Sequencing to Detect Impact of This WWTP on Surface Water

In our previous work on the same water samples, an increase in the concentrations
of E. coli was found in the surface water downstream from the WWTP in comparison
to the WWTP upstream location and the control location, as determined by culture [12].
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16S rRNA gene amplicon sequencing was not able to detect any impact of the studied
WWTP on the receiving surface water. Although most of the investigated genera had
a decreased relative abundance in the WWTP, they were still present in at least 68% of
the effluent samples, which are then released into the receiving surface water. However,
their relative abundances did not differ between the upstream, downstream, and control
surface water samples (Figure 4 and Supplementary Figures S3 and S4). In addition, up-
and downstream samples clustered together in the UniFrac plots and did not significantly
differ (Supplementary Figure S2 and Table S2a,b).

In the receiving surface water, effluent bacteria are mixed with environmental bacteria.
Therefore, the relative abundance of effluent bacteria is reduced, making it more difficult to
detect differences in effluent bacteria between surface waters up- and downstream from the
WWTP. In a similar study, the difference in bacterial community structure between up and
downstream water was also not significant [46]. In another comparable study, a difference
between up- and downstream water bacterial composition was observed. However, in this
study, the sampling was performed in summer when dilution of effluent in the receiving
water was minimized [40]. Overall, the influence of WWTP effluent may differ per WWTP
and depend on its degree of dilution with surface water. Methods other than 16S rRNA
gene amplicon sequencing, such as bacterial enumeration of taxa present predominantly in
effluent by culture, may be necessary to detect WWTP effects in situations when effluent is
highly diluted.

This study provides insight in the microbial community structure in wastewaters ob-
tained from different sources. It is the first study to highlight the differences in community
structure between clinical and non-clinical wastewaters. Nevertheless, some limitations
should be noted. The 16S rRNA gene amplicon sequencing does not allow for the strain-
level resolution needed to specifically detect pathogenic (sub-) species. Thus, this study
was primarily directed at generating hypotheses about pathogens that could potentially
be enriched in clinical wastewaters. Follow-up studies applying different methods than
16S rRNA profiling are therefore needed to verify whether the pathogenic or potentially
target taxa are indeed not enriched in clinical wastewaters. The 16S, furthermore, only
provides information about relative abundances instead of absolute concentrations. How-
ever, comparisons with our previous study from which we obtained absolute counts of
Klebsiella spp., and Aeromonas spp., showed a similar pattern of absolute concentrations and
relative abundances along the wastewater pathway. Still, detection by absolute means (i.e.,
culturing or quantitative PCR (qPCR)) would be needed to confirm the decline observed in
the WWTP treatment. Furthermore, the results of this study are limited to the particular
characteristics of the sampled locations, i.e., the volume of wastewater originating from
the sampled hospital and nursing home relative to the total community, the degree of
use of medicines in the hospital and nursing home, the properties of the WWTP, and
the dilution factor of WWTP effluent in the receiving surface water. Future comparisons
between multiple studies will help elucidate the range that the impact of single healthcare
institutions on the overall municipal wastewater can have.

4. Conclusions

In summary, this study provides new insights into shifts in bacterial community
composition from wastewater sources to the environment. We found that clinical and
non-clinical wastewaters significantly differ in their composition, but this difference was
mainly caused by genera not included within the target taxa.

Clinical wastewater had little impact on the bacterial composition found in influent.
From the 207 clinically enriched taxa, only 10 were more abundant in influent than in
domestic wastewater; however, a part of these consisted of genera also included pathogenic
genera. Most of the bacterial genera investigated in this study decreased in their relative
abundance in the WWTP, except for Clostridium spp., Mycobacterium spp., Legionella spp.,
and Leptospira spp. Still, all taxa studied were detected in the majority of the effluent
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samples. For an assessment of the impact on public health, absolute concentrations of
confirmed pathogens would be needed.

In this study, 16S rRNA gene amplicon sequencing was not sensitive enough to demon-
strate the impact of the WWTP on the surface water, in contrast to previous culture-based
analyses. Finally, in this study, temperature had a limited impact on the bacterial compo-
sition in surface water, and the impact on the bacterial composition in wastewater and
effluent was negligible. Therefore, sampling campaigns studying microbial communities
in wastewater might not necessarily have to cover all seasons. In conclusion, our results
suggest a limited role of clinical wastewaters on the bacterial community in the receiving
treatment plant. Furthermore, both culture- and DNA-based analyses should be combined
to better elucidate the impact of WWTP effluents on the environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9040718/s1, Figure S1: Locations of the sampling points in Sneek, Table S1a:
Statistical analysis of weighted UniFrac distances along the wastewater pathway, Table S1b: Statistical
analysis of unweighted UniFrac distances along the wastewater pathway, Figure S2: Bacterial beta
diversity off all the locations, Table S2a: Statistical analysis of weighted UniFrac distances along all
the locations, Table S2b: Statistical analysis of unweighted UniFrac distances along all the locations,
Figure S3: Target genera based on pathogenic potential, Table S3: Clinical enriched bacteria, Table
S4: Clinical indicator bacteria in influent, Figure S4: Pathway of genera including clinical enriched
genera, and Figure S5: ASV richness and Shannon diversity across all sites.
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