

Fig. SI-1. Hierarchical clustering analysis of isolated *Pseudomonas* species. A total of 51 genomes were selected for this analysis which was run based on COG profiles using the img/er workflow.

B

А

PATRIC 3.6.8	ORGANISMS - DATA	WORKSPACES - SER	VICES - HELP -	All Da	ta Types 🛛 👻 Find a gene, gene	ome, microarray, etc	c	🕈 🕐 All terms 💌 🗮 🤮
Feature View Bacteria » Proteobacteria fig 1333856.3.peg.4134	» Gammaproteobacteria » Ps L686_22520 Nitrite reducta	eudomonadales » Pseudomo ase (EC 1.7.2.1)	madaceae » Pseudomonas » Pseu	idomonas stutzeri » Pseudomonas sti	ıtzeri MF28			
Overview Genome Browser	Compare Region Viewer	Transcriptomics Interac	tions					
Region Size: 50,000bp 👻 M	Number of genomes: 5 👻	Method: PATRIC cross-ger	us families (PGfams) 👻 Genom	es: Reference & Representative 🔹	Update Export			
0) Pseudomonas stutzeri MF28 1) Pseudomonas stutzeri strain YC-YH1								
2) Pseudomonas stutzeri ATCC 17588 = LMG 11199	<		╵Ѽ ▶				,_ -,-,-,-, ,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,	
3) Pseudomonas stutzeri CCUG 29243							° ¢	
4) Pseudomonas balearica DSM 6083 DSM6083 (=SP1402)	i 📫 🍋 🗖						<u> </u>	⊨ ← ≕ → ↓ ,
4					•			

All Data Types Find a gene, genome, microarray, etc.	All terms 👻 🗮 🐣
Feature Vew Section a Very Protechacteria » Gammaproteobacteria » Pseudomonadales » Pseudomonadaceae » Pseudomonas aeruginosa » Pseudomonas aeruginosa » Pseudomonas aeruginosa » Veseudomonas » Veseudomonas aeruginosa » Veseudomonas » Veseudomonas » Veseudomonas » Veseudomonas aeruginosa » Veseudomonas	
Overview Genome Browser Compare Region Viewer Transcriptomics Interactions	
Region Size 50,000bp v Number of genomes 5 v Method: PATRIC cross-genus families (PGfams) v Genomes Reference & Representative v Update Export	
4) Pseudomonas stutzeri strain YC-YH1	

F

D

Fig. SI-2. Operonic structures of key denitrification genes identified in *Pseudomonas alcaligenes* OT69, *Pseudomonas stutzeri* MF28 and *Pseudomonas aeruginosa* WC55, relative to their closest relatives. Shown are nitric-oxide reductase subunit B in strain OT69 (2A); nitric-oxide reductase subunit B, subunit C and a nitrite reductase in strain MF28 (2B-D); strain WC55 also possessed these genes, which are the nitric-oxide reductase subunit B, subunit C and a nitrite reductase (2E-G), respectively.

Α										
^{anti} smash an	tiSMASH version 6.0	.0alpha1-6	60bffdb				L Download	i About	? Help	Contact
Select genom	hic region: 69.1 77.1 84	.1 111.1	121.1	134.1 134.2 134.3 154.1						
Region	Type RiPP like R	From	To	Most similar known cluster		Similarity			Compac	t view
Region 77.1	ranthipeptide 2	39,940	61,370	pyoverdin Z	NRP	4%				
Region 84.1 Region 111.	NAGGN C NRPS C	8,528 1	23,306 106.927	pvoverdin Z	NRP	7%				
Region 121.	1 arylpolyene 🗹	1	33,968	APE Vf 🗹	Other	30%				
Region 134.	1 T3PKS Id	562	41,611	2,4-diacetylphloroglucinol	Polyketide	100%				
Region 134.	2 CDPS D	46,131	66,880							
Region 134.	3 RiPP-like 🗹	104,432	115,268							
Region 154.	1 redox-cofactor C	1	19,733	lankacidin C Z	NRP + Polyketide	13%				

B

anti SMASII anti	SMASH version 6.	0.0alpha1	-60bffdb				🛓 Download	i About	? Help	Contact
Select genomic Overview	; region: 6.1 9.1 1:	2.1 12.2	13.1	27.1 37.1 47.1 73	3.1					
Identified secor	idary metabolite regi	ions using	strictness 'i	relaxed'						
Region	Туре	From	То	Most similar known cluste	er	Similarity			Compac	t view
Region 6.1	terpene Z	42,888	66,491	carotenoid Z	Terpene	100%				
Region 9.1	redox-cofactor	2,476	30,850	lankacidin C Z	NRP + Polyketide	13%				
Region 12.1	arylpolyene Z	51,948	95,535	APE Vf 🗹	Other	45%				
Region 12.2	ectoine d'	332,401	342,796	ectoine 🗹	Other	50%				
Region 13.1	siderophore 2	38,038	49,900	putrebactin / avaroferrin 🗹	Other	30%				
Region 27.1	NAGGN Z	123,546	138,463							
Region 37.1	betalactone Z	20,387	40,613	fengycin 🗹	NRP	13%				
Region 47.1	RiPP-like Z	1	9,841							
Region 73.1	betalactone C	65,267	94,223	O-antigen II	Saccharide	14%				

С

anti SMASH AI	ntiSMASH version	5.2.0					🛓 Download	i About	? Help 🛛 Contact
Select genon	mic region:								
Overview	6.1 7.1	11.1 11.2 11.3	11.4 33	.1 62.1 115	.1 117.1 1	35.1 141.1	145.1 151.1 1	64.1	
Identified sec	condary metabolite re	gions using strictness 'rel	axed'					,	
Region	Туре	From	То	Most similar kr	own cluster	Similarity			Compact view
Region 6.1	NRPS Z	1	41,596	pyochelin Z	NRP	100%			
Region 7.1	NRPS-like Z	31,337	55,838						
Region 11.1	bacteriocin 🗹	20,100	30,954						
Region 11.2	2 NRPS I	59,129	108,675						
Region 11.3	NAGGN 🗹	207,928	222,688						
Region 11.4	4 hserlactone	225,705	246,310						
Region 33.1	1 phenazine 🗹	1	10,307						
Region 62.1	1 NRPS I	1	5,202	pyoverdin Z	NRP	3%			
Region 115	.1 bacteriocin 🗹	26,751	37,581						
Region 117	.1 NRPS d	2,055	55,083	pyoverdin 🗹	NRP	2%			
Region 135	1 thiopeptide	45,276	78,279						
Region 141	1 hserlactone	33,769	54,374						
Region 145	NRPS-like Z	betalactone 🗹 26,825	68,333	pyoverdin 2	NRP	2%			
Region 151	.1 NRPS d	1	24,622	pyoverdin 🗹	NRP	13%			
Region 164	.1 phenazine Z	1	10,385						

Fig. SI-3. Biosynthetic gene cluster analysis performed on isolated *Pseudomonas* species. Shown are A, *Pseudomonas alcaligenes* OT69; B, *Pseudomonas stutzeri* MF28 and C, *Pseudomonas aeruginosa* WC55, respectively.

С

7

Fig. SI-4. Evaluation of the resistome or the suite of antimicrobial resistance genes within the genomes of the three isolated pseudomonads using the CARD pipeline. Shown are A, *Pseudomonas alcaligenes* OT69; B, *Pseudomonas stutzeri* MF28 and C, *Pseudomonas aeruginosa* WC55, respectively.