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Abstract: Three years after a prospective study on wound infections in a rural hospital in Ghana
revealed no emergence of carbapenem-resistant bacteria we initiated a new study to assess the
prevalence of multidrug-resistant pathogens. Three hundred and one samples of patients with
wound infections were analysed for the presence of resistant bacteria in the period August 2017
till March 2018. Carbapenem-resistant Acinetobacter (A.) baumannii were further characterized by
resistance gene sequencing, PCR-based bacterial strain typing, pulsed-field gel electrophoresis (PFGE)
and multilocus sequence typing (MLST “Oxford scheme”). A. baumanni was detected in wound
infections of 45 patients (15%); 22 isolates were carbapenem-resistant. Carbapenemases NDM-1
and/or OXA-23 were detected in all isolates; two isolates harboured additionally OXA-420. PFGE
and MLST analyses confirmed the presence of one A. baumannii strain in 17 patients that was assigned
to the worldwide spread sequence type ST231 and carried NDM-1 and OXA-23. Furthermore, two
new A. baumannii STs (ST2145 and ST2146) were detected in two and three patients, respectively.
Within three years the prevalence of carbapenem-resistant A. baumannii increased dramatically in the
hospital. The early detection of multidrug-resistant bacteria and prevention of their further spread
are only possible if continuous surveillance and molecular typing will be implemented.

Keywords: Acinetobacter baumannii; carbapenem resistance; OXA-23; OXA-420; NDM-1; wound
infections; Ghana; rural

1. Introduction

Antibiotics are essential medicines whose use in human or veterinary medicine, no
matter how prudent, is inevitably associated with accelerated development of antimicrobial
resistance (AMR). β-lactams are still considered the most successful antibiotic classes. With
a proportion of almost two thirds of all antibiotic prescriptions they are even the most
widely used antibacterial agents against infectious diseases [1]. The carbapenems have
the broadest spectrum of activity against various bacteria and are widely regarded as
the class of last resort for treatment of infections with multidrug-resistant pathogens [2].
However, resistance to carbapenems has increased dramatically worldwide [3]. One reason
for this resistance is the production of different carbapenem-hydrolyzing enzymes, the
carbapenemases. In the last 20 years, the number of newly detected carbapenemases has
increased continuously. The most prevalent carbapenemases in Enterobacterales are OXA-48,
KPC, VIM and NDM; in Pseudomonas (P.) aeruginosa VIM and IMP have been frequently
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detected, and different OXA-enzymes (OXA-23, OXA-58, OXA-40-like) and NDM have
been found mainly in Acinetobacter (A.) baumannii [3–6]. The location of carbapenemase
genes within transposons and/or conjugative plasmids enables the emergence in various
bacterial species and facilitates their worldwide spread [7,8].

Treatment of infections caused by carbapenem-resistant pathogens is quite a big chal-
lenge in industrialized countries and almost impossible for health systems with limited
resources [9–11]. Of great concern are carbapenemase-producing A. baumannii, P. aeruginosa
and Enterobacterales [12–14]. Remaining treatment option for Enterobacterales producing
serine carbapenemases, e.g., KPC or OXA-48, might be ceftazidime-avibactam, meropenem-
vaborbactam, imipenem-cilastatin-relebactam, or cefiderocol; for Enterobacterales producing
metallo-beta-lactamases, e.g., NDM, aztreonam plus ceftazidim-avibactam or cefidero-
col. Alternatively, colistin (plus meropenem or tigecycline or eravacycline) could be an
option. Therapeutic options for carbapenem-resistant A. baumannii might be cefiderocol
or colistin (plus a carbapenem, minocycline, tigecycline, or rifampicin); for carbapenem-
resistant P. aeruginosa ceftolozane-tazobactam, imipenem-cilastatin-relebactam, cefiderocol
or colistin plus meropenem [15]. However, their availability especially in low- and middle-
income countries is rather unlikely [16].

A. baumannii is a non-fermenting bacterium of importance in both humid and tem-
perate climates [17]. Colonization of the human skin may lead to community-acquired
or nosocomial traumatic or surgical wound infections [18,19]. However, the distinction
between true infection and colonization is often difficult to decide [20]. Wound infections
are a common disease entity that is frequently not given the necessary attention, including
lack of microbiological investigation, leading to chronicity and disability [21]. Biofilms
are present in most chronic wounds and may contribute to delayed healing and persistent
inflammation. The environment of the biofilm facilitates the horizontal spread of antibiotic
resistance genes and virulence factors between embedded pathogenic bacteria [22]. More-
over, bacteria are protected from external threats creating additional bacterial tolerance to
antimicrobial agents [23]. Microbiological culture of wound specimens performed through
deep swabbing techniques and processed within two hours frequently detects a polymicro-
bial flora. Deciding which of these different pathogens should be treated is always a big
challenge for the clinician.

Prevention and control of multidrug-resistant bacteria [24] and availability of up
to date recommendations for antimicrobial therapy [25] require continuous surveillance
of antimicrobial resistance which is still not established in most Sub-Saharan African
countries [26]. A pilot study by our study group in a rural hospital in Eikwe, Western
Region of Ghana, found a high prevalence of Enterobacterales with combined resistance
to third-generation cephalosporins and fluoroquinolones but no carbapenem-resistant
bacteria at all in wound infections [27]. The results of this pilot study in 2014 prompted
the project partners in Eikwe and Göttingen to conduct another study. Therefore, a more
comprehensive microbiological analysis of wound infections in Ghana was carried out
from August 2017 to March 2018. All detected carbapenem-resistant A. baumannii were
characterized in the present study.

2. Materials and Methods
2.1. Ethics

The study was approved by the Ghana Health Service Ethics Review Committee, Re-
search & Development Division, Ghana Health Service, Accra, Ghana (GHS-ERC: 04/06/17,
21 July 2017), and the Ethics Committee of the University Medical Center in Göttingen,
Germany (5/6/17, 20 June 2017), respectively. All patients provided written informed
consent before inclusion in the study.

2.2. Clinical Diagnosis and Sample Collection

Wound infection was diagnosed clinically using the classic signs of inflammation.
Before taking the sample, wounds were cleaned with sterile cotton swabs moistened
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with sterile sodium chloride solution (0.9%). The sample was taken with an eSwabTM

(Copan, Brescia, Italy) from the wound bed and edge and then immediately brought to the
bacteriology laboratory for further processing.

2.3. Microbiological Culture and Susceptibility Testing

Basic biochemical identification of the bacterial isolates and antibiotic susceptibility
testing were initially carried out in the bacteriology laboratory of the hospital in Eikwe
adapted to the locally available resources. The anti-infective treatment of wound infections
was adjusted according to the results of the microbiological analysis as described before [27].
In brief, samples were inoculated on 5% blood agar (Merck, Darmstadt, Germany) and on
McConkey agar (Merck, Darmstadt, Germany), incubated aerobically at 37 ◦C, and read
after 24 h and 48 h. Gram-negative bacteria were identified through: (i) hydrogen sulphide
production, indole production and motility in semi-solid SIM (sulphide, indole, motility)
medium (Merck, Darmstadt, Germany) vertically in tubes; (ii) sucrose fermentation in Hugh
Leifson medium (Merck, Darmstadt, Germany); and (iii) Oxidase test, respectively. With
this local approach, identification down to the genus level was possible. The microscopical
examination of a Gram-stained smear was done in order to ensure wound specimen quality
and to check for presence of bacteria, neutrophils, and epithelial cells. Furthermore, disc
diffusion tests for Gram-negative bacteria were performed using the following paper
antibiotic discs: ampicillin 10 µg; ampicillin-sulbactam 10 µg–10 µg; cefotaxime 5 µg;
ciprofloxacin 5 µg; gentamicin 10 µg; and trimethoprim-sulfamethoxazole 1.25–23.75 µg,
respectively [28]. There was no routine screening for carbapenem susceptibility.

All bacterial isolates, independent of their antibiotic resistance, were stored at −20 ◦C
in microbank systems, and were reanalysed at the Institute for Medical Microbiology of
the University Medical Center in Göttingen, Germany, and at the Robert Koch Institute in
Wernigerode, Germany. Species identification was done with MALDI Biotyper 3.0 (Bruker
Daltonics, Bremen, Germany). Antibiotic susceptibility testing for A. baumannii isolates
was performed by broth microdilution and VITEK 2 (bioMérieux, Marcy-l’Étoile, France)
using card AST-N248 (bioMérieux, Nuertingen, Germany) with interpretation of results
according to EUCAST criteria (EUCAST v10.0).

2.4. Molecular Analyses

For all A. baumannii isolates with resistance to meropenem and/or imipenem the pres-
ence of intrinsic blaOXA-51-like genes and the presence of different carbapenemase and other
β-lactamase genes (ISAba1+blaOXA-51-like, blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, blaIMP-like,
blaVIM-like, blaNDM-like, blaGES-like, blaPER-like, blaVEB-like) was investigated by PCR and Sanger se-
quencing, as described previously [29–31]. Furthermore, all carbapenem-resistant A. baumannii
were tested for assignment to the important international clones 1–3 (formerly named European
clones I–III) by multiplex-PCR [32]. Bacterial strain typing was done by Apal-macrorestriction
and subsequent pulsed-field gel electrophoresis (PFGE) and results were interpreted according
to the criteria of Tenover et al. [33]. Finally, multilocus sequence typing (MLST) was per-
formed for selected isolates (PFGE types A-1, A-2, A-3) according to the “Oxford” scheme
(https://pubmlst.org/organisms/acinetobacter-baumannii, accessed on 3 August 2020).

3. Results
3.1. Wound Infection Classification

Overall, wound swabs from 301 patients with wound infections were analysed. Wound
infection (WI) (duration of infection ≤ three month), chronic wound infection (CWI) (duration
of infection > three month), and surgical site infection (SSI) was diagnosed in 144 (48%), 70
(23%), and 74 (25%) patients, respectively. No information was available in 13 (4%) patients.

3.2. Identification and Susceptibility of Detected Bacterial Pathogens

A. baumannii was isolated in wound swabs of 45 patients. Carbapenem resistance
was detected in 22 (49%) of these 45 A. baumannii isolates, Figure 1. Further bacterial

https://pubmlst.org/organisms/acinetobacter-baumannii
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pathogens which were detected beside these carbapenem-resistant A. baumannii in wound
swabs are listed in Table 1. However, no other carbapenem-resistant bacteria except three
Stenotrophomonas maltophilia and one P. aeruginosa without transmissible carbapenemase
genes were found. The 22 carbapenem-resistant A. baumannii isolates were additionally
resistant to ciprofloxacin, trimethoprim-sulfamethoxazole, gentamicin and amikacin (20 of
22 isolates) but remained susceptible to colistin (Table 2).
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carbapenem susceptibility.

Table 1. List of bacterial pathogens detected beside carbapenem-resistant Acinetobacter baumannii in
wound infections (n = 22).

Co-Detected Bacterial Species in Wound Infections (n = Number of Wound Infections)

Gram-Positive Pathogens Gram-Negative Pathogens

Staphylococcus aureus, n = 6 Proteus mirabilis, n = 6
Corynebacterium striatum, n = 3 Escherichia coli, n = 4

Bacillus cereus, n = 2 Stenotrophomonas maltophilia, n = 3
Corynebacterium amycolatum, n = 1 Enterobacter cloacae, n = 2

Enterococcus avium, n = 1 Klebsiella pneumoniae, n = 2
Enterococcus casseliflavus, n = 1 Pseudomonas aeruginosa, n = 2

Enterococcus faecalis, n = 1 Achromobacter spanius, n = 1
Providencia stuartii, n = 1

Between 0 and 5 further bacterial pathogens beside carbapenem-resistant A. baumannii were detected in the
individual wound infection. The average number of pathogens per wound infection was 2.7. Coagulase-negative
staphylococci (n = 7) other than Staphylococcus lugdunensis or Staphylococcus schleiferi subsp. schleiferi were present
but not further analysed.

3.3. Molecular Characteristics of A. baumannii

The majority of the 22 carbapenem-resistant A. baumannii isolates (n = 17, 77%) harboured
the two carbapenemase genes blaOXA-23 and blaNDM-1. In two isolates the combination blaNDM-1
and blaOXA-420 was detected. The three remaining isolates carried blaOXA-23, and the insertion
sequence ISAba1 was present upstream of the intrinsic gene blaOXA-378 (Table 2).

By PCR-based typing the 17 A. baumannii isolates with carbapenemase gene combi-
nation blaOXA-23/blaNDM-1 were assigned to international clone 1 (IC 1). All 17 isolates
harboured blaOXA-69, a variant of the intrinsic, A. baumannii specific blaOXA-51 gene. The
five remaining isolates were non-typeable by this multiplex-PCR and carried the intrinsic
gene variant blaOXA-378.

PFGE-typing of the 22 carbapenemase-producing isolates revealed three distinctly
distinguishable macrorestriction patterns designated as A. baumannii PFGE-types A-1, A-2
and A-3 (Figure 2). The 17 A. baumannii isolates of IC 1 were assigned to PFGE-type A-1
and showed highly related macrorestriction patterns that differed in 0–2 bands. PFGE-type
A-2 isolates (n = 3) differed in six bands from PFGE-type A-3 isolates (n = 2) but all five
isolates carried the intrinsic gene blaOXA-378.
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Table 2. Characteristics of 22 carbapenem-resistant Acinetobacter baumannii isolates from wound infections, Ghana, 2017/2018.

Isolate No. Sampling
Date

Species A. baumannii
Specific

blaOXA-51-like
1

Carbapenemase
Genes

A. baumannii
Typing PCR

(clones EI-III) 2

PFGE-Type Sequence
Type

(ST)OX

Resistances 3

5B 21.08.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
36B 22.09.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
39B 26.09.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
43A 27.09.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1a ST231 IPM, MEM, GEN, AMK, CIP, SXT
67A 12.10.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1a ST231 IPM, MEM, GEN, AMK, CIP, SXT

105A 06.11.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
109C 08.11.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
116F 10.11.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
146C 27.11.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
165B 06.12.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
168A 11.12.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
178A 15.12.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
190E 22.12.2017 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT

229C 15.01.2018 A. baumannii blaOXA-378
blaOXA-23,

ISAba1-blaOXA-378
n.t. A-2 ST2145 IPM, MEM, GEN, CIP, SXT

236A 17.01.2018 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
246-1A 24.01.2018 A. baumannii blaOXA-378 blaNDM-1, blaOXA-420 n.t. A-3 ST2146 IPM, MEM, GEN, AMK, CIP, SXT
258A 05.02.2018 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1b ST231 IPM, MEM, GEN, AMK, CIP, SXT
267B 06.02.2018 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT

274A 14.02.2018 A. baumannii blaOXA-378
blaOXA-23,

ISAba1-blaOXA-378
n.t. A-2 ST2145 IPM, MEM, GEN, CIP, SXT

278D 19.02.2018 A. baumannii blaOXA-378 blaNDM-1, blaOXA-420 n.t. A-3 ST2146 IPM, MEM, GEN, AMK, CIP, SXT

280C 19.02.2018 A. baumannii blaOXA-378

blaOXA-23,
ISAba1-blaOXA-378,

blaNDM-1

n.t. A-2a ST2145 IPM, MEM, GEN, AMK, CIP, SXT

288A 24.02.2018 A. baumannii blaOXA-69 blaNDM-1, blaOXA-23 EU-I (IC 1) A-1 ST231 IPM, MEM, GEN, AMK, CIP, SXT
1 PCR Turton et al. 2006 [31]. 2 PCR Turton et al. 2007 [32]. n.t. non-typeable. 3 All carbapenem-resistant A. baumannii isolates were susceptible to colistin. STOX, sequence type according multilocus sequence
typing (MLST “Oxford” scheme (https://pubmlst.org/organisms/acinetobacter-baumannii, accessed on 3 August 2020). IPM, imipenem; MEM, meropenem; GEN, gentamicin; AMK; amikacin; CIP, ciprofloxacin;
SXT, trimethoprim-sulfamethoxazole.

https://pubmlst.org/organisms/acinetobacter-baumannii
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Using MLST (“Oxford” scheme) the 17 A. baumanni isolates of IC 1 were assigned to
sequence type ST231 (Table 2). The five other isolates were designated as new sequence
types ST2145 and ST2146, respectively.

4. Discussion

The molecular analyses of the 22 detected carbapenem-resistant A. baumannii iso-
lates in this study confirmed the presence of an NDM-1 and OXA-23 carbapenemase-
producing strain of sequence type ST231 in wounds of 17 patients. According to the MLST
database ST231 (Table 2) has been detected for clinical isolates worldwide, e.g., Brasilia,
Libya, the USA, the Netherlands and Germany [29]. The emergence and spread of this
carbapenemase-producing strain of ST231 within the hospital in Eikwe is of concern and
needs continuous surveillance.

Furthermore, three and two patients carried A. baumannii of the novel sequence types
ST2145 and ST2146, respectively. Both STs differed in only one allele (gpi) to ST1452
and ST1459, that were detected previously for several isolates with blaOXA-378 from white
stork nestlings in Poland, 2015 [34]. The strain of ST2145 carried carbapenemase gene
blaOXA-23 and insertion sequence ISAba1 upstream of blaOXA-378 that is known to provide a
strong promoter for blaOXA-51-like genes in A. baumannii resulting in increased gene expres-
sion and resistance to carbapenems [31]. For the strain of ST2146 carbapenemase genes
blaNDM-1 and blaOXA-420 were detected. OXA-420 has been reported first in carbapenem-
resistant A. baumannii isolates from Nepal in 2014 and it shows one amino acid substitu-
tion (A256D) compared to the worldwide prevalent carbapenemase OXA-58 [35]. Fur-
thermore, the blaOXA-420 gene sequence has been submitted to the NCBI database from
A. baumannii isolates in the Netherlands (CP038646.1, April 2019); and the genome analysis
of 36 A. baumannii from three hospitals in Ghana (2016–2017) revealed one ST107 isolate
from a sputum sample with this rare enzyme variant [36]. Since carbapenemase genes
are often located on plasmids a transfer between different A. baumannii strains might be
possible but this was not analyzed further in the present study.

Our pilot study in Eikwe, Western Region of Ghana, 2014 [27], and a study from
another rural district hospital in Asante Akim North Municipality of Ghana, 2016 [37]
found no carbapenem-resistant A. baumannii. However, three and a half years later, the
present study has shown that almost half of the A. baumannii isolates from wound infections
are carbapenem-resistant. Several circumstances might have been contributed. Exposure
to carbapenems is a necessary but not sufficient prerequisite. Carbapenems are available
in Ghana, but their clinical use seems to be very limited and most likely restricted to very
selected patients in private or university hospitals [38]. The increasing mobility of local
people nationally and even internationally for private and/or professional reasons could
lead to the acquisition of carbapenem-resistant A. baumannii isolates [39–41]. In addition,
colonized patients admitted to multiple health facilities might contribute to the further
spread of opportunistic bacteria. Once carbapenem-resistant A. baumannii is introduced
into a local health facility and there is no continuous microbiological surveillance to detect
the phenomenon of carbapenem resistance, together with inadequate infection control
measures the gateway to further transmission is open.

The treatment of patients with carbapenem-resistant A. baumannii wound infection is
difficult. There is no oral treatment option available. Colistin might be therapeutic options
but in resource-limited countries such as Sub-Saharan Africa, these drugs are simply not
available or too expensive [42]. Ultimately, only wound debridement, use of antiseptics
which favour the formation of granulation tissue and appropriate wound care with careful
adherence to hygiene standards are realistic options. Therefore, investment in and continu-
ous training of horizontal infection control measures like appropriate hand hygiene, e.g.,
WHO 5 moments of hand hygiene, need to be promoted and trained continuously [43].
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5. Conclusions

In conclusion, the emergence and nosocomial spread of carbapenem-resistant A. bau-
mannii in this follow up investigation in Ghana demonstrates that continuous surveillance
of antimicrobial resistance of clinical isolates is of paramount importance. Health systems
with limited resources need to be enabled to perform nationwide basic microbiological
investigations on a routine basis. However, there is also need to get access to more sophis-
ticated technologies like molecular typing methods to analyse emergence and spread of
multidrug-resistant bacteria and to take immediate and appropriate preventive hygienic
measures. Finally, access to effective anti-infective drugs according to the local resistance
situation is urgently needed.
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