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Abstract: Revealing the relationship between taxonomy and function in microbiomes is critical to
discover their contribution to ecosystem functioning. However, while the relationship between
taxonomic and functional diversity in bacteria and fungi is known, this is not the case for archaea.
Here, we used a meta-analysis of 417 completely annotated extant and taxonomically unique archaeal
genomes to predict the extent of microbiome functionality on Earth contained within archaeal
genomes using accumulation curves of all known level 3 functions of KEGG Orthology. We found
that intergenome redundancy as functions present in multiple genomes was inversely related to
intragenome redundancy as multiple copies of a gene in one genome, implying the tradeoff between
additional copies of functionally important genes or a higher number of different genes. A logarithmic
model described the relationship between functional diversity and species richness better than both
the unsaturated and the saturated model, which suggests a limited total number of archaeal functions
in contrast to the sheer unlimited potential of bacteria and fungi. Using the global archaeal species
richness estimate of 13,159, the logarithmic model predicted 4164.1 ± 2.9 KEGG level 3 functions.
The non-parametric bootstrap estimate yielded a lower bound of 2994 ± 57 KEGG level 3 functions.
Our approach not only highlighted similarities in functional redundancy but also the difference in
functional potential of archaea compared to other domains of life.

Keywords: archaea; functional diversity; microbiome functionality

1. Introduction

The biochemical transformations conducted by a community of microbes from all
domains of life mediate ecosystem functioning [1]. Even though ecological studies tend
to focus on bacteria and fungi, archaea as a major part of global ecosystems [2] are ubiq-
uitous in both terrestrial and aquatic environments [3,4]. Particularly, archaea make up
between 20% and 30% of the total prokaryotes in marine environments [5] and between
0% and 10% in soil environments [4,6]. Increases in the proportion of archaea were found
in extreme habitats such as acidity and low temperature [7]. Functionally, archaea play
key roles in global carbon (e.g., methanogenesis or CO2 fixation) and nitrogen (e.g., N2
fixation or oxidation of ammonia) cycles [8], but they also have complex relationships with
both bacteria and fungi [9]. In a microbial community, multiple organisms with different
taxonomy may have similar if not identical roles in ecosystem functionality, the so-called
functional redundancy [10]. Indeed, interspecies redundancy was reported to be very high
with several hundreds to thousands of different taxa to express the same function in a
habitat [11]. These functions can be statistically inferred based on the homology to experi-
mentally characterized genes and proteins in specific organisms to find orthologs present in
a microbiome [12–14]. This ortholog annotation is used by KEGG Orthology [15,16], which
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covers a wide range of functional classes (level 1 of KEGG) comprising cellular processes,
environmental information processing, genetic information processing, human diseases,
metabolism, organismal system, brite hierarchies, and functions not included in the annota-
tion of the two databases pathway or brite. KEGG level 2 functions provide more detail, i.e.,
differentiating glycoside hydrolases and glycosyltransferases within carbohydrate active
enzymes (level 1), whereas KEGG level 3 is the enzyme itself, i.e., the glycogen phosphory-
lase (K00688, EC: 2.4.1.1.) that belongs to the glycosyltransferases (more information can
be obtained under https://www.genome.jp/kegg/kegg3.html, accessed on 17 July 2020).
However, the bottleneck of reporting microbiome functions is the low number of fully
sequenced and annotated genomes as only organisms are captured that have undergone
isolation and extensive characterization [12–14] with respect to the expected total diversity.
Hence, the lower the share of known species or the higher the predicted total diversity,
the weaker the prediction itself. Problematically, the vast majority of organisms have not
yet been studied [17,18] which is why the annotation is based on the similarity to the
genomes of the very few studied model organisms [12–14]. Consequentially, microbiome
functionality is inferred based on the taxonomic composition of the community and its
relation to functional parameters [19], indicated by the frequent use of the 16S rRNA gene
metabarcoding to describe the prokaryotic community. Even though the description of mi-
crobial communities is important to assess the drivers of the occurrence of individual taxa
and the composition of their communities [12], the mere taxonomic composition itself did
not provide detailed answers about its functional diversity [20]. The functional diversity
for both bacteria [13] and fungi [12–14] were recently predicted to comprise millions of
different functions using meta-analyses of proteins [13] and genomes [12,14], most of which
are unknown today. However, our understanding of functional redundancy in archaea and
their contribution to the total microbiome functionality is still scarce.

Here, we used both parametric and non-parametric estimators of functional richness
with the aim to predict the total archaeal functionality on Earth and to unveil the relation-
ship between taxonomy and function in the archaeal domain. To do so, we obtained all
completely annotated genomes of taxonomically unique archaeal species (n = 417) from the
integrated microbial genomes and microbiomes (IMG) of the Joint Genome Institute (JGI)
(https://img.jgi.doe.gov/, accessed on 17 July 2020) with taxonomic annotation on the
species level and functional annotation of KEGG on level 3 (referred to as KEGG function).
We used a parametric estimation based on accumulation curves (AC) [21] that are charac-
terized by the increasing number functions with increasing species. The AC was fitted to
saturated, unsaturated, and logarithmic models, and the best fitting model was chosen
based on its fitness in comparison to the other models. As a non-parametric estimator,
Chao-1 was used for every 50 randomly picked species of all 417 in the database each
with 20 replicates. The precision of both the parametric and the non-parametric approach
generally depends on the proximity to the asymptote of the model, with greater extrap-
olation to the total count resulting in greater error [22]. We therefore hypothesized more
precise estimates of the contribution of archaea to the total microbiome functionality than
previously proposed for both bacteria [13] and fungi [12–14] due to the higher coverage of
the predicted taxonomic diversity in archaea.

2. Materials and Methods
2.1. Metadata Collection of the Total Known Archaeal Microbiome Functions

To predict the contribution to microbiome functions and to compare the genome
content across archaeal species, habitats, and temperature ranges, available genomes
from archaea were downloaded from the integrated microbial genomes and microbiomes
(IMG) of the Joint Genome Institute (JGI) on 17 July 2020. A genome was randomly
selected in the case of multiple sequenced genomes from the same species to obtain
taxonomically distinct archaeal species. For each genome, the gene counts for each KEGG
function [15,16] were retrieved. Our database comprised 417 completely annotated archaeal
genomes with, in total, 2835 KEGG functions (Supplementary Table S1). Noteworthy,
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761 archaeal metagenome-assembled genomes (MAG) were available in the database
(as of 31 August 2020) but only seven with high quality. Even though many archaeal
genomes and functions are derived from non-cultivable species, we wanted to use complete
information for precise modeling. For one genome, the sequencing status was denoted
as “Draft”, for 217 as “Permanent Draft”, and for 199 as “Finished”. Only three genomes
were available to describe psychrophilic archaea and the taxa were therefore excluded
from further analysis. Intergenome redundancy was calculated as the number of KEGG
functions covered by one randomly chosen species in comparison to the total number of
functions in all species [12]. Intragenome redundancy or gene redundancy was estimated
as the average of genes per individual KEGG function in one species [12]. The gene counts
and KEGG functions per archaeal phylum, habitat, and temperature range were retrieved as
the average with standard deviation from the database. To estimate the specific differences,
both intergenome and intragenome redundancy were calculated for every phylum, habitat,
and temperature range as described for the total database above.

2.2. Accumulation Curves (AC)

Archaeal species were added in intervals of one to 417 species using 1000 random
permutations per step via the function specaccum from the R package vegan [23]. A saturated
(Equation (1)) and an unsaturated model (Equation (2)) with the critical point estimated
by the term 3Af [24] was then fitted to the AC of the database permutation. Due to the
plateauing shape of the AC, a logarithmic model was used as well. The fit of all models
was validated by the analysis of the Akaike Information Criterion (AIC) [25] with a penalty
per parameter set to k equals two. The total number of KEGG functions in archaea on
Earth was predicted using a global species richness estimate of 13,159 archaeal species [26]
to calculate the potential maximum of KEGG functions via uncertainty propagation and
Monte Carlo simulation of the function predictNLS in the R package propagate [27]. The
non-parametric estimation of functional richness was calculated by Chao-1 [28,29]. This
method was developed to estimate the asymptotic species richness in a set of samples.
Since our objective was to estimate the asymptotic functional richness, genomes took the
role of samples and KEGG functions took the role of species in our analysis. Resampling
and repeating computations for lower levels of sample accumulation generated a smoother
curve of the estimations. A reliable estimator would reach its own asymptote before the
species accumulation curve does [21]. To test whether this occurred in our dataset, Chao-1
was estimated using a random subset of every 50 picked archaeal genomes in the database
starting with two species (Equation (3)). Additionally, asymptotic functional richness was
estimated using a first order jackknife (jack-1) and the bootstrap “boot” methods with the
function specpool in the R package vegan [23] to check if these two alternative methods
yielded estimations comparable to the parametric and Chao-1 estimates.

Functional richness = fmax × Species richness/(Af + Species Richness), (1)

Functional richness = fmax × Species richness/(Af + Species Richness) +
(k × Species richness),

(2)

Chao-1 = Functional richness + (a1
2/2a2), (3)

Here, fmax is the maximum functional richness, Af the accretion rate of functions with
an increasing number of species, and k the constant of the additive term. Functions found
only once or twice are indicated by a1 as singletons and a2 as doubletons, respectively.

2.3. Statistical Analysis

The differences between gene counts, KEGG functions, and their functional redun-
dancy were estimated by Tukey’s honestly significant difference (HSD) test [30] using the
package agricolae [31].
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3. Results
3.1. Gene Counts and Number of KEGG Level 3 Functions

The gene count per species was significantly higher (HSD-test) in Euryarchaeota as
compared to Crenarchaeota and Thaumarchaeota (Figure 1a). On the level of habitats, archaea
isolated from fresh water, sediments, or soils had on average significantly more genes than
archaea enriched from the deep sea or hot springs. A comparable number of archaeal
genomes were sampled from each habitat, ranging from 8 in sludge to 37 in hot springs.
On the level of temperature preferences, mesophilic archaea comprised significantly (HSD-
test) more genes than thermophilic and hyperthermophilic archaea. Similar significant
differences were apparent in the number of KEGG level 3 functions on all three prior
investigated levels (Figure 1b).
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Figure 1. Counts (a) and the number of different KEGG functions (b) per genome across archaeal phyla, habitats, and
temperature ranges shown as average with standard deviation. The number of archaeal genomes is given in italics. Groups
followed by a different letter are significantly different according to the HSD-test (p < 0.05).

3.2. Inter- and Intragenome Functional Redundancy

Intergenome functional redundancy is a proxy for the performance of one metabolic
function by multiple taxonomically distinct organisms, while intragenome functional re-
dundancy describes the number of replicated functions within one genome [12,14]. Across
all 417 archaeal genomes, the median of intergenome functional redundancy was found
to be 0.06 (Figure 2a). Most functions were found with low redundancy as 1650 KEGG
functions were present in less than 10% of the species. In comparison, only 172 KEGG
functions were present in more than 90% of the archaeal genomes. Together, 65.3% of all
functions showed either high or low redundancy while the rest appeared intermediate
with an intergenome functional redundancy between 0.1 and 0.9 with a particularly high
abundance at around 0.24. The median of intragenome functional redundancy across
all 417 archaeal genomes was found to be 1.02 gene copies per KEGG function with a
maximum of 72 gene copies (Figure 2b).
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Figure 2. The distribution of intergenome functional redundancy as the total share of functions within archaea relative to
the total number of archaeal species in the database (a) and intragenome functional redundancy as the number of replicated
KEGG functions within one archaeal species in the database (b) compared to the previously published distributions in
fungi [12].

Among archaeal phyla, Thaumarchaeota showed a significantly higher (HSD-test) in-
tergenome functional redundancy compared to Crenarchaeota and Euryarchaeota (Figure 3a).
Within habitats, the intergenome redundancy in the deep sea, hot springs, sediments, and
sludges was significantly higher (HSD-test) than in fresh water, host, marine, and soil
habitats. On the level of temperature preferences, intergenome redundancy was highest in
hyperthermophilic archaea, followed by thermophilic and mesophilic ones. The inverse
pattern was found for intragenome functional redundancy for all three investigated levels
(Figure 3b). Significantly higher intergenome redundancy was accompanied by signifi-
cantly lower intragenome redundancy and vice versa regardless the taxonomy, habitat,
and temperature preference of archaea.

3.3. Parametric and Non-Parametric Estimation of the Archaeal Contribution to the Total
Microbiome Functionality

The logarithmic model comprised a significantly better fit of the dependence of functions
on archaeal species richness than both the saturated and the unsaturated model, estimated by
lower akaike information criterion (AIC) (Figure 4a) to imply a plateau of functional richness
with higher species richness. Considering the estimate of 13,159 archaeal species on Earth [26]
and assuming that the relationship between species richness and functional richness will be
logarithmic with the addition of new species, we propagated the logarithmic model with
the result of a total archaeal functionality of 4164.2 ± 2.9 KEGG functions (with 4158.6 and
4169.9 as 95% confidence intervals). Similarly, the non-parametric estimator of functional
richness that assumes the existence of a maximum functional richness indeed plateaued for
the 417 archaeal genomes (Figure 4b). Estimations obtained with more than 200 archaeal
genomes generated broadly overlapping confidence intervals indicative of the reliability of
the estimation of the asymptotic functional richness. The three non-parametric estimators
yielded comparable estimations of asymptotic functional richness: 3128 ± 42 KEGG func-
tions using the Chao-1 index, 3169 ± 78 using the first order jackknife, and 2994 ± 57 using
the bootstrap method (Figure 4b).
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4. Discussion
4.1. Genome Content

The genome size of an organism generally reflects its developmental and ecological
needs [32]. Larger genomes are directly related to increases in both cellular and nuclear
volumes [33] that help to cushion fluctuations in concentrations of regulatory proteins
or to protect coding DNA from spontaneous mutation [34]. Variation in genome size is
therefore a result of the adaptive needs or of natural selection in different organisms [32];
the so-called adaptive theory of genome evolution. The smaller genomes of archaea could
be directly related to a higher evolutionary rate [35]. Indeed, the 417 archaeal species
generally comprised smaller genomes compared to bacteria [36], but with statistically
significant differences among phyla, habitats, and temperature ranges that were mirrored
by the number of KEGG level 3 functions in each genome. Particularly, archaea inhabiting
extreme habitats such as deep sea or hot springs characteristic with high local temperatures
not only had significantly fewer total genes but also fewer KEGG functions. Otherwise,
environments of higher complexity and diversity such as soils or sediments contained
archaea with a larger functional potential that may have allowed them more options for
the competition for or the utilization of a wider range of nutrients.

4.2. Functional Redundancy

A limited set of metabolic pathways found in a variety of taxonomic groups drive
most biogeochemical reactions [37] which is why the diversity in the community is
correlated strongly with its functional diversity [38]. Functions are classified into two
groups [12–14]: (i) Highly redundant across different species present in more than 90%
of all species or (ii) unique to only a few species present in less than 10% of all species.
Here, intergenome redundancy was either high or low for roughly two thirds of all the
KEGG functions; fewer than the 77.3% were found in fungal genomes [12,14]. However,
the presence of a higher share of functions of intermediate redundancy that are present
between the two thresholds suggested the presence of more than two groups [12–14] that
could be particularly important for organisms with smaller genomes such as archaea
and bacteria. A set of functions present in a quarter of all archaea indicated that the
presence of a driving phylotype or environment may drive intergenome redundancy.
Indeed, most functions (151/194) with an intergenome redundancy between 22% and 26%
belonged to the phylum Crenarchaeota, the habitat hot springs, and the temperature range
of hyperthermophilic archaea, mainly affiliated with amino acid utilization, fermentation,
methanogenesis, and nucleic acid metabolism. The median intergenome redundancy
was twice as high as found for fungi before [12,14], implying a higher share of functions
shared among archaea on average. However, only half the gene copies (1.02 in archaea
compared to 2.0 in fungi) were present, highlighting the close relationship between
intergenome and intragenome redundancy. Indeed, the archaeal genomes revealed
that low intergenome redundancy is generally related to high intragenome redundancy
and vice versa. Presumably, every organism must choose between additional copies of
functionally important genes or a higher number of different genes, especially in reduced
genomes. Similarly to the pattern found in fungi before [12,14], functions belonging
to the maintenance apparatus such as S-adenosylmethionine synthetase (EC 2.5.1.6,
K00789) involved in the biosynthesis of amino acids were with both high intergenome
and high intragenome redundancy, allowing for more complex regulation of the gene,
i.e., when more transcripts are needed. Otherwise, functions with low intergenome and
low intragenome redundancy are highly specialized processes only performed by a few
archaea such as the drug transporter MFS transporter, DHA1 family, multidrug resistance
protein (K19578) found in the crenarchaeote Thermofilum adornatus.
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4.3. Archaeal Contribution to the Total Microbiome Functionality

The parametric approach estimated the archaeal contribution to the total microbiome
functionality to roughly 4200 KEGG functions; a magnitude less than predicted for both
bacteria [13] and fungi [12–14]. The lower bound estimate of functional richness derived
from the non-parametric approaches yielded roughly 3000 KEGG functions. A plateau of
functional richness with higher species richness made the predictions for archaea more
reliable as the errors decreased with proximity to the asymptote [22]. Theoretically, a higher
number of species must be sequenced until no additional functions are unveiled and the
accumulation curve reaches the actual asymptote [39]. However, practically, this is nearly
impossible as a prohibitively large number of species are needed to be sampled in order
to reach an asymptote [40]. In our meta-analysis, admittedly, the 417 genomes of distinct
archaeal species only spanned three archaeal phyla from all 21 proposed phyla [41,42] and
covered only a small part of the predicted taxonomic diversity in archaea; with databases
containing up to 13,159 archaeal species [26], the prediction of 5000 archaeal genera [43], and
the finding of 669 distinct archaeal species among 10,575 prokaryotic genomes [44]. Hence,
the addition of genomes from novel archaeal species with potentially new KEGG functions
could change both the parametric and the non-parametric estimates of functional richness.
However, the differences in the estimates are likely not as tremendous as the potential
differences in the estimates for both bacteria [13] and fungi [12–14] as the accumulation
curve already plateaued with 417 taxonomically distinct archaeal species. Noteworthy, it is
unclear how well new functions are recovered in archaea. As there is notably less interest in
archaea compared to bacteria, functional annotations might generally miss archaea-specific
functions to a larger extent than bacteria-specific functions missed in bacteria. As of today,
our understanding of the contribution of archaea to the total microbiome functionality
covers the majority of the KEGG functions, but many as-yet unknown archaea-specific
functions could exist.

5. Conclusions

Our results suggest a limited contribution of archaea to the total functional potential
of the microbiome, with most archaeal functions already identified as of today. However,
the existence of archaea-specific functions must be validated by novel and more sophisti-
cated methods. The accumulation curve describing the increase of functional categories
with the number of sequenced genomes in archaea was closer to the asymptote than in
bacteria [13] and fungi [12–14]. This made the estimate of archaeal contribution to the
total microbiome functionality more precise, although it is still uncertain if the functional
diversities of different domains can easily be compared. Noteworthy and similar to fungi,
only one quarter of all genes in archaeal genomes on average were affiliated with a KEGG
function, which demonstrates the limitations of the annotation because the prediction
of microbiome functionality technically excluded three quarters of the entire functional
potential in archaea. Different ortholog databases such as COG or Pfam could further
improve our understanding of functional diversity, especially in archaea, as those covered
three times more genes than KEGG did. Still, different approaches and definitions of
functions are necessary to estimate the actual functional diversity of the microbiome.
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